DISCRETE SUBSPACES OF TOPOLOGICAL SPACES 1)

 $\mathbf{B}\mathbf{Y}$

A. HAJNAL AND I. JUHÁSZ

(Communicated by Prof. J. POPKEN at the meeting of October 29, 1966)

§. 1. Introduction

Recently several papers appeared in the literature proving theorems of the following type. A topological space with "very many points" contains a discrete subspace with "many points". J. DE GROOT and B. A. Efimov proved in [2] and [4] that a Hausdorff space of power $> \exp \exp \exp m$ contains a discrete subspace of power > m. J. ISBELL proved in [3] a similar result for completely regular spaces.

J. de Groot proved as well that for regular spaces R the assumption $|R| > \exp \exp m$ is sufficient to imply the existence of a discrete subspace of potency > m. One of our main issues will be to improve this result and show that the same holds for Hausdorff spaces (see Theorems 2 and 3).

Our Theorem 1 states that a Hausdorff space of density $> \exp m$ contains a discrete subspace of power > m. We give two different proofs for the main result already mentioned. The proof outlined for Theorem 3 is a slight improvement of de Groot's proof. The proof given for Theorem 2 is of purely combinatorial character. We make use of the ideas and some theorems of the so called set-theoretical partition calculus developed by P. Erdös and R. Rado (see [5], [11]). Almost all the other results we prove are based on combinatorial theorems. For the convenience of the reader we always state these theorems in full detail.

Our Theorem 4 states that if m is a strong limit cardinal which is the sum of \aleph_0 smaller cardinals, then every Hausdorff space of power m contains a discrete subspace of power m. The problem if the same holds for all strong limit cardinals remains open.

At the end of § 4 using the generalized continuum hypothesis (G.C.H. in what follows) we give a discussion of the results and problems.

In § 5 we consider the problem of existence of large discrete subspaces under additional assumptions.

Theorem 5 states that a Hausdorff space of power $> 2^m$ contains > m disjoint open sets provided the character of the space is at most m.

¹⁾ A preliminary report containing the main results of this paper appeared in the Doklady Akad. Nauk. SSSR (see [1]).

Theorem 6 states that a T_1 -space of power $> 2^m$ contains a discrete subspace of power > m, provided the pseudo-character of the space is at most m.

Theorem 7 states that a Hausdorff space R of power m, where m is a singular strong limit cardinal contains m pairwise disjoint open sets provided the character of the space is less than m.

As a corollary of Theorem 5 we obtain a result concerning characters of points of the Čech-Stone compactification of discrete spaces (see Corollary 2).

§ 2. Notations, Definitions

The cardinal of the set A is denoted by |A|. m, n, p, q denote cardinals. m^{n} (m to the weak power n) is defined as

$$\sum_{p < n} m^p.$$

We write sometimes $\exp n$ and $\exp n$ for 2^n or 2^n respectively. m^+ denotes the smallest cardinal greater than m. m^* denotes the smallest cardinal n for which m is the sum of n cardinals smaller than m. The cardinal m is called regular or singular according to $m^* = m$ or $m^* < m$.

The infinite cardinal m is a *limit cardinal* if $m \neq n^+$ for any n. m is said to be a *strong limit cardinal* if $2^n < m$ for every n < m. A regular strong limit cardinal is said to be *strongly inaccessible*. $\Omega(m)$ denotes the initial number of the cardinal m.

If $m = \aleph_{\alpha}$ then $m^+ = \aleph_{\alpha+1}$, $m^* = \aleph_{\mathrm{cf}(\alpha)}$, $\Omega(m) = \omega_{\alpha}$. Note that for every infinite cardinal n and m > 1 we have $m^{n+} = m^n$.

For an arbitrary set A we put

$$[A]^n = \{B \colon B \subseteq A \text{ and } |B| = n\}.$$

If M is a set of cardinals put

$$\sup^* M = \min \{n: n > m, n \geqslant \aleph_0 \text{ for every } m \in M\}.$$

Let R be a topological space. A sequence $\{F_{\xi}\}_{\xi<\alpha}$ of non-empty closed subsets of R is said to be a tower of length $|\alpha|$ if $F_{\xi}\supseteq F_{\eta}$, $F_{\xi}\neq F_{\eta}$ for every pair $\xi<\eta<\alpha$.

D(R), W(R), S(R), H(R) denote the density, the weight, the spread and the height of the topological space R respectively. D(R), W(R) are defined as usual.

$$D(R) = \max \{ \aleph_0, \min \{ |S| : S \subseteq R, \overline{S} = R \} \},$$

$$W(R) = \max \{ \aleph_0, \min \{ |\mathfrak{B}| : \text{ for open bases } \mathfrak{B} \text{ of } R \} \}.$$

We define the spread and the height slightly differently from [2].

$$S(R) = \sup^* \{ |D| \colon D \subseteq R, \ D \text{ discrete} \}$$

$$H(R) = \sup^* \{ |\alpha| \colon \text{ for the length } |\alpha| \text{ of towers of } R \};$$

de Groot's problem if there always exists a discrete subspace of maximal power or a tower of maximal length is equivalent to the problem if S(R) and H(R) are never limit cardinals respectively.

We denote by \mathcal{F}_i (i=0,...,5) the class of all T_i -spaces.

Let \mathscr{C} be a class of topological spaces and let $m \ge n$ be infinite cardinals. To have a brief notation we sometimes write

$$(\mathscr{C}, m) \to n$$

to denote that the following statement is true:

For every $R \in \mathcal{C}$, |R| = m there exists a discrete subspace $D \subseteq R$ with |D| = n; $(\mathcal{C}, m) \Rightarrow n$ denotes that the statement is false.

Let $R = \{x_{\xi}\}_{\xi < \alpha}$ be a well-ordering of the topological space R. We say that this well-ordering separates R from the left (from the right) respectively if there exists a sequence $\{U_{\xi}\}_{\xi < \alpha}$ of open sets such that $x_{\xi} \in U_{\xi}$ and $x_{\eta} \notin U_{\xi}$ for $\xi < \eta$ ($x_{\xi} \notin U_{\xi}$ for $\xi < \xi$) respectively. R is said to be separated from the left (from the right) if there exist well orderings separating R from the left (from the right) respectively. If the same well-ordering separates R from the left and from the right R is obviously discrete.

Let R be a topological space. The *character* of a *point* x is the least cardinal p for which x has a base of neighbourhoods of power p. If $R \in \mathcal{T}_1$ the *pseudo character* of the point x is the least cardinal p for which there exists a system \mathscr{U} of power p of open subsets with the property $\cap \mathscr{U} = \{x\}$.

The character or the pseudo character of the space is the supremum of the characters or the pseudo characters of the points respectively.

- § 3. Preliminaries
 - 3.1. $|R| \leq 2^{W(R)}$ for $R \in \mathcal{T}_0$.
 - 3.2. $D(R) \leqslant |R| \leqslant \exp \exp D(R)$ for $R \in \mathcal{F}_2$, $|R| \ge \aleph_0$.
 - 3.3. $D(R) \leqslant W(R) \leqslant 2^{D(R)}$ for $R \in \mathcal{F}_3$.

These lemmas are stated in [2].

3.4. Let R be an infinite topological space. Then R contains a subspace T separated from the right such that $|T| \ge D(R)$.

See e.g. [6], Theorem II. We obviously have

3.5. If R is separated from the left or from the right then $|R| \leq W(R)$.

We prove the following

Lemma 1. Let R be an infinite topological space which is separated from the left and from the right. Then R contains a discrete subspace $T \subseteq R$ which has the same potency as R.

Proof. Let $R = \{x_\xi\}_{\xi < \alpha} = \{y_\eta\}_{\eta < \beta}$ be two well-orderings of R separating it from the left and from the right respectively. Put |R| = m and let $<_1$, $<_2$ briefly denote the above well-orderings. Split the set of all two-

element-subsets of R $\{x, y\}$, $x \neq y$, $x, y \in R$, i.e. $[R]^2$ into two classes I and II as follows

if
$$x <_1 y$$
 and $x <_2 y$ then $\{x, y\} \in I$, if $x <_1 y$ and $y <_2 x$ then $\{x, y\} \in II$.

Considering that a well-ordered set has no decreasing infinite subsets it follows that R does not contain an infinite subset all whose two-element-subsets belong to the second class. Then by a theorem of P. Erdös (see [10], Theorem 5.22 on p. 606), there exists a subset $T \subseteq R$ of potency m all whose pairs belong to the first class. That means the two well-orderings are the same on T hence the same well-ordering separates T from the left and from the right, and so T is discrete.

In de Groot's paper [2] the following lemma is stated.

If $R \in \mathcal{F}_2$, and $|R| > 2^m$ then R contains a tower of length > m. We restate this lemma in a slightly stronger form.

Lemma 2. Assume $|R| > 2^m$ and $R \in \mathcal{F}_2$, $m \ge \aleph_0$. Then R contains a tower of length $\ge m$.

The proof can be carried out literally in the same way as in [2]:

Using the fact that every T_2 space consisting of more than one point is the union of two closed proper subsets one defines the closed proper subsets $R_0 \subseteq R$, $R_1 \subseteq R$ on such a way that $R_0 \cup R_1 = R$. One can build up a so called ramification system be repeating this procedure transfinitely. One concludes as in [2] that this procedure associates in a one-to-one way to every point x of R a labelling

$$(\varepsilon_{\xi})_{\xi<\alpha}$$

where in the above sequence $\varepsilon_{\xi} = 0$ or 1 for every $\xi < \alpha$. It is also obvious from the construction that corresponding to every point x labelled with a sequence of length α R contains a tower of length $|\alpha|$.

Considering that the set of all possible labellings of length $\alpha < \Omega(m)$ has power

$$\sum_{\alpha < \Omega(m)} 2^{|\alpha|} = \sum_{p < m} 2^p = 2^m,$$

the assumption $|R| > 2^m$ implies the existence of a tower of length at least m. The "ramification argument" used in this proof is stated in a very general form in [5] (see p. 103).

Similarly as in [2] one can state the corollary that

$$H(R) \leqslant |R|^+$$
 and $|R| \leqslant 2 \stackrel{\mathcal{H}(R)}{=} .$

The first inequality is trivial and the second is a consequence of Lemma 2 considering that by the definition of H(R) R never contains a tower of length H(R).

Lemma 3. If R contains a tower of length m then R contains a subspace T of power m separated from the left.

Proof. Let $\{F_{\xi}\}_{\xi<\alpha}$ be a tower of length m. $T=\{x_{\xi}\}_{\xi<\alpha}$ with $x_{\xi}\in F_{\xi}-F_{\xi+1}$ obviously satisfies the requirement.

We now restate the theorem of [11] mentioned in the introduction.

Lemma 4. Let R be a set, $m \geqslant \aleph_0$, p be cardinals, $r \geqslant 2$ an integer. Assume $[R]^r = \bigcup_{\substack{v < \Omega(p)}} I_v$ is an arbitrary partition of the set $[R]^r$.

The conditions $|R| > \exp \dots \exp m$, $p \le m$ imply that there exists a subset $S \subseteq R$ and an index $v < \Omega(p)$ such that

$$|S| > m$$
 and $[S]^r \subseteq I_r$.

Lemma 4 is a corollary of theorem 39 of [11].

§ 4. Discrete subspaces of spaces of large potency

Our first theorem establishes an inequality between the density and the spread of the space.

Theorem 1.

$$D(R) \leqslant \exp \frac{S(R)}{2}$$

for every $R \in \mathcal{F}_2$.

Proof. Let $R \in \mathcal{F}_2$, $D(R) > 2^m$. It is sufficient to see that R contains a discrete subspace of power m. By 3.4 R contains a subspace S, $|S| > 2^m$ separated from the right. By Lemma 2 S contains a tower of length m, hence by Lemma 3 it contains a subspace T of power m separated from the left. T being separated from both sides, by Lemma 1 T contains a discrete subspace of power m.

Remarks. De Groot stated the problem if the stronger inequality $D(R)^+ \leqslant S(R)$ holds for Hausdorff spaces. We would like to point out that this would trivially imply that every hereditary Lindelöf space is separable. Considering that this would be a positive solution of Souslin's problem a positive answer seems to be improbable. This shows that Theorem 1 is in a sense best possible.

On the other hand we have the following estimations.

4.1.
$$S(R) \leqslant (\exp \exp D(R))^+ \text{ for } R \in \mathcal{F}_2;$$

$$S(R) \leqslant (\exp D(R))^+ \text{ for } R \in \mathcal{F}_3.$$

Proof. The first inequality follows from 3.2 using that $S(R) \leq |R|^+$ while the second follows from 3.3. considering that $S(R) \leq W(R)^+$.

The first inequality is best possible for Hausdorff spaces as it is shown by the following

Example 1. For every infinite cardinal m there exists a Hausdorff space R, $|R| = \exp \exp m$ with

$$D(R) = m$$
, $S(R) = (\exp \exp m)^+$.

Proof. Let M be a set of power m. Let R denote the set of all ultrafilters of M. As it is well-known, $|R| = \exp \exp m$. For every $x \in M$ let \hat{x} be the ultrafilter of all subsets of M containing x. Let $X^* = \{\hat{x} : x \in X\}$ for every subset $X \subseteq M$. We have $|M^*| = m$. Let the base \mathfrak{B} of R consist of the sets $\{u\} \cup X^*$ for $u \in R$, $X \in u$.

Then R is a Hausdorff space, since two different ultrafilters always contain disjoint subsets, all the points of M^* are isolated in R and M^* is dense in R. Hence D(R) = m. Considering that $R - M^*$ is obviously a discrete subspace of R, $S(R) = (\exp \exp m)^+$ and R satisfies the requirements of the theorem.

To prove our main theorem we need the following

Lemma 5. Let R be a set and assume that for every $x \in R$ U_x is a set of subsets of R satisfying the conditions

- a) For every pair $x \neq y \in R$ there exist sets $A \in U_x$, $B \in U_y$ such that $A \cap B = 0$,
- b) For every $x \in R$, A, $B \in U_x$ there is a $C \in U_x$ such that $C \subseteq A \cap B$. Assume $|R| > \exp \exp m$ for some infinite cardinal m. Then there exists a subset $S \subseteq R$, $|S| = m^+$ and a function A(x) defined for $x \in S$ satisfying the conditions

$$A(x) \in U_x \text{ for } x \in S,$$

$$y \notin A(x)$$
 for every pair $x \neq y$ $x, y \in S$.

(Lemma 5 states in other words that a Fréchet Hausdorff space of power $> \exp p$ contains a discrete subspace of power > m).

Proof. Let $\{x_{\alpha}\}_{\alpha<\varphi}$ be a well-ordering of type φ of the points of R, $|\varphi| > \exp \exp m$. We are going to use the special case r=3 of Lemma 4. Let $\alpha < \beta < \varphi$. By condition a) we can define the sets $A_0(x_{\alpha}, x_{\beta})$, $A_1(x_{\alpha}, x_{\beta})$ satisfying the conditions

(1)
$$A_0(x_{\alpha}, x_{\beta}) \in U_{x_{\alpha}}, \qquad A_1(x_{\alpha}, x_{\beta}) \in U_{x_{\beta}};$$

(2)
$$A_0(x_{\alpha}, x_{\beta}) \cap A_1(x_{\alpha}, x_{\beta}) = 0.$$

We define a partition $[R]^3=\bigcup_{\epsilon_i<2} I_{(\epsilon_i,\,\epsilon_i)}$ of the set of the triplets as follows.

(3) Let $X = \{x_{\alpha}, x_{\beta}, x_{\gamma}\}, \ \alpha < \beta < \gamma$ be an arbitrary element of $[R]^3$. Put $X \in I_{(\varepsilon_1, \varepsilon_2)}$ iff $x_{\gamma} \notin A_{\varepsilon_1}(x_{\alpha}, x_{\beta})$ and $x_{\alpha} \notin A_{\varepsilon_2}(x_{\beta}, x_{\gamma})$. It follows from (2) that

$$[R]^3 = igcup_{oldsymbol{arepsilon_i} < 2} I_{(oldsymbol{arepsilon_1}, \, oldsymbol{arepsilon_2})}.$$

Applying Lemma 4 for this partition with p=4, r=3 it follows that there exist a subset $S \subseteq R$ and two numbers ε_1 , $\varepsilon_2 < 2$ such that

$$(4) \hspace{3.1em} |S| = m^+, \hspace{1.5em} [S]^3 \subseteq I_{(\varepsilon_1 \varepsilon_2)^*}$$

We can assume that S is of the form $S = \{x_{\alpha_{\beta}}\}_{\beta < \Omega(m^+)}$ where the sequence α_{β} is increasing. Put briefly x'_{β} for $x_{\alpha_{\beta}}$.

Let $S_1 = \{x'_{\beta} : \beta < \Omega(m^+), \beta \text{ is even} \}$ or $S_1 = \{x'_{\beta} : \beta < \Omega(m^+), \beta \text{ is odd} \}$ if $\varepsilon_1 = 0$, or $\varepsilon_1 = 1$ respectively. Put further $A'(x'_{\beta}) = A_0(x'_{\beta}, x'_{\beta+1})$ if β is even, $A'(x'_{\beta}) = A_1(x'_{\beta-1}, x'_{\beta})$ if β is odd.

It follows from (1), (3) and (4) that

(5)
$$A'(x'_{\beta}) \in U_{x'_{\beta}} \text{ for } x'_{\beta} \in S_1$$

and

(6)
$$x'_{\nu} \notin A'(x'_{\beta}) \text{ for } \beta < \gamma, \ x'_{\beta}, x'_{\nu} \in S_1,$$

since both β and γ are either odd or even. S_1 is of the form $\{x'_{\beta_{\gamma}}\}_{\gamma < \Omega(m^+)}$ where the sequence β_{γ} is increasing. Put briefly $x'_{\beta_{\gamma}} = x''_{\gamma}$.

Let $S_2 = \{x''_{\nu}: \gamma < \Omega(m^+), \ \gamma \text{ is even}\}$ or $S_2 = \{x''_{\nu}: \gamma < \Omega(m^+), \ \gamma \text{ is odd}\}$ if $\varepsilon_2 = 0$ or $\varepsilon_2 = 1$ respectively. Put further $A''(x''_{\nu}) = A_0(x''_{\nu}, x''_{\nu+1})$ if γ is even, $A''(x''_{\nu}) = A_1(x''_{\nu-1}, x''_{\nu})$ if γ is odd.

It follows from (1), (3) and (4) that

(7)
$$A''(x_{\nu}'') \in U_{x_{\nu}''} \text{ for } x_{\nu}'' \in S_2,$$

and

(8)
$$x''_{\beta} \notin A''(x''_{\gamma}) \text{ for } \beta < \gamma, \ x''_{\beta}, x''_{\gamma} \in S_2.$$

It is obvious that $|S_2| = m^+$. By condition b) and by (5) and (7) for every $x_{\gamma}'' \in S_2$ there is a set $A(x_{\gamma}'') \in U_{x_{\gamma}''}$ such that $A(x_{\gamma}'') \subseteq A'(x_{\gamma}'') \cap A''(x_{\gamma}'')$. S_2 and $A(x_{\gamma}'')$ satisfy the requirements of the theorem since by (6) and (8) $x_{\beta}'' \notin A(x_{\gamma}'')$ for every pair $x_{\beta}' \neq x_{\gamma}'' \in S_2$.

As a corollary of Lemma 5 we obtain

Theorem 2. Every Hausdorff space of power $> \exp m$ contains a discrete subspace of power > m $(m \geqslant \aleph_0)$.

I.e.

$$(\mathcal{F}_2, (\exp \exp m)^+) \to m^+.$$

Theorem 2 should be compared with Theorem 1 of [2]. We do not know if this result can still be improved with one exp. We could not improve the second part of the above theorem concerning regular spaces.

An improvement of Theorem 2 would be that

$$(\mathcal{F}_2, [\exp(\exp \mathfrak{F})]^+) \to m$$

holds for every cardinal $m \geqslant \aleph_0$. Considering that

$$\sum_{p < m} \exp \exp p \leqslant \prod_{p < m} \exp \exp p = \exp (\exp \frac{m}{2})$$

the following Theorem 3 is even a further improvement of Theorem 2¹).

¹⁾ We could not deduce Theorem 3 directly from the results of [11] since a corresponding generalization of Lemma 4 is not true.

Theorem 3. Assume $R \in \mathcal{F}_2$, $m \geqslant \aleph_0$ and $|R| > \sum_{p < m} \exp \exp p$. Then R contains a discrete subspace of power m.

We only outline the proof.

One builds up a ramification system similarly as outlined in the proof of our Lemma 2 or in the proof of the Lemma in [2]. Put $n = \sum_{n \in \mathbb{Z}} \exp \exp p$.

Let x_0, x_1 be two arbitrary elements of R, R_0 and R_1 be two closed subsets whose union is R, $x_0 \notin R_0$ and $x_1 \notin R_1$.

Let $\alpha < \Omega(m)$ and assume that for every $\xi < \alpha$ we have already defined the elements $x(\varepsilon_0,...,\varepsilon_\xi)$ as well as the closed subsets $R(\varepsilon_0,...,\varepsilon_\xi)$ for some sequences $(\varepsilon_0,...,\varepsilon_\xi)$, where $\varepsilon_\eta = 0$ or 1 for $\eta \leqslant \xi$. Let now $(\varepsilon_0,...,\varepsilon_\xi)$ are defined be a sequence of length α such that $R(\varepsilon_0,...,\varepsilon_\xi)$ and $x(\varepsilon_0,...,\varepsilon_\xi)$ are defined for every $\xi < \alpha$. If $\bigcap_{\xi < \alpha} R(\varepsilon_0,...,\varepsilon_\xi) = R'(\varepsilon_0,...,\varepsilon_\xi...)_{\xi < \alpha}$ has power $\leqslant n, x(\varepsilon_0,...,\varepsilon_\alpha)$ and $R(\varepsilon_0,...,\varepsilon_\alpha)$ will not be defined. Assume $|R'(\varepsilon_0,...,\varepsilon_\xi,...)_{\xi < \alpha}| > n$. It follows from 3.2 that the set $Q = R'(\varepsilon_0,...,\varepsilon_\xi...)_{\xi < \alpha} - \overline{\bigcup_{\xi < \alpha} \{x(\varepsilon_0,...,\varepsilon_\xi)\}}$ has power > n. $(\overline{X}$ denotes the closure of the set X in R). Let $x(\varepsilon_0,...,\varepsilon_\alpha)$ be two arbitrary elements of this set Q for $\varepsilon_\alpha = 0$ or 1. Considering that $R \in \mathscr{T}_2$, there exist two closed subsets $R(\varepsilon_0,...,\varepsilon_\alpha)$ ($\varepsilon_\alpha = 0$, 1) of R whose union is R such that $x(\varepsilon_0,...,\varepsilon_\alpha) \notin R(\varepsilon_0,...,\varepsilon_\alpha)$. Thus the elements $x(\varepsilon_0,...,\varepsilon_\alpha)$ and the sets $R(\varepsilon_0,...,\varepsilon_\alpha)$ are defined by induction on α for every $\alpha < \Omega(m)$.

Let us omit now from R those sets $R'(\varepsilon_0,...,\varepsilon_\xi,...)_{\xi<\alpha}$ which have power $\leqslant n$ and the elements $x(\varepsilon_0,...,\varepsilon_\alpha)$ $(\alpha<\Omega(m))$. Considering that there are at most $\exp^m\leqslant n$ sequences $(\varepsilon_0,...,\varepsilon_\xi...)_{\xi<\alpha}$ of length $\alpha<\Omega(m)$ there must be an element x of R which is not omitted. Then x belongs to some $R(\varepsilon_0,...,\varepsilon_\alpha)$ for every $\alpha<\Omega(m)$ and this implies that there exists a sequence $(\varepsilon_0,...,\varepsilon_\alpha,...)_{\alpha<\Omega(m)}$ such that $x\in R(\varepsilon_0,...,\varepsilon_\alpha)$ for every $\alpha<\Omega(m)$. Let x'_α briefly denote $x(\varepsilon_0,...,\varepsilon_\alpha)$ for this sequence. $S=\{x'_\alpha\}_{\alpha<\Omega(m)}$ is a discrete subspace of R. In fact it is separated from the right since $x'_\alpha\notin \bigcup_{\xi<\alpha}\{x'_\xi\}$,

it is separated from the left since by the construction $x'_{\alpha} \notin R(\varepsilon_0, ..., \varepsilon_{\alpha})$ and $x_{\beta} \in R(\varepsilon_0, ..., \varepsilon_{\alpha})$ for every $\beta > \alpha$ hence the complement of $R(\varepsilon_0, ..., \varepsilon_{\alpha})$ is an open set containing x'_{α} and not containing x'_{β} for $\beta > \alpha$. Since the given well-ordering separates S from both sides S is discrete.

From Theorem 3 we obtain

Corollary 1.

$$|R| \leqslant \exp(\exp \frac{S(R)}{2})$$
 for $R \in \mathcal{F}_2$.

It is well-known that Theorems 2 and 3 can not be improved by two "exp", since for every infinite cardinal n there are even compact T_4 spaces of power exp n with spread $\leq n^+$, i.e.

$$(\mathcal{F}_4, 2^n) \Rightarrow n^+ \text{ for every } n \geqslant \aleph_0.$$

There is still possible that a sharper result holds for spaces of power m where m is a strong limit cardinal. As a corollary of Theorem 3 we know

that S(R) > |R| = m holds for these spaces but $S(R) = |R|^+ = m^+$ might be true as well. We can prove this in case $m^* = \aleph_0$ and the problem remains open in the general case.

Theorem 4. Assume $R \in \mathcal{F}_2$, |R| = m, m is a strong limit cardinal and $m^* = \aleph_0$. Then R contains a discrete subspace of power m, i.e. $S(R) = m^+$.

We postpone the proof of Theorem 4 to p. 354 since it will be an easy consequence of our Lemma 7.

Assuming G.C.H. we can summarize our results as follows.

- **4.1.** A) $(\mathscr{T}_2, \aleph_{\alpha+2}) \to \aleph_{\alpha}$ for every α
 - B) $(\mathcal{F}_2, \aleph_{\alpha+1}) \to \aleph_{\alpha}$ if \aleph_{α} is a limit cardinal
 - C) $(\mathscr{T}_2, \mathsf{x}_{\alpha}) \to \mathsf{x}_{\alpha}$ if $\mathrm{cf}(\alpha) = 0$ and $(\mathscr{T}_2, \mathsf{x}_{\alpha}) \to \mathsf{x}_{\beta}$ for every $\beta < \alpha$ provided x_{α} is a limit cardinal.

Proof. A) and B) follow from Theorem 3 considering that

$$\sum_{p < \aleph_{\alpha}} \exp \exp p \leqslant 2^{\aleph_{\alpha}}. \aleph_{\alpha} = \aleph_{\alpha+1}$$

for every α and $\sum_{p < \aleph_{\alpha}} \exp \exp p \leqslant \aleph_{\alpha}$ if α is of the second kind provided

G.C.H. holds. The first assertion of C) is a corollary of Theorem 4, while the second follows e.g. from A).

Considering the obvious negative result $(\mathscr{F}_4, \aleph_{\alpha+1}) \Rightarrow \aleph_{\alpha+1}$ there remains no unsolved problem in case B.

In cases A), C) the simplest and typical unsolved problems are the following.

Problem 1. Assume G.C.H.

$$({\mathscr T}_2,\,m{leph}_2)
ightarrow m{leph}_1\,? \ ({\mathscr T}_2,\,m{leph}_{\omega_1})
ightarrow m{leph}_{\omega_1}\,?$$

§ 5. Existence of discrete subspaces under additional assumptions

Theorem 5. Let $R \in \mathcal{F}_2$, $m \geqslant \aleph_0$. Assume that $R' \subseteq R$, $|R'| > 2^m$ and that the character of every point of R' in R is at most m. Then R contains a family \mathscr{U} of power m^+ of pairwise disjoint open subsets.

Theorem 6. Let $R \in \mathcal{F}_1$, $m \geqslant \aleph_0$. Assume that $|R| > 2^m$ and the pseudo character of R is at most m. Then R contains a discrete subspace of power m^+ .

Both theorems will be corollaries of our next combinatorial lemma. Thus we postpone the proofs.

Lemma 6. Let R be a set and assume that for every $x \in R$ \mathcal{U}_x is a collection of sets satisfying the condition

a) For every $x \in R$, A, $B \in \mathcal{U}_x$ there is a $C \in \mathcal{U}_x$ such that $C \subseteq A \cap B$.

Assume $|R| > 2^m$ and $|\mathcal{U}_x| \leq m$ for every $x \in R$. Let further $P_{xy}(A, B)$ with $x, y \in R$ be a property of pairs of sets satisfying the following conditions.

- b) For every pair $x \neq y \in R$ there are $A \in \mathcal{U}_x$, $B \in \mathcal{U}_y$ for which $P_{xy}(A, B)$ holds.
- c) For all sets $A' \subseteq A$, $B' \subseteq B$, $A, A' \in \mathcal{U}_x$, $B, B' \in \mathcal{U}_y$ $P_{xy}(A, B)$ implies $P_{xy}(A', B')$.

Then there exist a subset $S \subseteq R$, $|S| = m^+$ and a function A(x) defined for every $x \in S$ such that $A(x) \in \mathcal{U}_x$, and $P_{xy}(A(x), A(y))$ holds for every pair $x \neq y \in S$.

Proof. Let $\{x_{\alpha}\}_{\alpha<\varphi}=R$ be an arbitrary well-ordering of the set R. For every $\alpha<\varphi$ let $\{A^{\alpha}_{\beta}\}_{\beta<\Omega(m)}$ be a sequence containing all the elements of $\mathscr{U}_{x_{\alpha}}$. We define a partition $[R]^2=\bigcup_{\beta<\Omega(m)}\bigcup_{\gamma<\Omega(m)}I_{\beta\gamma}$ of the pairs of R as follows. Assume $\alpha_1<\alpha_2<\varphi$, then

$$\{x_{lpha_1},\,x_{lpha_2}\}\in I_{eta\gamma} ext{ iff } P_{x_{lpha_1}\,x_{lpha_2}}(A^{lpha_1}_eta,\,A^{lpha_2}_\gamma)$$

holds. By condition b) every pair belongs to one of the classes.

By case r=2 of Lemma 4 then there exist a subset $S\subseteq R$ and ordinals $\beta_0, \gamma_0 < \Omega(m)$ such that $|S| = m^+$ and $[S]^2 \subseteq I_{\beta_0, \gamma_0}$. By condition a) then there exists for every $x_\alpha \in S$ an $A(x_\alpha) \in \mathcal{U}_{x_\alpha}$ such that $A(x_\alpha) \subseteq A_{\beta_0}^\alpha \cap A_{\gamma_0}^\alpha$. By condition c) and by $[S]^2 \subseteq I_{\beta_0, \gamma_0}$ then $P_{xy}(A(x), A(y))$ holds for every pair $x \neq y \in S$.

Proof of Theorem 5. By the assumption there exists a base of neighbourhoods \mathscr{U}_x , $|\mathscr{U}_x| \leq m$ for every $x \in R'$. Let the property $P_{x,y}(A, B)$ be defined by the stipulation $A \in \mathscr{U}_x$, $B \in \mathscr{U}_y$, $A \cap B = 0$ for $x \neq y \in R'$. R being a Hausdorff space conditions b) and c) of Lemma 6 are fulfilled. It follows from Lemma 6 that there exists a subset $S \subseteq R'$, $|S| = m^+$ and a function A(x) such that the open sets $\{A(x)\}_{x \in S}$ are pairwise disjoint.

Remarks. Well known examples show that Theorem 5 does not remain true if the assumption $|R'| > 2^m$ is replaced by the weaker assumption $|R'| > 2^m$. However there is another possible refinement. As the example of the topological product of p discrete spaces of power m $(m > p > \aleph_0)$ shows there is a space of power m^p with character p not containing discrete subspaces of power > m. A generalization of Theorem 5 would be that a Hausdorff space of power $> m^p$, with character $\leq p$ contains a discrete subspace of power > m, or more than m disjoint open subsets. We do not know if this is true even in case $p = \aleph_0$ and assuming the G.C.H. We would like to point out the following even simpler.

Problem 2. Assume G.C.H. Let R be an ordered set of power \aleph_2 and of character \aleph_0 . Does then R necessarily contain a system of power \aleph_2 of disjoint open intervals?

Note. The assumptions imply that R contains no dense set of power $\leq \aleph_1$, hence there is no hope to disprove this without disproving the generalized Souslin conjecture.

From Theorem 5 we obtain the following

Corollary 2. Let βN_m be the Čech–Stone compactification of the discrete space N_m of power m. Let $\chi(x)$ denote the character of x in βN_m . Then

$$|\{x: \exp \chi(x) < \exp \exp m\}| < \exp \exp m.$$

i.e. for almost every $x \in \beta N_m$ we have $\exp \chi(x) = \exp \exp m$.

Proof. Assume that $m \leq p < \exp m$. Then βN_m contains at most $\exp p$ points of character $\leq p$, since otherwise βN_m would contain $p^+ > m$ disjoint open subsets in contradiction to the fact that N_m is dense in βN_m . It follows that

$$|\{x : \exp \chi(x) < \exp \exp m\}| = |\bigcup_{m \leqslant p < \exp m, \exp p < \exp m} \{x : \chi(x) \le p\}| < \exp \exp m$$

since $(\exp \exp m)^* > \exp m$.

This should be compared with a theorem of Pospišil [7] which states that βN_m contains exp exp m points of character exp m. Our result does not imply his theorem however under certain consistent conditions on the exp function it is even stronger. Assume e.g. $2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$ and $2^{\aleph_2} = \aleph_3 = \exp \aleph_0$. Then the cardinality of the set of points of character \aleph_1 of βN_{\aleph_0} is at most $\exp \aleph_1 = \aleph_2$ hence almost every point has character $\aleph_2 = 2^{\aleph_0}$.

Proof of Theorem 6. By the assumption there exists a system of open sets \mathscr{U}_x , of power $\leq m$ such that $\cap \mathscr{U}_x = \{x\}$ for every $x \in R$. Moreover we may assume that \mathscr{U}_x is closed with respect to the operation of finite intersection, hence condition a) of Lemma 6 is satisfied. Let $P_{xy}(A, B)$ be the property $A \in \mathscr{U}_x$, $B \in \mathscr{U}_y$, $y \notin A$, $x \notin B$. Considering $\cap \mathscr{U}_x = \{x\}$ conditions b), c) of Lemma 6 are satisfied as well. Lemma 6 implies the existence of a subset $S \subseteq R$, $|S| = m^+$ and a function A(x) such that $P_{x,y}(A(x), A(y))$ holds for every $x \neq y \in S$. Then $y \notin A(x) \in \mathscr{U}_x$ and $x \notin A(y) \in \mathscr{U}_y$, where A(x) is an open set, for every $x \neq y \in S$. Hence the subspace S is discrete.

Note that if R is a set of power m and the non empty open sets are the complements of finite sets, $R \in \mathcal{F}_1$ and R does not even contain a denumerable discrete subspace.

We prove the following

Lemma 7. Let $R \in \mathcal{F}_2$, $|R| = m > \aleph_0$. Assume m is a strong limit cardinal. Then one of the following conditions holds.

a) There is a sequence $\{H_{\alpha}\}_{\alpha<\Omega(m*)}$ of disjoint open subsets, such that

$$|\bigcup_{\alpha < \Omega(m*)} H_{\alpha}| = m, \sup_{\alpha < \Omega(m*)} |H_{\alpha}| = m;$$

b) There is an open subset $S \subseteq R$ such that |R-S| < m and every non empty open subset of S has power m.

Proof. Put

$$\mathscr{U} = \{G : G \subseteq R \text{ is open, } |G| < m\}.$$

We distinguish two cases. (i): $|\cup \mathcal{U}| = m$ (ii) $|\cup \mathcal{U}| < m$. We prove that in cases (i), (ii), a) and b) hold respectively.

If (i) holds, let $m = \sum_{\alpha < \Omega(m^*)} m_{\alpha}$, $m_{\alpha} < m$, where $\sup_{\alpha < \Omega(m^*)} m_{\alpha} = m$. We define the sequence H_{α} by transfinite induction on α as follows:

Assume that H_{β} is defined for every $\beta < \alpha$ for some $\alpha < \Omega(m^*)$ on such a way that $|H_{\beta}| < m$ for every $\beta < \alpha$. Then by 3.2 we have

$$|\overline{\bigcup_{eta$$

since m is a strong limit cardinal and $|\alpha| < m^*$. Then $\bigcup \mathscr{U} - \bigcup_{\beta < \alpha} \overline{H_{\beta}}$ is an open set of power m. By the definition of \mathscr{U} it contains an open subset H_{α} such that

$$m_{\alpha} \leq |H_{\alpha}| < m$$
, since $\sup \{|H|: H \in \mathcal{U}\} = m$.

The H_{α} 's obviously satisfy the requirements of a).

If (ii) holds then $S = R - \overline{\bigcup \mathcal{U}}$ satisfies b) since $|\overline{\bigcup \mathcal{U}}| < m$ by 3.2.

Proof of Theorem 4. Considering that $m^* = \aleph_0$ and m is a strong limit cardinal, we may assume $m = \sum_{l < \omega} m_l$, $m_l < m$, $\exp \exp m_l < m_{l+1}$. It follows from Lemma 7 that either there exists a sequence $\{H_l\}_{l < \omega}$ of disjoint open sets of R such that $|H_l| \ge m_l$ or there is an open subset $S \subseteq R$, |S| = m all whose non empty open subsets have power m. Considering $R \in \mathscr{F}_2$, S contains a sequence $\{H_l\}_{l < \omega}$ of disjoint open sets. In both cases, by Theorem 3 H_{l+1} contains a discrete subspace D_l of potency $> m_l$. Thus $D = \bigcup_{l < m} D_l$ is a discrete subspace of power m of R.

Theorem 7. Let $R \in \mathcal{F}_2$, |R| = m where m is a singular strong limit cardinal. Assume further that the character of the space R is n < m. Then R contains a system of power m of disjoint open subsets.

Proof. Let $m=\sum_{\varrho<\Omega(m^*)}m_\varrho$ where $n\leqslant m_\varrho< m$. We apply Lemma 7 to prove that there exists a sequence $\{H_\varrho\}_{\varrho<\Omega(m^*)}$ of disjoint open subsets, such that $|H_\varrho|>2^{m_\varrho}$ for $\varrho<\Omega(m^*)$. If condition a) of Lemma 7 holds, this is obvious. Thus we may assume that there is an open set $S\subseteq R$, |S|=m such that all non empty open subsets of S have power m. Considering $m^*< m$, by Theorem 5 S contains m^* disjoint open subsets $\{H_\varrho\}_{\varrho<\Omega(m^*)}$ which obviously satisfy the requirement. Then again by Theorem 5 H_ϱ contains a family \mathscr{U}_ϱ of power $>m_\varrho$ of disjoint open subsets.

Hence $\mathscr{U} = \bigcup_{\varrho < \Omega(m^*)} \mathscr{U}_{\varrho}$ is a family of power m of disjoint open subsets

Remarks. Let $R \in \mathcal{F}_2$, |R| = m and assume that R has a relatively small character. The case not covered by our results Theorem 5, 7 and by the trivial counterexamples is when m is strongly inaccessible. In this case the properties of strongly inaccessible cardinals recently considered in the literature are involved, see e.g. [8], [9].

The proof given for Theorem 6 shows that if m is a measurable strongly inaccessible cardinal or even a cardinal which does not belong to the class C_0 of [9] then even a space $R \in \mathcal{F}_1$, |R| = m with pseudo character < m contains a discrete subspace of power m. On the other hand the content of the results mentioned is that a very large section of strongly inaccessible cardinals belongs to class C_0 . We can not prove that Theorem 7 is false for strongly inaccessible cardinals of this type.

Finally we give some remarks on T_1 spaces. First we give a general construction to obtain T_1 spaces. Let X be an infinite set, and let \mathscr{A} be the system of the complements of finite subsets of X. Let $\{T_x\}_{x \in X}$ be a system of disjoint sets. Put $R = \bigcup_{x \in X} T_x$.

We define the open sets of R. $G \subseteq R$ is open if either G is empty or there exists an $A \in \mathscr{A}$ such that $\bigcup_{x \in G} T_x \subseteq G$. Then $R \in \mathscr{F}_1$.

It is obvious that for every $u \in R$, $u \in T_x$ the sets $\{u\} \cup \bigcup_{y \in A} T_y$ for $x \notin A \in \mathscr{A}$ form a base of neighbourhoods of x in R. Hence the character of R is $|\mathscr{A}| = |X|$. Considering that each set which intersects infinitely many T_x 's is dense in R we have $D(R) = \aleph_0$.

Example 2. Let m be a singular cardinal, $m = \sum_{\varrho < \Omega(m^*)} m_\varrho$, $m_\varrho < m$. Put $X = \{\varrho\}_{\varrho < \Omega(m^*)}$, let $|T_\varrho| = m_\varrho$. Then the space $R \in \mathcal{F}_1$ has power m, $D(R) = \aleph_0$ and the character of the space as well as of each of its points is m^* . On the other hand R does not contain a discrete subspace of power m since each discrete subspace meets less than \aleph_0 T_ϱ 's.

This example shows that a theorem corresponding to Theorem 7 fails for T_1 spaces. We can not solve the following.

Problem 3. Let m be a singular strong limit cardinal. Let $R \in \mathcal{F}_1$ and assume that the character of R is less than m^* . Does than R contain a discrete subspace of power m?

Example 3. Let m be an infinite cardinal, $|X| = \aleph_0$ and $|T_x| = m$ for every $x \in X$.

Then $R \in \mathcal{F}_1$, $D(R) = \aleph_0$ and R has character \aleph_0 .

However R contains discrete subspaces of power m.

On the other hand we have

Example 4. For every regular cardinal m there is an $R \in \mathcal{F}_1$ such that |R| = m, D(R) = m and $S(R) = \aleph_0$.

Let $R = \{\varrho\}_{\varrho < \Omega(m)}$ and let the non empty open sets be of the form

$$\{\sigma\}_{\sigma\geqslant\varrho}-\{\varrho_1,\,...,\,\varrho_s\} \ \ {
m for} \ \ \varrho,\,\varrho_1,\,...,\,\varrho_s<\varOmega(m),\,s<\omega.$$

Added in proof (February 1967)

Theorem 7. is an immediate consequence of Theorem 5. and a result of P. Erdös and A. Tarski, On mutually exclusive sets, Annals of Math., 44 (1943), pp. 315-329.

LITERATURE

- Hajnal, A. and I. Juhász, Some results in set-theoretical topology. Dokl. Akad. Nauk. SSSR 172, No 3, 541-542 (1967, in Russian).
- GROOT, J. DE, Discrete subspaces of Hausdorff spaces. Bull. Acad. Pol. Sci., 13, 537-544 (1965).
- ISBELL, J. R., Remarks on spaces of large cardinal numbers, Czehosl. Mat. Journ., 14, 89-91 (1964).
- Efimov, B. A., On the potency of Hausdorff spaces. Dokl. Akad. Nauk. SSSR, 164, No 5, 967-970 (1965). (in Russian).
- Erdös, P., A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hung., 16 93-196 (1965).
- Juhász, I., On extremal values of mappings, I. Ann. Univ. Sci. Budapest, 6, 39–42 (1963).
- Pospisil, B., On bicompact spaces, Publ. Fac. Sci. Univ. Masaryk, No. 270, (1939).
- Erdös, P. and A. Tarski, On some problems involving inaccessible cardinals. Essays on the foundations of mathematics, Jerusalem, 50–82 (1961).
- 9. Keisler, M. J. and A. Tarski, From accessible to inaccessible cardinals. Fundamentha Math., 53, 225-308 (1964).
- DUSHNIK, B. and E. W. MILLER, Partially ordered sets. Amer. J. Math., 63, 600-610 (1941).
- Erdös, P. and R. Rado, A partition calculus in set theory. Bull. Amer. Math. Soc., 62, 427-489 (1956).