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§. l. Introduction 

Recently several papers appeared in the literature proving theorems 
of the following type. A topological space with "very many points" 
contains a discrete subspace with "many points". J. DE GROOT and 
B. A. EFIMOV proved in [2] and [4] that a Hausdorff space of power 
> exp exp exp m contains a discrete subspace of power >m. J. ISBELL 
proved in [3] a similar result for completely regular spaces. 

J. de Groot proved as well that for regular spaces R the assumption 
IRI > exp exp m is sufficient to imply the existence of a discrete subspace 
of potency > m. One of our main issues will be to improve this result 
and show that the same holds for Hausdorff spaces (see Theorems 2 
and 3). 

Our Theorem 1 states that a Hausdorff space of density > exp m 
contains a discrete subspace of power >m. We give two different proofs 
for the main result already mentioned. The proof outlined for Theorem 3 
is a slight improvement of de Groot's proof. The proof given for Theorem 2 
is of purely combinatorial character. We make use of the ideas and some 
theorems of the so called set-theoretical partition calculus developed by 
P. ERDOS and R. RADO (see [5], [ 11 ]). Almost all the other results we prove 
are based on combinatorial theorems. For the convenience of the reader 
we always state these theorems in full detail. 

Our Theorem 4 states that if m is a strong limit cardinal which is the 
sum of No smaller cardinals, then every Hausdorff space of power m 
contains a discrete subspace of power m. The problem if the same holds 
for all strong limit cardinals remains open. 

At the end of § 4 using the generalized continuum hypothesis (G.C.H. 
in what follows) we give a discussion of the results and problems. 

In § 5 we consider the problem of existence of large discrete subspaces 
under additional assumptions. 

Theorem 5 states that a Hausdorff space of power > 2m contains > m 
disjoint open sets provided the character of the space is at most m. 

I) A preliminary report containing the main results of this paper appeared 
in the Doklady Akad. Nauk. SSSR (see [1]). 
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Theorem 6 states that a T1-space of power >2m contains a discrete 
subspace of power > m, provided the pseudo-character of the space is 
at most m. 

Theorem 7 states that a Hausdorff space R of power m, where m is 
a singular strong limit cardinal contains m pairwise disjoint open sets 
provided the character of the space is less than m. 

As a corollary of Theorem 5 we obtain a result concerning characters 
of points of the Cech-Stone compactification of discrete spaces (see 
Corollary 2). 

§ 2. Notations, Definitions 

The cardinal of the set A is denoted by !A!. m, n, p, q denote cardinals. 
m~ ( m to the weak power n) is defined as 

2 mP. 
p<n 

We write sometimes exp nand exp ~for 2 .. or 2~ respectively. m+ denotes 
the smallest cardinal greater than m. m * denotes the smallest cardinal n 
for which m is the sum of n cardinals smaller than m. The cardinal m 
is called regular or singular according to m * = m or m * < m. 

The infinite cardinal m is a limit cardinal if m =1- n + for any n. m is said 
to be a strong limit cardinal if 2n < m for every n < m. A regular strong 
limit cardinal is said to be strongly inaccessible . .Q(m) denotes the initial 
number of the cardinal m. 

If m=N"' then m+=N,+l, m* =Ncrra:)' .Q(m) =w"'. Note that for every 
infinite cardinal n and m> l we have m~ =m". 

For an arbitrary set A we put 

[A]n= {B: B C A and IBI =n}. 

If M is a set of cardinals put 

sup* M =min {n: n>m, n>No for every mE M}. 

Let R be a topological space. A sequence {F~h<"' of non-empty closed 
subsets of R is said to be a tower of length I rx I if F ~ :J F '1' F ~ =1- F '1 for every 
pair ~<'I]< rx. 

D(R), W(R), S(R), H(R) denote the density, the weight, the spread 
and the height of the topological space R respectively. D(R), W(R) are 
defined as usual. 

D(R) = max {No, min {lSI : S C R, S = R} }, 

W(R) = max {No, min {1>81: for open bases >B of R}}. 

We define the spread and the height slightly differently from [2]. 

S(R) = sup* {IDI: D C R, D discrete} 

H(R) = sup* {lrxl: for the length lrxl of towers of R}; 
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de Groot's problem if there always exists a discrete subspace of maximal 
power or a tower of maximal length is equivalent to the problem if S(R) 
and H(R) are never limit cardinals respectively. 

We denote by :Ti (i=O, ... , 5) the class of all Ti-spaces. 
Let f{/ be a class of topological spaces and let m;;;;. n be infinite cardinals. 

To have a brief notation we sometimes write 

(f{f, m) -+ n 

to denote that the following statement is true: 
For every R E f{/, IRI = m there exists a discrete subspace D C R with 

IDI =n; (f{f, m) ~ n denotes that the statement is false. 
Let R={x~h< .. be a well-ordering of the topological spaceR. We say 

that this well-ordering separates R from the left (from the right) respectively 
if there exists a sequence {U~h<.x of open sets such that X~ E u~ and 
x11 ¢ U~ for ~<'f/ (xc ¢ U~ for l;<~) respectively. R is said to be separated 
from the left (from the right) if there exist well orderings separating R 
from the left (from the right) respectively. If the same well-ordering 
separates R from the left and from the right R is obviously discrete. 

Let R be a topological space. The character of a point x is the least 
cardinal p for which x has a base of neighbourhoods of power p. If R E :T1 
the pseudo character of the point x is the least cardinal p for which there 
exists a system 011 of power p of open subsets with the property (") 011 = {x }. 

The character or the pseudo character of the space is the supremum of 
the characters or the pseudo characters of the points respectively. 

§ 3. Preliminaries 

3.1. IRI.;;;: 2W<R> for R E :T0• 

3.2. D(R) < IRI < exp exp D(R) for R E :T2, IRI;;;; ~o. 

3.3. D(R).;;;: W(R).;;;: 2D<R> for R E :T3. 

These lemmas are stated in [2]. 

3.4. Let R be an infinite topological space. Then R contains a sub-
space T separated from the right such that ITI ;;;;.D(R). 

See e.g. [6], Theorem II. We obviously have 

3.5. If R is separated from the left or from the right then IRI < W(R). 

We prove the following 

Lemma 1. Let R be an infinite topological space which is separated 
from the left and from the right. Then R contains a discrete subspace 
T C R which has the same potency as R. 

Proof. Let R={x~h<.x={y11}11<P be two well-orderings of R separating 
it from the left and from the right respectively. Put IRI =m and let 
<1, <2 briefly denote the above well-orderings. Split the set of all two-
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element-subsets of R {x, y}, x=l=y, x, y E R, i.e. [RJ2 into two classes I 
and II as follows 

if x <1 y and x <2 y then {x, y} E I , 

if x <1Y andy <2x then {x,y}EII. 

Considering that a well-ordered set has no decreasing infinite subsets 
it follows that R does not contain an infinite subset all whose two-element
subsets belong to the second class. Then by a theorem of P. ERDOS 
(see [10], Theorem 5.22 on p. 606), there exists a subset T h R of potency 
m all whose pairs belong to the first class. That means the two well
orderings are the same on T hence the same well-ordering separates T 
from the left and from the right, and so T is discrete. 

In DE GRooT's paper [2] the following lemma is stated. 
If R Eff2, and JRJ>2m then R contains a tower of length >m. We 

restate this lemma in a slightly stronger form. 

Lemma 2. Assume JRJ >2!!! andRE ff2, m;:;;;No· Then R contains a 
tower of length :;;. m. 

The proof can be carried out literally in the same way as in [2]: 
Using the fact that every T2 space consisting of more than one point 

is the union of two closed proper subsets one defines the closed prop~r 
subsets Ro h R, R1 h R on such a way that Ro U R1 = R. One can build 
up a so called ramification system be repeating this procedure trans
finitely. One concludes as in [2] that this procedure associates in a one
to-one way to every point x of R a labelling 

(e~)~<"' 

where in the above sequence e~ = 0 or 1 for every ~ < "'· It is also obvious 
from the construction that corresponding to every point x labelled with 
a sequence of length "' R contains a tower of length JcXJ. 

Considering that the set of all possible labellings of length cX<D(m) 
has power 

! 21"'1=! 2P=2!!!, 
o:<D(m) p<m 

the assumption JRJ > 2!!! implies the existence of a tower of length at 
least m. The "ramification argument" used in this proof is stated in a 
very general form in [5] (see p. 103). 

Similarly as in [2] one can state the corollary that 

H(R).;;;;JRJ+ and JRJ.;;;;2~,. 

The first inequality is trivial and the second is a consequence of Lemma 2 
considering that by the definition of H(R) R never contains a tower of 
length H(R). 

Lemma 3. If R contains a tower of length m then R contains a 
subspace T of power m separated· from the left. 
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Proof. Let {F~}e<,. be a tower of length m. T={x~h<a with Xe E F~-
- F~+l obviously satisfies the requirement. 

We now restate the theorem of [11] mentioned in the introduction. 

Lemma 4. Let R be a set, m;;;.N;0, p be cardinals, r;;;. 2 an integer. 
Assume [RY= U I. is an arbitrary partition of the set [R]r. 

•< D{p) (r-1) 

The conditions IRI > exp ... exp m, p<,m imply that there exists a 
subset S ~ R and an index v < .Q(p) such that 

lSI >m and [S]r ~I •. 

Lemma 4 is a corollary of theorem 39 of [11 ]. 

§ 4. Discrete subspaces of spaces of large potency 

Our first theorem establishes an inequality between the density and 
the spread of the space. 

Theorem 1. 
D(R) <. exp 8~l 

for every R E .?/2. 

Proof. Let R E .?/2, D(R) > 2!!!. It is sufficient to see that R contains 
a discrete subspace of power m. By 3.4 R contains a subspace S, lSI> 2!!! 
separated from the right. By Lemma 2 S contains a tower of length m, 
hence by Lemma 3 it contains a subspace T of power m separated from 
the left. T being separated from both sides, by Lemma 1 T contains a 
discrete subspace of power m. 

Remarks. De Groot stated the problem if the stronger inequality 
D(R)+<,S(R) holds for Hausdorff spaces. We would like to point out 
that this would trivially imply that every hereditary Lindelof space is 
separable. Considering that this would be a positive solution of Souslin's 
problem a positive answer seems to be improbable. This shows that 
Theorem 1 is in a sense best possible. 

On the other hand we have the following estimations. 

4.1. S(R)<.(exp exp D(R))+ for R E .?/2; 

S(R) <. (exp D(R))+ for R E !Ta. 

Proof. The first inequality follows from 3.2 using that S(R)<. IRI+ 
while the second follows from 3.3. considering that S(R) <. W(R)+. 

The first inequality is best possible for Hausdorff spaces as it is shown 
by the following 

Example 1. For every infinite cardinal m there exists a Hausdorff 
space R, IRI = exp exp m with 

D(R)=m, S(R)=(exp exp m)+. 
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Proof. Let M be a set of power m. Let R denote the set of all ultra
filters of M. As it is well-known, IRI = exp exp m. For every ~EM let 
~be the ultrafilter of all subsets of M containing x. Let X*={~: x EX} 
for every subset X~ M. We have 1M* I =m. Let the base~ of R consist 
of the sets {u} U X* for u ER, X EU. 

Then R is a Hausdorff space, since two different ultrafilters always 
contain disjoint subsets, all the points of M* are isolated in R and M* 
is dense in R. Hence D(R) = m. Considering that R-M* is obviously a 
discrete subspace of R, S(R) = (exp exp m)+ and R satisfies the require
ments of the theorem. 

To prove our main theorem we need the following 

Lemma 5. Let R be a set and assume that for every x E R Ux is 
a set of subsets of R satisfying the conditions 

a) For every pair x=l=y E R there exist sets A E Ux, BE Uy such that 
An B=O, 

b) For every x E R, A, BE Ux there is a 0 E Ux such that 0 ~A(') B. 
Assume IRI > exp exp m for some infinite cardinal m. Then there exists 

a subsetS~ R, lSI =m+ and a function A(x) defined for xES satisfying 
the conditions 

A(x) E Ux for xES, 

y ¢ A(x) for every pair x=l=y x, yES. 

(Lemma 5 states in other words that a Frechet Hausdorff space of 
power > exp exp m contains a discrete subspace of power >m). 

Proof. Let {x,.}.,q be a well-ordering of type rp of the points of R, 
lrpl > exp exp m. We are going to use the special case r= 3 of Lemma 4. 
· Let fX < fJ < rp. By condition a) we can define the sets Ao(x,., xp), A1(x,., Xp) 
satisfying the conditions 

(1) 

(2) 

Ao(x,., Xp) E Ux,., A1(x,., Xp) E UxfJ; 

Ao(x,., Xp) (') A1(x,., Xp) = 0. 

We define a partition [R]3= U /<• .. •·> of the set of the triplets 
as follows. ••<2 i~l,2 

(3) Let X={x,.,xp,x,..}, fX<{J<y be an arbitrary element of [R]3. 
Put X E /<• .. •·> iff x,.. ¢ A.,(x,., Xp) and x,. ¢ A.,(x8, x,..). 
It follows from (2) that 

[ R]3 = U I< ... •·>· 
.,<2 i~l.2 

Applying Lemma 4 for this partition with p = 4, r = 3 it follows that 
there exist a subset S ~ R and two numbers ei, e2 < 2 such that 

(4) ISI=m+, 
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We can assume that 8 is of the form 8= {x"' }p<.~:l!m+> where the sequence 
IXp is increasing. Put briefly x{J for x"'8• 8 

Let 81={x{J: {J<D(m+), {3 is even} or 81={x/J: {J<D(m+), {3 is odd} if 
8J=0, or 81= 1 respectively. Put further A'(x{J)=Ao(x.;,, x/J+r) if {3 is even, 
A'(x/J)=AJ(Xp-v x{J) if {3 is odd. 

It follows from (1), (3) and (4) that 

(5) 

and 

(6) 

A'(x/J) E v"'fJ for Xp E 81 

x; !f;A'(xp) for {J<y, x{J, x; E8~, 

since both {3 andy are either odd or even. 81 is of the form {x/J)y<D!m+> 
where the sequence {Jy is increasing. Put briefly x{JY = x;. 

Let 82= {x;: y<D(m+), y is even} or 82= {x;: y<D(m+), y is odd} if 
82=0or 82=l respectively. Put further A"(x;)=Ao(x;,x;+I) ify is even, 
A "( ") A ( " ") ·f · dd Xy = 1 Xy-l• Xy I y IS 0 • 

It follows from (1), (3) and (4) that 

(7) 

and 

( 8) " d A"( ") £ {3 " " 8 x8 'F Xy or <y, Xp, Xy E 2· 

It is obvious that l82l =m+. By condition b) and by (5) and (7) for 
every x; E82 there is a set A(x;) E U.,,Y such that A(x;) h: A'(x;) n A"(x;). 
8 2 and A(x;) satisfy the requirements of the theorem since by (6) and (8) 

" d A( ") .c • " " 8 x8 'F xy .10r every pair x8 #-xy E 2· 
As a corollary of Lemma 5 we obtain 

Theorem 2. Every Hausdorff space of power > exp exp m contains 
a discrete subspace of power >m (m>No). 

I.e. 
(§"2, (exp exp m)+) ---+ m+. 

Theorem 2 should be compared with Theorem 1 of [2]. We do not 
know if this result can still be improved with one exp. We could not 
improve the second part of the above theorem concerning regular spaces. 

An improvement of Theorem 2 would be that 

(§"2, [exp (exp ~)]+)---+ m 

holds for every cardinal m;;;. No. Considering that 

! exp exp p..-;;; II exp exp p= exp (exp ~) 
p<m p<m 

the following Theorem 3 is even a further improvement of Theorem 2 1 ). 

1) We could not deduce Theorem 3 directly from the results of [11] since a 
corresponding generalization of Lemma 4 is not true. 
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Theorem 3~ Assume REY2, m>No and jRj>! expexpp. Then 
R contains a discrete subspace of power m. :P<m 

We only outline the proof. 
One builds up a ramification system similarly as outlined in the proof 

of our Lemma 2 or in the proof of the Lemma in [2]. Put n = ! exp exp p. 
:P<m 

Let Xo, XI be two arbitrary elements of R, Ro and RI be two closed 
mbsets whose union is R, xo ¢:. Ro and XI¢:. RI. 

Let IX< Q( m) and assume that for every ~<IX we have already defined 
the elements X(e0, ••• ,e;) as well as the closed subsets R(e0, ••• ,e;) for some 
sequences (so, ... , s;). where e'I=O or 1 for 'YJ<~· Let now (so, ... , s; ... );<"' 
be a sequence of length IX such that R(e0 , ••• ,e;) and X(e0, ••• ,e;) are defined 
for every~ <IX. If n R(eo, ... ,e;) =R'(eo, ... ,e; ... );< .. has power .;;;;;n, X(eo, ... ,e .. ) 

~<"' 

and R(e0 , ••• ,e.x) will not be defined. Assume jR'(e0 , ••• ,e;, ... );< .. l >n. It follows 

from 3.2 that the set Q=R'(e0, ••• ,e0 ••• );<.,.- U {X(e0, ••• ,e~)} has power >n. 
~<"' 

(X denotes the closure of the set X in R). Let X(e0 , ••• ,e .. ) be two arbitrary 
elements of this set Q for s .. = 0 or 1. Considering that R E .r 2, there exist 
two closed subsets R(e0, ••• ,e .. ) (s .. =O, 1) of R whose union is R such that 
X(e0 , ••• ,e .. ) ¢:. R(e0 , ••• ,e .. ). Thus the elements X(e0 , ••• ,e .. ) and the sets R(e0 , ••• ,e .. ) 

are defined by induction on IX for every IX<D(m). 
Let us omit now from R those sets R'(e0, ••• ,e;, ... )~<"' which have power 

.;;;;;n and the elements X(e0 , ••• ,e .. ) (1X<D(m)). Considering that there are 
at most exp!!!.;;;;;n sequences (so, ... , s~ ... );<"'of length IX<D(m) there must 
be an element x of R which is not omitted. Then x belongs to some 
R(e0, ••• ,e .. ) for every IX<D(m) and this implies that there exists a sequence 
(so, ... , s .. , ... )"'<D(ml such that x ER(e0 , ••• ,e.x) for every IX<D(m). Let x~ 
briefly denote X(e0, ••• ,e .. ) for this sequence. S = {x~}"'< D(ml is a discrete sub-

space of R. In fact it is separated from the right since x~ ¢:. U {xa, 
~<"' 

it is separated from the left since by the construction x~ ¢:. R(e0 , •• • , e .. ) and 
Xp E R(e0, •• • , e .. ) for every {J >IX hence the complement of R(e0, •• • , e"') is an 
open set containing x~ and Iiot containing x[J for {J >IX. Since the given 
well-ordering separates S from both sides S is discrete. 

From Theorem 3 we obtain 

Corollary 1. 
IRI < exp (exp 8~) for R E Y2. 

It is well-known that Theorems 2 and 3 can not be improved by two 
"exp", since for every infinite cardinal n there are even compact T4 
spaces of power exp n with spread .;;;;;n+, i.e. 

(Y4, 2n) ~ n+ for every n>No. 

There is still possible that a sharper result holds for spaces of power m 
where m is a strong limit cardinal. As a corollary of Theorem 3 we know 
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that S(R)> IRI =m holds for these spaces but S(R)= IRi+=m+ might be 
true as well. We can prove this in case m* =No and the problem remains 
open in the general case. 

Theorem 4. Assume R E ff2, IRI =m, m is a strong limit cardinal 
and m* =No. Then R contains a discrete subspace of power m, i.e.S(R) =m+. 

We postpone the proof of Theorem 4 to p. 354 since it will be an easy 
consequence of our Lemma 7. 

Assuming G.C.H. we can summarize our results as follows. 

4.1. A) 

B) 
C) 

(ff2, No:+2) ----+ No: for every iX 

(ff2, No:+ 1) ----+ No: if No: is a limit cardinal 

(ff2, No:) ----+ No: if cf(~X) = 0 and 

(ff 2, No:) ----+ Np for every {3 < iX provided No: is a limit cardinal. 

Proof. A) and B) follow from Theorem 3 considering that 

,L exp exp p < 2No:, No:= No:+l 
p <Ito; 

for every iX and ,L exp exp p < No: if iX is of the second kind provided 
p< N"' 

G.C.H. holds. The first assertion of C) is a corollary of Theorem 4, while 
the second follows e.g. from A). 

Considering the obvious negative result (ff4, No:+l) ¥ No:+l there remains 
no unsolved problem in case B. 

In cases A), C) the simplest and typical unsolved problems are the 
following. 

Problem 1. Assume G.C.H. 

(ff2, N2) ----+ N1 ~ 

(ff2, NwJ ----+ Nw, ~ 

§ 5. Existence of discrete subspaces under additional assumptions 

Theorem 5. Let REff2, m>No. Assume that R'C.R, IR'I>2mand 
that the character of every point of R' in R is at most m. Then R contains 
a family Olt of power m+ of pairwise disjoint open subsets. 

Theorem 6. Let R E ff1, m-;;;. No. Assume that IRI >2m and the 
pseudo character of R is at most m. Then R contains a discrete subspace 
of power m+. 

Both theorems will be corollaries of our next combinatorial lemma. 
Thus we postpone the proofs. 

Lemma 6. Let R be a set and assume that for every x E R Oltx is 
a collection of sets satisfying the condition 

a) For every x E R, A, BE Oltx there is a 0 E Oltx such that 0 C. A rl B. 
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Assume IRI>2m and l~zl<m for every x ER. Let further Pxy(A, B) 
with x, y E R be a property of pairs of sets satisfying the following con
ditions. 

b) For every pair x =1- y E R there are A E ~ z, B E ~ y for which 
Pxy(A, B) holds. 

c) For all sets A'~ A, B' ~ B, A, A' E ~z, B, B' E ~y Pxy(A, B) 
implies Pxy(A', B'). 

Then there exist a subsetS~ R, lSI =m+ and a function A(x) defined 
for every xES such that A(x) E ~z, and Pxy(A(x), A(y)) holds for every 
pair x=f.y E S. 

Proof. Let {x"'}"'q=R be an arbitrary well-ordering of the set R. 
For every IX< q; let {Ap}p<I}!m> be a sequence containing all the elements 
of ~z"'. We define a partition [R]2= U U lpy of the pairs 

P<D(m) y<D(m) 

of R as follows. Assume IXl < IX2 < q;, then 

holds. By condition b) every pair belongs to one of the classes. 
By case r = 2 of Lemma 4 then there exist a subset S ~ R and ordinals 

f3o, yo<D(m) such that lSI =m+ and [S]2 ~ lp,y,. By condition a) then 
there exists for every x"' E S an A(x"') E ~z"' such that A(x"') ~ Ap, () A~.· 
By condition c) and by [S]2 ~ lp,y, then Pxy(A(x), A(y)) holds for every 
pair X=I-Y E S. 

Proof of Theorem 5. By the assumption there exists a base of 
neighbourhoods ~z, l~zl .;;;m for every x E R'. Let the property Px,y(A, B) 
be defined by the stipulation A E ~z, BE ~y, A() B=O for x=f.y E R'. 
R being a Hausdorff space conditions b) and c) of Lemma 6 are fulfilled. 
It follows from Lemma 6 that there exists a subsetS~ R', lSI =m+ and 
a function A(x) such that the open sets {A(x)},.E8 are pairwise disjoint. 

Remarks. Well known examples show that Theorem 5 does not 
remain true if the assumption IR'I >2m is replaced by the weaker as
sumption IR'I >2m. However there is another possible refinement. As the 
example of the topological product of p discrete spaces of power m 
(m>P>No) shows there is a space of power mP with character p not 
containing discrete subspaces of power >m. A generalization of Theorem 5 
would be that a Hausdorff space of power >mP, with character ~p 
contains a discrete subspace of power > m, or more than m disjoint open 
subsets. We do not know if this is true even in case p = No and assuming 
the G.C.H. We would like to point out the following even simpler. 

Problem 2. Assume G.C.H. Let R be an ordered set of power N2 
and of character No· Does then R necessarily contain a system of power 
N2 of disjoint open intervals~ 
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Note. The assumptions imply that R contains no dense set of power 
< Nb hence there is no hope to disprove this without disproving the 
generalized Souslin conjecture. 

From Theorem 5 we obtain the following 

Corollary 2. Let f3Nm be the Cech-Stone compactification of the 
discrete space N m of power m. Let x(x) denote the character of X in f3N m· 
Then 

I {x: exp x(x) < exp exp m }I< exp exp m. 

i.e. for almost every x E f3N m we have exp x(x) = exp exp m. 

Proof. Assume that m<;p< exp m. Then f3Nm contains at most 
exp p points of character <;p, since otherwise f3Nm would contain p+>m 
disjoint open subsets in contradiction to the fact that N m is dense in f3N m· 
It follows that 

l{x: exp x(x) < exp exp m}J =I U {x: x(x) ~P}I < exp exp m 
m<p<exp m, exp p< exp exp m 

since ( exp exp m) * > exp m. 
This should be compared with a theorem of PosPISIL [7] which states 

that f3N m contains exp exp m points of character exp m. Our result does 
not imply his theorem however under certain consistent conditions on 
the exp function it is even stronger. Assume e.g. 2K• = 2Kt = N2 and 
2K• = Na = exp exp N;o. Then the cardinality of the set of points of character 
< Nt of f3N K• is at most exp Nt = N2 hence almost every point has 
character N2 = 2K•. 

Proof of Theorem 6. By the assumption there exists a system of 
open sets Ollx, of power ~m such that n Ollx= {x} for every x E R. Moreover 
we may assume that ott x is closed with respect to the operation of finite 
intersection, hence condition a) of Lemma 6 is satisfied. Let Pxy(A, B) 
be the property A E Ollx, BE Olly, y ¢A, x ¢B. Considering n Ollx= {x} 
conditions b), c) of Lemma 6 are satisfied as well. Lemma 6 implies the 
existence of a subset S C R, JSI =m+ and a function A(x) such that 
Px,y(A(x), A(y)) holds for every x=!=y E S. Then y ¢ A(x) E Ollx and 
x ¢ A(y) E Olly, where A(x) is an open set, for every x=l=y E S. Hence the 
subspace S is discrete. 

Note that if R is a set of power m and the non empty open sets are 
the complements of finite sets, R E fft and R does not even contain a 
denumerable discrete subspace. 

We prove the following 

Lemma 7. Let R E ff2, JRJ =m> No. Assume m is a strong limit 
cardinal. Then one of the following conditions holds. 

a) There is a sequence {H,.},.<JJ(m*l of disjoint open subsets, such that 

U H,.j =m, sup IH,.j =m; 
a< .Q(m*l a< .Q(m*) 
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b) There is an open subset S C R such that IR-SI <m and every 
non empty open subset of S has power m. 

Proof. Put 

O!t={G:GCR is open, IGI<m}. 

We distinguish two cases. (i): IU 0!!1 =m (ii) IU 0!!! <m. We prove that 
in cases (i), (ii), a) and b) hold respectively. 

If (i) holds, let m= L mex, mex<m, where sup mex=m. We 
ex<£2(m*) ex<.Orm*) 

define the sequence Hex by transfinite induction on <X as follows: 
Assume that Hp is defined for every f3<<X for some <X<.Q(m*) on such 

a way that IHpl<m for every f3<<X. Then by 3.2 we have 

I U Hpl<m 
{J<ex 

since m is a strong limit cardinal and !<XI <m*. Then u 0!!- U Hp is 
{J<ex 

an open set of power m. By the definition of 0!! it contains an open subset 
Hex such that 

mex< IHexl <m, since sup {!HI: HE O!t}=m. 

The Hex's obviously satisfy the requirement& of a). 

If (ii) holds then S=R- U 0!! satisfies b) since IU Oltl<m by 3.2. 

Proof of Theorem 4. Considering that m* =No and m is a strong 
limit cardinal, we may assume m= L m1, m1<m, exp exp m1<mz+l· It 

Z<w 
follows from Lemma 7 that either there exists a sequence {Hz}Z<w of 
disjoint open sets of R such that IHzl >mz or there is an open subset 
S C R, lSI =m all whose non empty open subsets have power m. Con
sidering R E Yz, S contains a sequence {Hz}Z<w of disjoint open sets. 
In both cases, by Theorem 3 Hl+t contains a discrete subspace D 1 of 
potency >mz. Thus D= U Dz is a discrete subspace of power m of R. 

l<w 

Theorem 7. Let R E Yz, IRI =m where m is a singular strong limit 
cardinal. Assume further that the character of the space R is n < m. Then 
R contains a system of power m of disjoint open subsets. 

Proof. Let m= L me where n<,me<m. We apply Lemma 7 
e< .Q(m*) 

to prove that there exists a sequence {He}e<Dim*l of disjoint open subsets, 
such that 1Hel>2me for e<.Q(m*). If condition a) of Lemma 7 holds, 
this is obvious. Thus we may assume that there is an open set S C R, 
lSI =m such that all non empty open subsets of Shave power m. Con
sidering m* <m, by Theorem 5 S contains m* disjoint open subsets 
{He}e<D(m*l which obviously satisfy the requirement. Then again by 
Theorem 5 He contains a family IJ!te of power >me of disjoint open subsets. 
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Hence Oft= 

of R. 
U Olte is a family of power m of disjoint open subsets 

Q<D(m*> 

Remarks. Let R E .9""2 , IRI =m and assume that R has a relatively 
small character. The case not covered by our results Theorem 5, 7 and 
by the trivial counterexamples is when m is strongly inaccessible. In 
this case the properties of strongly inaccessible cardinals recently con
sidered in the literature are involved, see e.g. [8], [9]. 

The proof given for Theorem 6 shows that if m -is a measurable strongly 
inaccessible cardinal or even a cardinal which does not belong to the 
class Oo of [9] then even a spaceR E .r1, IRI =m with pseudo character 
< m contains a discrete subspace of power m. On the other hand the 
content of the results mentioned is that a very large section of strongly 
inaccessible cardinals belongs to class Oo. We can not prove that Theorem 7 
is false for strongly inaccessible cardinals of this type. 

Finally we give some remarks on T1 spaces. First we give a general 
construction to obtain T1 spaces. Let X be an infinite set, and let d 
be the system of the complements of finite subsets of X. Let {Tx}ux 
be a system of disjoint sets. Put R= U Tx. 

a: eX 

We define the open sets of R. G C R is open if either G is empty or 
there exists an A Ed such that U Tx C G. Then R E .r1. 

a:EA 

It is obvious that for every u E R, u E Tx the sets {u} U U Ty for 
1/EA 

x ¢ A E d form a base of neighbourhoods of x in R. Hence the character 
of R is ldl = lXI. Considering that each set which intersects infinitely 
many Tx's is dense in R we have D(R) =No. 

Example 2. Let m be a singular cardinal, m= 1 me, me<m. 
e< D(m*> 

Put X= {e}e<D<m*>' let !Tel =m11 • Then the space R E .r1 has power m, 
D(R) =No and the character of the space as well as of each of its points 
is m *. On the other hand R does not contain a discrete subspace of power 
m since each discrete subspace meets less than No T11 's. 

This example shows that a theorem corresponding to Theorem 7 fails 
for T1 spaces. We can not solve the following. 

Problem 3. Let m be a singular strong limit cardinal. Let R E .9""1 
and assume that the character of R is less than m *. Does than R contain 
a discrete subspace of power m ~ 

Example 3. Let m be an infinite cardinal, lXI =No and ITxl =m for 
every x EX. 

Then R E .r1, D(R) =No and R has character No. 
However R contains discrete subspaces of power m. 
On the other hand we have 
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Exam pIe 4. For every regular cardinal m there is an R E !T 1 such 
that JRI =m, D(R) =m and S(R) =No. 

Let R = {e }e<D!m> and let the non empty open sets be of the form 

{u}a;;.e- {el, ... , es} for e, e1. ... , es<D(m), s<w. 

Added in proof (February 1967) 

Theorem 7. is an immediate consequence of Theorem 5. and a result 
of P. Erdos and A. Tarski, On mutually exclusive sets, Annals of 
Math., 44 (1943), pp. 315-329. 
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