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§. 1. Introduction

Recently several papers appeared in the literature proving theorems
of the following type. A topological space with “very many points”
contains a discrete subspace with “many points”. J. DE Groor and
B. A. Erivov proved in [2] and [4] that a Hausdorff space of power
> exp exp exp m contains a discrete subspace of power >m. J. ISBELL
proved in [3] a similar result for completely regular spaces.

J. de Groot proved as well that for regular spaces E the assumption
|R|> exp exp m is sufficient to imply the existence of a discrete subspace
of potency >m. One of our main issues will be to improve this result
and show that the same holds for Hausdorff spaces (see Theorems 2
and 3).

Our Theorem 1 states that a Hausdorff space of density > expm
contains a discrete subspace of power >m. We give two different proofs
for the main result already mentioned. The proof outlined for Theorem 3
is a slight improvement of de Groot’s proof. The proof given for Theorem 2
is of purely combinatorial character. We make use of the ideas and some
theorems of the so called set-theoretical partition calculus developed by
P. Erpos and R. Rapo (see [5], [11]). Almost all the other results we prove
are based on combinatorial theorems. For the convenience of the reader
we always state these theorems in full detail.

Our Theorem 4 states that if m is a strong limit cardinal which is the
sum of ¥o smaller cardinals, then every Hausdorff space of power m
contains a discrete subspace of power m. The problem if the same holds
for all strong limit cardinals remains open.

At the end of § 4 using the generalized continuum hypothesis (G.C.H.
in what follows) we give a discussion of the results and problems.

In § 5 we consider the problem of existence of large discrete subspaces
under additional assumptions.

Theorem 5 states that a Hausdorff space of power >2m contains >m
disjoint open sets provided the character of the space is at most m.

1) A preliminary report containing the main results of this paper appeared
in the Doklady Akad. Nauk. SSSR (see [1]).
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Theorem 6 states that a Th-space of power >2m contains a discrete
subspace of power >m, provided the pseudo-character of the space is
at most m.

Theorem 7 states that a Hausdorff space R of power m, where m is
a singular strong limit cardinal contains m pairwise disjoint open sets
provided the character of the space is less than m.

As a corollary of Theorem 5 we obtain a result concerning characters
of points of the Cech—Stone compactification of discrete spaces (see
Corollary 2).

§ 2. Notations, Definitions
The cardinal of the set 4 is denoted by |4|. m, »n, p, ¢ denote cardinals.
m=2 (m to the weak power n) is defined as

> me.

p<n

We write sometimes exp n and exp 2 for 2" or 22 respectively. m* denotes
the smallest cardinal greater than m. m* denotes the smallest cardinal »
for which m is the sum of » cardinals smaller than m. The cardinal m
is called regular or singular according to m*=m or m* <m.

The infinite cardinal m is a limit cardinal if msn* for any n. m is said
to be a strong limit cardinal if 2»<m for every n<m. A regular strong
limit cardinal is said to be strongly inaccessible. 2(m) denotes the initial
number of the cardinal m.

If m=R, then m+*=X, 1, m* =Ry L(m)=w, Note that for every
infinite cardinal » and m>1 we have m® =m".

For an arbitrary set 4 we put

[A]*»={B: BC 4 and |B|=mn}.
If M is a set of cardinals put
sup* M = min {n: n>m, n>Yo for every m € M}.

Let R be a topological space. A sequence {F;};., of non-empty closed
subsets of R is said to be a fower of length |«| if F. D F,, F¢+ F, for every
pair f<n<w.

D(R), W(R), S(R), H(R) denote the density, the weight, the spread
and the height of the topological space R respectively. D(R), W(R) are
defined as usual.

D(R)= max {o, min {|S|: S C R, S=R}},
W(R)= max {Xo, min {|B|: for open bases B of R}}.
We define the spread and the height slightly differently from [2].

S(R)= sup* {|D|: D C R, D discrete}
H(R)= sup* {|«|: for the length |x| of towers of R};
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de Groot’s problem if there always exists a discrete subspace of maximal
power or a tower of maximal length is equivalent to the problem if S(R)
and H(R) are never limit cardinals respectively.

We denote by J; (=0, ..., 5) the class of all 7;-spaces.

Let € be a class of topological spaces and let m >n be infinite cardinals.
To have a brief notation we sometimes write

(€, m) > n

to denote that the following statement is true:

For every R €%, |R|=m there exists a discrete subspace D C B with
|D|=mn; (¥, m)>n denotes that the statement is false.

Let R={x:}.., be a well-ordering of the topological space R. We say
that this well-ordering separates R from the left (from the right) respectively
if there exists a sequence {U,};., of open sets such that z, € U, and
x, ¢ Ug for £<n (x; ¢ U, for { <&) respectively. R is said to be separated
from the left (from the right) if there exist well orderings separating K
from the left (from the right) respectively. If the same well-ordering
separates R from the left and from the right R is obviously discrete.

Let R be a topological space. The character of a point x is the least
cardinal p for which « has a base of neighbourhoods of power p. If R € 7,
the pseudo character of the point x is the least cardinal p for which there
exists a system % of power p of open subsets with the property N % = {x}.

The character or the pseudo character of the space is the supremum of
the characters or the pseudo characters of the points respectively.

§ 3. Preliminaries
3.1. |R|<2W® for ReT,.
3.2. D(R)<|R|< expexp D(R) for R e T2, |B|=Ro.
3.3. DR)<W(R)<2P® for R e Ts.

These lemmas are stated in [2].

3.4. Let R be an infinite topological space. Then R contains a sub-
space T separated from the right such that |7'|> D(R).
See e.g. [6], Theorem II. We obviously have

3.5. If R is separated from the left or from the right then |R| < W(R).
We prove the following

Lemma 1. Let R be an infinite topological space which is separated
from the left and from the right. Then R contains a discrete subspace
T C R which has the same potency as R.

Proof. Let R={x:};.,= {y,},<s be two well-orderings of R separating
it from the left and from the right respectively. Put [R|=m and let
<1, <2 briefly denote the above well-orderings. Split the set of all two-
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element-subsets of R {z,y}, z+#vy, =,y € R, i.e. [R]? into two classes I
and II as follows

if x <1y and x <2y then {z,y}el,
if x <1y and y <z« then {x, y} eIl

Considering that a well-ordered set has no decreasing infinite subsets
it follows that R does not contain an infinite subset all whose two-element-
subsets belong to the second class. Then by a theorem of P. Erpos
(see [10], Theorem 5.22 on p. 606), there exists a subset 7' C R of potency
m all whose pairs belong to the first class. That means the two well-
orderings are the same on 7T hence the same well-ordering separates 7'
from the left and from the right, and so 7' is discrete.

In DE GrooT’s paper [2] the following lemma is stated.

If ReJ,, and |R|[>2m then R contains a tower of length >m. We
restate this lemma in a slightly stronger form.

Lemma 2. Assume |R|>2% and R € T2, m=Ro. Then R contains a
tower of length >m.

The proof can be carried out literally in the same way as in [2]:

Using the fact that every 7's space consisting of more than one point
is the union of two closed proper subsets one defines the closed proper
subsets Bo C R, B; C R on such a way that By U R;=R. One can build
up a so called ramification system be repeating this procedure trans-
finitely. One concludes as in [2] that this procedure associates in a one-
to-one way to every point x of R a labelling

(8E)E<zx

where in the above sequence ¢, =0 or 1 for every & <«. It is also obvious
from the construction that corresponding to every point z labelled with
a sequence of length « R contains a tower of length |«|.

Considering that the set of all possible labellings of length x<.£2(m)

has power
> 2=y 2p=2m,
a< Q(m) p<m
the assumption |[R|>27 implies the existence of a tower of length at
least m. The “ramification argument’ used in this proof is stated in a
very general form in [5] (see p. 103).
Similarly as in [2] one can state the corollary that

H(R)<|R|*+ and |R|<2E®,
The first inequality is trivial and the second is a consequence of Lemma 2

considering that by the definition of H(R) R never contains a tower of
length H(R).

Lemma 3. If R contains a tower of length m then R contains a
subspace T' of power m separated from the left.
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Proof. Let {F¢}.., be a tower of length m. T = {x;};., with x; € F,—
—F,,, obviously satisfies the requirement.
We now restate the theorem of [11] mentioned in the introduction.

Lemma 4. Let R be a set, m>Ro, p be cardinals, »>2 an integer.
Assume [R}= |J 1, is an arbitrary partition of the set [R].

»< () tr=1)
The conditions |R|> exp ... expm, p<m imply that there exists a

subset S C R and an index »<£Q(p) such that
[S]>m and [ST CI,.

Lemma 4 is a corollary of theorem 39 of [11].

§ 4. Discrete subspaces of spaces of large potency

Our first theorem establishes an inequality between the density and
the spread of the space.

Theorem 1.
D(R)< exp &
for every R e 7.

Proof. Let R €T, D(R)>2"™. It is sufficient to see that R contains
a discrete subspace of power m. By 3.4 R contains a subspace S, |S|> 22
separated from the right. By Lemma 2 8 contains a tower of length m,
hence by Lemma 3 it contains a subspace 7' of power m separated from
the left. 7' being separated from both sides, by Lemma 1 7 contains a
discrete subspace of power m.

Remarks. De Groot stated the problem if the stronger inequality
D(R)*<S(R) holds for Hausdorff spaces. We would like to point out
that this would trivially imply that every hereditary Lindelof space is
separable. Considering that this would be a positive solution of Souslin’s
problem a positive answer seems to be improbable. This shows that
Theorem 1 is in a sense best possible.

On the other hand we have the following estimations.

4.1, S(R) < (exp exp D(R))* for R € T o;
S(R)< (exp D(R))* for R € Js.
Proof. The first inequality follows from 3.2 using that S(R)<|R|*
while the second follows from 3.3. considering that S(R)< W(R)+.

The first inequality is best possible for Hausdorff spaces as it is shown
by the following

Example 1. For every infinite cardinal m there exists a Hausdorff
space R, |R|= exp exp m with

D(R)=m, S(R)=(exp exp m)*.
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Proof. Let M be a set of power m. Let R denote the set of all ultra-
filters of M. As it is well-known, |R|= exp exp m. For every z € M let
# be the ultrafilter of all subsets of M containing x. Let X*={2: x € X}
for every subset X C M. We have |M*|=m. Let the base B of R consist
of the sets {u} U X* for u e R, X €u.

Then R is a Hausdorff space, since two different ultrafilters always
contain disjoint subsets, all the points of M* are isolated in R and M*
is dense in R. Hence D(R)=m. Considering that R— M* is obviously a
discrete subspace of R, S(R)=(exp exp m)* and R satisfies the require-
ments of the theorem.

To prove our main theorem we need the following

Lemma 5. Let R be a set and assume that for every x € R U, is
a set of subsets of R satisfying the conditions

a) For every pair x#y € R there exist sets 4 € U;, B € Uy such that
AN B=0,

b) Forevery x € R, A, B € U, there is a C € U such that C C 4 N B.

Assume |R|> exp exp m for some infinite cardinal m. Then there exists
a subset S C R, |S|=m* and a function A(x) defined for x € § satisfying
the conditions

A(x) e Uy for x €8,

y ¢ A(z) for every pair x#y x,y €8S.

(Lemma 5 states in other words that a Fréchet Hausdorff space of
power > exp exp m contains a discrete subspace of power >m).

Proof. Let {x,},-, be a well-ordering of type ¢ of the points of R,
|p| > exp exp m. We are going to use the special case r=3 of Lemma 4.
Let o < <@. By condition a) we can define the sets Ao(x,, 5), 41(,, ;)
satisfying the conditions
(1) Ao(x,, 25) € Ug , Ai(x,, 2;) € Uxﬂ;
(2) Ao(xcx’ xﬂ) N Al(xa? xﬁ)zo'

We define a partition [RB= J I,., of the set of the triplets
as follows. <2 i=1,2

(3) Let X={x,, %3, 2,}, x<f<y be an arbitrary element of [R]3.
Put Xel,,, iff z, ¢ A (x,, x5) and z, ¢ 4, (25, ,).
It follows from (2) that

[BE= U ¢z

<2 i=1,2

Applying Lemma 4 for this partition with p=4, r=3 it follows that
there exist a subset S C B and two numbers &, &2<2 such that

(4) |S| =mt, [S]3 C I(e,e,)’
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We can assume that § is of the form S={z, 5}ﬂ< am+ Where the sequence
g is increasing. Put briefly x; for x,

Let S1={x5: p<Q(m*), B is even} or S1={x,§: B<Q(mt), B is odd} if
e1=0, or e1=1 respectively. Put further A’(x5)=Ao(ws, 25,) if § is even,
A'(xg) = Ar(xp_y, ) if B is odd.

It follows from (1), (3) and (4) that

(5) A'(xp) € Um,ﬂ for x5 €81
and
(6) x, ¢ A'(xg) for p<y, x5, x, €81,

since both 8 and y are either odd or even. §; is of the form {z; }, < owm+)
where the sequence f, is increasing. Put briefly xﬂ =x,.

Let So={z,: y<Q(m*), y is even} or Sz={x,: y<Q(m+) y is odd} if
e2=0 or e2=1 respectively. Put further A"(x,)=do(z,, x,.,) if y is even,

A"(xy)=Ax(xy_y, ) if y is odd.
It follows from (1), (3) and (4) that
(7) A"(xy) € U, for x; €82,
and
(8) xy ¢ A"(x,) for p<y, x5 x, €8s

It is obvious that |Ss|=m*. By condition b) and by (5) and (7) for
every z, €Sz there is a set A(x)) € Uw" such that A(x,) C 4'(x ( vy N A"(xy).
Sz and A( x,) satisfy the requlrements "of the theorem since by (6) and (8)

xg ¢ A(x,) for every pair xz+x, €Sa.

As a corollary of Lemma 5 we obtain

Theorem 2. Every Hausdorff space of power > exp exp m contains
a discrete subspace of power >m (m> No).

Le.
(T2, (exp exp m)*) — mt.

Theorem 2 should be compared with Theorem 1 of [2]. We do not
know if this result can still be improved with one exp. We could not
improve the second part of the above theorem concerning regular spaces.

An improvement of Theorem 2 would be that

(T2, [exp (exp ®)]t) —>m
holds for every cardinal m > Ro. Considering that

> expexpp< [I expexpp= exp (exp?2)

p<m p<m

the following Theorem 3 is even a further improvement of Theorem 2 1).

1) We could not deduce Theorem 3 directly from the results of [11] since a
corresponding generalization of Lemma 4 is not true.
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Theorem 3. Assume Re€J 5, m>yo and |[R|> 3 expexpp. Then
R contains a discrete subspace of power m. p=m

We only outline the proof.

One builds up a ramification system similarly as outlined in the proof
of our Lemma 2 or in the proof of the Lemma in [2]. Put n= Y exp exp p.

p<m
Let xp, 1 be two arbitrary elements of R, By and R; be two closed

subsets whose union is R, zp ¢ Ry and z; ¢ Ri.

Let x<£2(m) and assume that for every £ <« we have already defined
the elements (e, ...,s¢) as well as the closed subsets R(g,),...,e) for some
sequences (e, ..., &), where ¢, =0 or 1 for n<&. Let now (eo, ..., & ...)ecy
be a sequence of length « such that R(s,...,e) and z(s,,...,e) are defined

for every £ <a. If (N Rz, ...,c5) =R'(e, ..., 2¢...) e<s has pOWET <7, X(ey, ..., 24)
<

and R(e,y, ...,e,) will not be defined. Assume |R'(g,, ..., ,...)ecs] >n. It follows
from 3.2 that the set @=1R'(s,,...,ec...)eca— U {Z(eo, ..., 2¢)} has power >n.
f<aw

(X denotes the closure of the set X in R). Let %(e,, ...,e,) be two arbitrary
elements of this set @ for ¢,=0 or 1. Considering that R € I, there exist
two closed subsets Re,,...,c,) (¢,=0, 1) of B whose union is R such that
Z(egs ..., es) ¢ Rleg, ..., es). Thus the elements z(e,, ...,s,) and the sets Re,y,...,e)
are defined by induction on « for every «<£2(m).

Let us omit now from R those sets R'(e,, ..., ...)ec, Which have power
<n and the elements x(cy,...,e,) (x<2(m)). Considering that there are
at most exp™ <n sequences (o, ..., & ...)s<, Of length o <Q(m) there must
be an element x of R which is not omitted. Then x belongs to some
Re,, ...,¢,) for every o <(m) and this implies that there exists a sequence
(€05 -++» €as -+ )u<oum SUCh that x € R(ey,...,e,) for every a<Q(m). Let x
briefly denote (s, ..., s,) for this sequence. S={x,}, . om, is a discrete sub-

space of R. In fact it is separated from the right since x, ¢ |J {x:},
é<a

it is separated from the left since by the construction z ¢ R(s,,...,s,) and
%5 € Rz, ...,s,) for every f>x hence the complement of Re,...,¢,) is an
open set containing x; and not containing x; for f>«x. Since the given
well-ordering separates S from both sides § is discrete.

From Theorem 3 we obtain

Corollary 1.
|R| < exp (exp &) for R € T .

It is well-known that Theorems 2 and 3 can not be improved by two
“exp”’, since for every infinite cardinal n there are even compact T4
spaces of power exp n with spread <nt, i.e.

(T 4, 27) >> nt for every n>Ro.

There is still possible that a sharper result holds for spaces of power m
where m is a strong limit cardinal. As a corollary of Theorem 3 we know
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that S(R)>|R|=m holds for these spaces but S(R)=|R|+=m"* might be
true as well. We can prove this in case m* = and the problem remains
open in the general case.

Theorem 4. Assume R eJ,, |[R|=m, m is a strong limit cardinal
and m* = Xo. Then R contains a discrete subspace of power m, i.e. S(R) =m™.

We postpone the proof of Theorem 4 to p. 354 since it will be an easy
consequence of our Lemma 7.

Assuming G.C.H. we can summarize our results as follows.

41. A) (T2 Rups) = R, for every «
B) (72 R.y1) = N, if R, is a limit cardinal

(
C) (T2 R — R, 1if cf(x)=0 and
(2, Rs) > R forevery f <o provided R, is alimit cardinal.

Proof. A) and B) follow from Theorem 3 considering that
D expexp p< 2% R,=Nui1

PR,
for every o« and > exp exp p<R, if « is of the second kind provided
p< X .

G.C.H. holds. The first assertion of C) is a corollary of Theorem 4, while
the second follows e.g. from A).

Considering the obvious negative result (9 4, X,41) > X,+1 there remains
no unsolved problem in case B.

In cases A), C) the simplest and typical unsolved problems are the
following.

Problem 1. Assume G.C.H.
(T2, R2) = Na?
(3'2, le) - xwl?

§ 5. Euwistence of discrete subspaces under additional assumptions

Theorem 5. Let R e J 2, m>No. Assume that R’ C R, |R’|>2™ and
that the character of every point of R’ in R is at most m. Then R contains
a family # of power m* of pairwise disjoint open subsets.

Theorem 6. Let Re.J1, m>No. Assume that |R|>2m and the
pseudo character of R is at most m. Then R contains a discrete subspace
of power m*.

Both theorems will be corollaries of our next combinatorial lemma.
Thus we postpone the proofs.

Lemma 6. Let R be a set and assume that for every x € R %, is
a collection of sets satisfying the condition

a) Foreveryx e R, A, B € %z thereis a C € %, such that C C 4 N B.
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Assume |[R|>2m and |%:|<m for every z € R. Let further Py (4, B)
with z, y € R be a property of pairs of sets satisfying the following con-
ditions.

b) For every pair x#y € R there are A € #%,, B €%y for which
Pry(4, B) holds.

c) For all sets A’'CA, BBCB, A, A" €U, B, B €Uy Pgy(A4, B)
implies Pgy(4', B').

Then there exist a subset S C R, |S|=m+ and a function A(x) defined
for every x € 8 such that A(x) € %,, and Pgy(A(x), A(y)) holds for every
pair z#y e S.

Proof. Let {z,},.,=R be an arbitrary well-ordering of the set R.
For every a<g¢ let {45}5. om be a sequence containing all the elements
of %;. We define a partition [R]?= | U 15, of the pairs

B<Qm) y<Qm)
of R as follows. Assume x1<wp<<¢, then

{@ar @} € Iy IE Py o (Af, A7)

holds. By condition b) every pair belongs to one of the classes.

By case r=2 of Lemma 4 then there exist a subset S C R and ordinals
Po, yo<LQ(m) such that |S|=m+ and [S]2C I, ,. By condition a) then
there exists for every z, € S an A(x,) € %5, such that A(z,) C 43 N 45.
By condition c¢) and by [S]2C I, , then Py(A(x), A(y)) holds for every
pair z#y eS.

Proof of Theorem 5. By the assumption there exists a base of
neighbourhoods %, |%z| <m for every x € R’. Let the property Pz 4(4, B)
be defined by the stipulation 4 € %, Be %y, A N B=0 for z#y e R'.
R being a Hausdorff space conditions b) and ¢) of Lemma 6 are fulfilled.
It follows from Lemma 6 that there exists a subset 8 C R’, |S|=m* and
a function A(x) such that the open sets {A(x)},.s are pairwise disjoint.

Remarks. Well known examples show that Theorem 5 does not
remain true if the assumption |R’|>2m is replaced by the weaker as-
sumption |R’|>2m. However there is another possible refinement. As the
example of the topological product of p discrete spaces of power m
(m>p>No) shows there is a space of power m? with character p not
containing discrete subspaces of power >m. A generalization of Theorem 5
would be that a Hausdorff space of power >m?, with character <p
contains a discrete subspace of power >m, or more than m disjoint open
subsets. We do not know if this is true even in case p=\o and assuming
the G.C.H. We would like to point out the following even simpler.

Problem 2. Assume G.C.H. Let R be an ordered set of power N2
and of character Xo. Does then R necessarily contain a system of power
Rz of disjoint open intervals?
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Note. The assumptions imply that R contains no dense set of power
< N1, hence there is no hope to disprove this without disproving the
generalized Souslin conjecture.
From Theorem 5 we obtain the following

Corollary 2. Let SN, be the Cech—Stone compactification of the

discrete space N, of power m. Let y(x) denote the character of « in SNy,
Then
[{z: exp y(x) < exp exp m}| < exp exp m.

i.e. for almost every x € fN, we have exp y(r)= exp exp m.

Proof. Assume that m<p< expm. Then BN, contains at most
exp p points of character <p, since otherwise SN, would contain p*>m
disjoint open subsets in contradiction to the fact that N, is dense in SN .
It follows that

|{a: exp y(@)< expexpm}l=| U {z: 7(2)<p}|< expexpm

m<p<exp m, exp P < exp exp m
since (exp exp m)* > exp m.

This should be compared with a theorem of PospidiL [7] which states
that SN, contains exp exp m points of character exp m. Our result does
not imply his theorem however under certain consistent conditions on
the exp function it is even stronger. Assume e.g. 28%=2%=¥; and
2% = N3 = exp exp No. Then the cardinality of the set of points of character
< N1 of BNy is at most exp X1=N2 hence almost every point has
character Ng= 2%,

Proof of Theorem 6. By the assumption there exists a system of
open sets %, of power <m such that N %= {x} for every x € R. Moreover
we may assume that %, is closed with respect to the operation of finite
intersection, hence condition a) of Lemma 6 is satisfied. Let Py (A4, B)
be the property 4 € ¥., Be XUy, y ¢ A, v ¢ B. Considering N %;={x}
conditions b), c¢) of Lemma 6 are satisfied as well. Lemma 6 implies the
existence of a subset S C R, |S|=m* and a function A(x) such that
Pz y(A(x), A(y)) holds for every z#yeS. Then y ¢ A(x) e %, and
x ¢ A(y) € %y, where A(x) is an open set, for every x#y € S. Hence the
subspace S is discrete.

Note that if R is a set of power m and the non empty open sets are
the complements of finite sets, R €. and R does not even contain a
denumerable discrete subspace.

We prove the following

Lemma 7. Let ReJs, |R|=m>No. Assume m is a strong limit
cardinal. Then one of the following conditions holds.
a) There is a sequence {H,}, . oms Oof disjoint open subsets, such that
| U Hi=m, sup [H,[=m;

& < Q(m*) & < 2(m*)
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b) There is an open subset S C R such that |[R—S|<m and every
non empty open subset of S has power m.

Proof. Put
%={G:G CR is open, |G|<m}.

We distinguish two cases. (i): |U #|=m (ii) |U | <m. We prove that
in cases (i), (ii), a) and b) hold respectively.

If (i) holds, let m= > m,, m,<m, where sup m,=m. We
o< Q(m*) o< Qim#*)

define the sequence H, by transfinite induction on « as follows:
Assume that H, is defined for every g <o for some x<Q(m*) on such
a way that |Hg <m for every f<w«. Then by 3.2 we have
| U Hgl<m

<o

since m is a strong limit cardinal and |x|<m*. Then U %— J H, is
B<a

an open set of power m. By the definition of % it contains an open subset

H, such that

o

m,<|H, <m, since sup {|{H|: H € U}=m.

The H,’s obviously satisfy the requirements of a).
If (ii) holds then S=R— U % satisfies b) since |U | <m by 3.2.

Proof of Theorem 4. Considering that m* = and m is a strong
limit cardinal, we may assume m= Y my, m;<m, exp exp m;<my41. It

<o

follows from Lemma 7 that either there exists a sequence {H},_, of
disjoint open sets of B such that |H;|>m; or there is an open subset
S CR, |S|=m all whose non empty open subsets have power m. Con-
sidering R € J,, S contains a sequence {H;},_, of disjoint open sets.
In both cases, by Theorem 3 H;;; contains a discrete subspace D; of
potency >m;. Thus D= |J D, is a discrete subspace of power m of R.
<o

Theorem 7. Let R e.J, |R|=m where m is a singular strong limit
cardinal. Assume further that the character of the space R is n<m. Then
R contains a system of power m of disjoint open subsets.

Proof. Let m= 3> m, where n<m,<m. We apply Lemma 7
o< Q(m#*)

to prove that there exists a sequence {H,}, . o, 0of disjoint open subsets,
such that |H,|>2me for o<Q(m*). If condition a) of Lemma 7 holds,
this is obvious. Thus we may assume that there is an open set S C R,
|S| =m such that all non empty open subsets of S have power m. Con-
sidering m* <m, by Theorem 5 S contains m* disjoint open subsets
{H,},< om», Which obviously satisfy the requirement. Then again by
Theorem 5 H, contains a family %, of power >m, of disjoint open subsets.
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Hence %= |J %, is a family of power m of disjoint open subsets
of R. o= Am)

Remarks. Let ReJs, |R|=m and assume that R has a relatively
small character. The case not covered by our results Theorem 5, 7 and
by the trivial counterexamples is when m is strongly inaccessible. In
this case the properties of strongly inaccessible cardinals recently con-
sidered in the literature are involved, see e.g. [8], [9].

The proof given for Theorem 6 shows that if m is a measurable strongly
inaccessible cardinal or even a cardinal which does not belong to the
class Cy of [9] then even a space R € 1, |R|=m with pseudo character
<m contains a discrete subspace of power m. On the other hand the
content of the results mentioned is that a very large section of strongly
inaccessible cardinals belongs to class Co. We can not prove that Theorem 7
is false for strongly inaccessible cardinals of this type.

Finally we give some remarks on 7'; spaces. First we give a general
construction to obtain 7'; spaces. Let X be an infinite set, and let &
be the system of the complements of finite subsets of X. Let {Ts},ex
be a system of disjoint sets. Put B= | T%.

reX

We define the open sets of R. @ C R is open if either ¢ is empty or
there exists an 4 € & such that | J 7 CG. Then R e 7.

red
It is obvious that for every u € R, u €T the sets {u} U |J Ty for
’ veAd
x ¢ A € & form a base of neighbourhoods of = in R. Hence the character

of R is |&/|=]|X|. Considering that each set which intersects infinitely
many 7';’s is dense in B we have D(R)=Ro.

Example 2. Let m be a singular cardinal, m= Y m, m,<m.
o< 2(m*)
Put X ={o},- aumx) let |T,|=m, Then the space R .71 has power m,

D(R)=yo and the character of the space as well as of each of its points
is m*. On the other hand R does not contain a discrete subspace of power
m since each discrete subspace meets less than No 7,’s.

This example shows that a theorem corresponding to Theorem 7 fails
for 7'y spaces. We can not solve the following.

Problem 3. Let m be a singular strong limit cardinal. Let R € I
and assume that the character of R is less than m*. Does than R contain
a discrete subspace of power m?

Example 3. Let m be an infinite cardinal, |X|=¥o and |7Tz| =m for
every z € X.

Then R e 91, D(R)=Ro and R has character Np.

However R contains discrete subspaces of power m.

On the other hand we have
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Example 4. For every regular cardinal m there is an R € J; such

that |R|=m, D(R)=m and S(R)=No.

Let R={o},<om and let the non empty open sets be of the form

{0}s=o— {01, ..., 05} for g, 01, ..., 0s<L2(m), s<w.

Added in proof (February 1967)

Theorem 7. is an immediate consequence of Theorem 5. and a result

of P. Erdés and A. Tarski, On mutually exclusive sets, Annals of
Math., 44 (1943), pp. 315-329.

10.

11.
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