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1. Introduction

In representation theory of Hopf algebras over a field k, it is a fundamental problem to know conditions for which the
representation categories of two given Hopf algebras are equivalent as (abstract) k-linear monoidal categories. A complete
answer for this is given by Schauenburg [1,2]. He introduced the notion of bi-Galois extensions, and showed that the
monoidal equivalences of comodule categories over Hopf algebras are classified by bi-Galois extensions of the base field
k. In the finite-dimensional case, they are also classified by cocycle deformations of Hopf algebras, which were introduced
by Doi [3]. Many researchers have been successful in determining the bi-Galois objects and the cocycle deformations for
various special families of Hopf algebras; see, for example, [4-7]. However, it is very difficult to do so in general.

In this paper we introduce a new family of invariants of a semisimple and cosemisimple Hopf algebra of finite dimension
by using the braiding structures of it, and show that our invariants are useful for examining whether the representation
categories of two such Hopf algebras are monoidal equivalent or not.

The basic idea of our method is to utilize quantum invariants of low-dimensional manifolds, which are topological
invariants defined by using quantum groups, namely, Hopf algebras with braiding structures. In contrast to most current
investigations on quantum invariants in which topological problems of low-dimensional manifolds are studied under a fixed
Hopf algebra, in this research, we fix a framed knot or link, and study the representation categories of the Hopf algebras. In
particular, in this paper, by use of quantum invariants of the unknot with (+41)-framing for a finite-dimensional semisimple
and cosemisimple Hopf algebra A over k, we introduce polynomials P/gd) (x) (d =1, 2,...)asinvariants of A. For each positive

integer d the polynomial Pgd) (x) is defined by

P (x) = ﬁ I1 (x — M) € k[x],

i=1 R:braidings of A dim Mi
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where {Mj, ..., M;} is a full set of non-isomorphic absolutely simple left A-modules of dimension d (so, dim M; = d for all
i), and dim M; € k is the quantum invariant of the unknot with (+1)-framing and colored by M;. In algebraic language,
dim M; is the category-theoretic rank of M; in the left rigid braided monoidal category (4M"®, cz) [8], where 4M™¢" is the
monoidal category of finite-dimensional left A-modules and A-linear maps, and c is the braiding of ;M™% determined by R.

Provided that the polynomial Plgd) (x) is not a constant, all roots of Pfid) (x) are n-th roots of unity for some positive integer n.
Furthermore, the polynomial has an integer property in the following sense. All coefficients of the polynomial are integers if
k is a finite Galois extension of the rational number field Q, and A is a scalar extension of some finite-dimensional semisimple
Hopf algebra over Q.

It is more interesting to note that our polynomial invariants are indeed invariants of the representation categories of
Hopf algebras, and recognize the difference between representation categories and representation rings of those algebras.
In general, if the representation categories of two finite-dimensional semisimple Hopf algebras are equivalent as monoidal
categories, then their representation rings are isomorphic. However, the converse is not true. For example, Tambara and
Yamagami [9], and also Masuoka [7], proved that if the characteristic of k is 0 or p > 2, then three non-commutative
and semisimple Hopf algebras k[Dg], k[Qs], K3 of dimension 8 have the same representation ring, but their representation
categories are not mutually equivalent, where Dg is the dihedral group of order 8, Qg is the quaternion group, and Ky is the
Kac-Paljutkin algebra [10,11]. This result is again confirmed by our polynomial invariants. Moreover, by computing and
comparing polynomial invariants we find new examples of pairs of Hopf algebras, whose representation rings are the same,
but whose representation categories are distinct.

This paper consists of six sections in total, and they are divided into two parts following this introduction: in Section 2
to Section 4 the definition and general properties of the polynomial invariants are discussed, and from Section 5 on, several
concrete examples are computed, and applications are described. Detailed contents are as follows. In Section 2 we introduce
the definition of our polynomial invariants of a semisimple and cosemisimple Hopf algebra of finite dimension. It is proved
that the polynomial invariants are indeed invariants of the representation category of such a Hopf algebra. In Section 3 some
basic properties of polynomial invariants are studied. It is shown that the polynomial invariants have a nice property such as
the integer property. In Section 4, by dualizing the method of construction of our polynomial invariants, we state a formula
to compute them in terms of coalgebraic and comodule-categorical language. In Section 5 we demonstrate computations
of polynomial invariants for several Hopf algebras including the Hopf algebras A,J\jnA (N is odd, and A = =+1), which were
introduced by Suzuki [12], and by comparing them we re-prove the result of Tambara, Yamagami and Masuoka as previously
mentioned, and also find some pairs of Hopf algebras, whose representation rings are isomorphic, but whose representation
categories are distinct. In the final section, as an Appendix, we determine the structures of representation rings of the Hopf
algebras A}, and determine when they are self-dual; this is used in Section 5.

Throughout this paper, we use the notation ® instead of ®y, and denote by ch(k) the characteristic of the field k. For
a Hopf algebra A, denoted by A, ¢ and S are the coproduct, the counit, and the antipode of A, respectively, and G(A) is the
group consisting of the group-like elements in A, and AP is the resulting Hopf algebra obtained from A by replacing A by the
opposite coproduct A“P. We use the sigma notation, such as A(x) = ) x(1) ® x(2) for x € A. We write 4M for the k-linear
monoidal category whose objects are left A-modules and morphisms are left A-linear maps, and write *M for the k-linear
monoidal category whose objects are left A-comodules and morphisms are left A-colinear maps. For general references on
Hopf algebras we refer to Abe’s book [13], Montgomery’s book [14] and Sweedler’s book [15]. For general references on
monoidal categories we refer to MacLane’s book [ 16] and Joyal and Street’s paper [17].

2. Definition of polynomial invariants

In this section we introduce a new family of invariants of a semisimple and cosemisimple Hopf algebra of finite dimension
over an arbitrary field. They are given by polynomials derived from the quasitriangular structures of the Hopf algebra.
By the method of construction of the polynomials they also become invariants under the monoidal equivalence of the
representation categories of Hopf algebras.

Let us recall the definition of a quasitriangular Hopf algebra [18]. Let A be a Hopf algebra over a field k,and R € A ® A be
an invertible element. The pair (A, R) is said to be a quasitriangular Hopf algebra, and R is said to be a universal R-matrix of A,
if the following three conditions are satisfied:

e A®P(q) =R- A(a)-R ' foralla € A,
o (A®id)(R) = Ri3Rz3,
[ ] (ld ® A)(R) = R13R12.
Here AP =To A, T:AQA — A®A, T(a®b) =b®a,andRj c AQA®AisgivenbyRi; =R®1,R;3 = 1®R,Ri3 =
(T ®id)(Ra3) = (id ® T)(Ry2).
IfR = Zi o; ® Bi is a universal R-matrix of A, then the element u = Zi S(Bi)a; of Ais invertible, and it has the following
properties:
(i) S?(a) = uau~' foralla € A,

(i) S(u) = Y, ouS(By).
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The above element u is called the Drinfel’d element associated to R.If A is semisimple and cosemisimple of finite dimension,
then the Drinfel’d element u belongs to the center of A by property (i) and §? = id4 [19, Corollary 3.2(i)].

Let (A, R) be a quasitriangular Hopf algebra over a field k and u be the Drinfel’d element associated to R. For a finite-
dimensional left A-module M, we denote by dim ;M the trace of the left action of u on M, and call it the R-dimension of
M. The R-dimension dim M is a special case of the braided dimension of M in the left rigid braided monoidal category
(uM™ | cg) (see Section 4 for the definition of braided dimensions).

To define polynomial invariants, we use the following result established by Etingof and Gelaki [19].

Theorem 2.1 (Etingof and Gelaki). Let A be a cosemisimple Hopf algebra of finite dimension over a field k. Then

(1) the set of universal R-matrices Braid(A) is finite,
(2) provided that A is semisimple, (dim M) 1y O for any absolutely simple left A-module M.

Remark 2.2. The proof of Part (1) was given in [19, Corollary 1.5]. In an extra case such as characteristic 0 or positive
characteristic with some additional assumptions, it was proved by Radford [20, Theorem 1]. The proof of Part (2) was given
in[19, Corollary 3.2(ii)]. The Etingof and Gelaki proof is based on Larson’s result [21, Theorem 2.8], which is the same as Part
(2) with the assumption S? = id,.

Let A be a semisimple and cosemisimple Hopf algebra of finite dimension over a field k. For a finite-dimensional left
A-module M with (dim M) 1 # 0, we have a polynomial
dim M

X— —
ReBraid(A) dim M

Py (x) =

) € k[x].
Furthermore, for each positive integer d a polynomial P,gd) (x) is defined by

t
PAY(0) = [ [ P () € KIx,
i=1
where {My, ..., M;} is a full set of non-isomorphic absolutely simple left A-modules of dimension d. Here, if there is no
absolutely simple left A-module of dimension d, then we set Pfid) x) =1.

Example 2.3. Let G = G, be the cyclic group of order m generated by g, and let k be a field whose characteristic does not
divide m. Suppose that k contains a primitive m-th root of unity w. Then any universal R-matrix of the group Hopf algebra
k[C,,] is given by

m—1
Ri=) oE®E (d=0,1,....m=1), (2.1)

i.j=0
where E; = % }151 w gl (see [22] for example). Let M; = k be the (absolutely) simple left k[Cy]-module equipped with
the action x;(g?) = @” (p = 0, 1,...,m — 1). For each d and i, then dim, M; = w~% since the Drinfel'd element uq of Ry

is given by uy = 3™' &~ %’E;. Thus we have

m—1 m—1

) s i d(2,

Paien @ = [ ] (x— ™) = [ exset?m — pysestiiom,
d,j=0 j=0

Two Hopf algebras A and B over k are said to be monoidally Morita equivalent if the monoidal categories 4M and M are
equivalent as k-linear monoidal categories.

Lemma 2.4. Let A and B be Hopf algebras of finite dimension over k. If a k-linear monoidal functor F : ;.M —> gM is an
equivalence between monoidal categories, then dim M = dim F (M) for any finite-dimensional left A-module M.

Proof. For a left A-module M we have an A-module isomorphism
A®M0—>A®M, a®mr—>Za(1)®a(2>m,

where My stands for the trivial A-module with underlying vector space M. Thus if M is finite-dimensional, we have an
isomorphism

FA) @ FM) X F(AQ M) = F(AQ M) = F(A®4mMy = p(q)®dimM
This implies that dim F(M) = dimM. O
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Lemma 2.5. Let A and B be Hopf algebras of finite dimension over k. If a k-linear monoidal functor (F, ¢, ) : .M —> gMisan
equivalence between monoidal categories, then there is a bijection @ : Braid(A) — Braid(B) such that for a finite-dimensional
left A-module M and a universal R-matrix R € Braid(A),

dim M = dimg, , F(M).

Proof. Let (G,¢', @) : gM —> ,M be a quasi-inverse of (F, ¢, w). Then there are k-linear monoidal natural
transformations ¢ : (F,¢,w) o (G, ¢, ') = 1,y and ¥ : (G, @', &) o (F, ¢, w) = 1,11, where 1, stands for the
identity functor on v = 4M, pM.

Auniversal R-matrixR = ), ; ® B of A defines a braiding c = {cyn : M ®N —> N ® M}y ne,m CONsisting of A-linear
isomorphisms

uNM@n) = Z,Bin@oeim (meM,neN).
i

The braiding c gives rise to a braiding ¢’ of M, which consists of B-linear isomorphisms C[/,,Q :P®Q — QQ®P (P,Q € gM)
such that the following diagram commutes.

P®Q L Q®P
W(P)®¢(Q)T T(ﬂ(Q)@(p(l’)
FG(P) ® FG(Q) FG(Q) ® FG(P)
¢G(P),G(Q)l l‘f’G(QLG(P)

F(cop),G(Q))
FGP) ®GQ) ——=> F(G(Q) ® G(P))
Then @ (R) = (Toc,;,B)(l) is a universal R-matrix of B, where T : BQ B —> B®Bis defined by T(a®b) = b®a (a, b € B).
It is easy to see from the definition that the map & : Braid(A) — Braid(B) defined as above is bijective.
Let M be a finite-dimensional left A-module, and ey, and ny, be the evaluation and coevaluation morphisms defined by

ey - M*QM — k, eum(f@m)=f(m) (feM' meM),
ny:k— M®M*, ny(1) = Z e; @ e} (the canonical element).
i

Then ey o ¢y, m+ ony = (dim M)id. So, we may identify dim ;M = ey o cp m+ o iy We set e}(M) = w 'oF(ey)o Om* M

and n;(M) = quj,}M* o F(ny) o w. Then (F(M*), e;(M), n/F(M)) is a left dual for F(M). Since the k-linear monoidal functor
(F, ¢, w) becomes a braided monoidal functor from (4M, ¢) to (M, c’), it follows that

. ’ / /
dimg, i F(M) = gy © Cequy pu) © Mequy

= w ' oF(ey o cym+ 0 Ny) o @ = (dim ;M)w ™' o F(idy) 0o 0 = dim ;M. O

Theorem 2.6. Let A and B be semisimple and cosemisimple Hopf algebras of finite dimension over k. If A and B are monoidally
Morita equivalent, then Pf(‘d) x) = Péd) (x) for any positive integer d.

Proof. Let F : ;.M —> gM be a k-linear monoidal functor which gives an equivalence of monoidal categories, and let us
consider the bijection @ : Braid(A) — Braid(B) given as in the proof of Lemma 2.4.

Let M be an absolutely simple left A-module. Then F(M) is also an absolutely simple left B-module, and by Lemmas 2.4
and 2.5 we have

Pa,m(x) = P rauy(X). (2.2)

Let {Mq,...,M;} be a full set of non-isomorphic absolutely simple left A-modules of dimension d. Then

{F(My), ..., F(M;)}is also a full set of non-isomorphic absolutely simple left B-modules of dimension d. Applying Eq. (2.2)
toM=M;(i=1,...,t),and taking the product of them, we have Pgd) x) = Péd) x). O

Remark 2.7. Our polynomial invariants are useful only if a semisimple and cosemisimple Hopf algebra has a quasitriangular
structure. However, by considering the polynomial invariants of the Drinfel’d double of it we have monoidal invariants of
the original (arbitrary) semisimple Hopf algebra of finite dimension.
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3. Integer property of polynomial invariants

In this section we investigate basic properties of the polynomial invariants P/gd) (x) (d = 1, 2,...) defined in Section 2.
We prove that all coefficients of P,gd) (x) are integers if k is a finite Galois extension of Q, and A is a scalar extension of some
finite-dimensional semisimple Hopf algebra over Q.

First of all, we show that the coefficients of P,(,d) (x) lie in the integral closure of the prime ring of the base field of A. To do
this we need the following lemma.

Lemma 3.1. Let (A, R) be a quasitriangular Hopf algebra over k and u be the Drinfel’d element associated to R. If A is semisimple
and cosemisimple, then y(dimA?® _ 1

Proof. Let us consider the subHopf algebras B = {(¢ ® id)(R) | « € A*}and H = {(id ® @)(R) | « € A*} of A. By [23,
Proposition 2], the Hopf algebra B is isomorphic to the Hopf algebra H*°P. Let (D(H), R) be the Drinfel'd double of H.
By [23, Theorem 2], there is a homomorphism F : (D(H), ) —> (A, R) of quasitriangular Hopf algebras. It follows that

~

the Drinfel’d element i of (D(H), R) satisfies F(i1) = u. Since A is semisimple, the subHopf algebras H and H**°P = B are
also semisimple [24, Corollary 2.5]. Thus H is semisimple and cosemisimple. So, we have #@m"’ — 1 by [25, Theorem
2.5 & Theorem 4.3], and u@™"’ — 1. Since dimA is divided by dim H [23, Proposition 2], the equation u @™’ = 1 is
obtained. O

For a field K, let Zx denote the integral closure of the prime ring of K; that is, if the characteristic of K is 0, then Z is the
ring of algebraic integers in K, and if the characteristic of K is p > 0, then Z is the algebraic closure of the prime field F,
inK.

Lemma 3.2. Let (H, R) be a semisimple and cosemisimple quasitriangular Hopf algebra over a field K. If M is an absolutely simple
left H-module, then (by Theorem 2.1 (dim M) 1y # 0 and,)

dim ;M (dim H)3 .,
dimM o

dimpM
dimM

In particular, € Zg.

Proof. The Drinfel’d element u of (H, R) belongs to the center of H since H is semisimple and cosemisimple. Thus the left

actionuy, : M — M of u is a left H-endomorphism. Since M is absolutely simple, u,, is a scalar multiple of the identity
; 3

morphism, so it can be written as u,, = wyidy for some wy € K. Then by Lemma 3.1 we have dimM = Tr(gﬁj‘mH) ) =

. 3 . 3 . 3 .
op™ Tr(idy) = o™ dim M. Thus iy ™" = 1. This implies that wy = Gkl

belongsto Zx. O

Form Lemma 3.2, we have the following immediately.

Proposition 3.3. Let H be a semisimple and cosemisimple Hopf algebra of finite dimension over a field K. Then for any absolutely
simple left H-module M, the coefficients of the polynomial Py () are in Z. Therefore, P,(_,d) (x) € Zx[x] for any positive integer d.
Now, we will examine relationship between polynomial invariants and Galois extensions of fields. Let K /k be a field
extension, and let Aut(K /k) denote the automorphism group of K /k. For a K-linear space M and o € Aut(K/k), a K-linear
space ° M is defined as follows:
(i) °M = M as additive groups,
(ii) the action x of K on “ M is given by
cxm:=o(c)-m (ceK,meM), (3.1)
where - in the right-hand side stands for the original action of K on M.
For a K-linearmapf : M —> N and o € Aut(K/k), we have
flexm)=f(o(c)-m)=o(c)-f(m)=cxf(m) (ce€K,meM);

thus f can be regarded as a K-linear map from °M to “N. We denote by °f the K-linear mapf : °M — °N.
The monoidal category xM of K-linear spaces and K-linear maps has a canonical braiding, which is given by usual twist
maps. For an automorphism o € Aut(K/k), the functor

°F : kM —> M, M+ °M, fr—°f (3.2)

gives a K-linear braided monoidal functor. Since °F o °F = °*F for all o, T € Aut(K/k), the functor °F : (M —> M gives
an isomorphism of K-linear braided monoidal categories. In general, a K-linear braided monoidal functor F : yM — M
maps a Hopf algebra to a Hopf algebra. So, for a Hopf algebra H over K and an automorphism o € Aut(K/k), °H is also a
Hopf algebra over K. The Hopf algebra structure of “H is the same as that of H with the exception that the action of K on “H
is given by (3.1), and the counit e-y of °H is given by goyy = 07! 0 &y.
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Lemma 3.4. Let K /k be a field extension, and H be a Hopf algebra over K. Let R € H ®x H be a universal R-matrix of H, and
o € Aut(K/k). Then

(1) Ris also a universal R-matrix of °H. We write ° R for this universal R-matrix of °H.
(2) The Drinfel'd element of the quasitriangular Hopf algebra (°H, °R) coincides with the Drinfel'd element of (H, R).
(3) For a finite-dimensional left H-module M, we have dim, ;" M = o1 (dim zM).

Proof. Parts (1) and (2) follow from the definition. We show Part (3). Let u € H be the Drinfel'd element of (H, R). By Part
(2), uis also the Drinfel'd element of (“H, “R). Let {e;}}_; be a basis of M over K, and write u - ; = 2}1:1 ajiej (aj; € K). Then

u-e =y ;0 '(ap) e,and hence dim, "M = > 0~ (@) = o' (XiL; ai) = o~ ' (dimM). O

For a field automorphism o : K —> K and a polynomial P(x) = cg+cix+---+cuX" (c; € K,i= 1, ..., m), we define
o -P(x) e K[x]byo -P(x) :=0(co) +o(c)X+ - -+ o(cm)x™.

Lemma 3.5. Let K/k be a field extension, and H be a semisimple and cosemisimple Hopf algebra over K of finite dimension.
If M is a finite-dimensional left H-module such that (dimM)1x # O, then for an automorphism o € Aut(K/k) we have
o1 Pym(x) = Poyom ().

Proof. Setting N = M, by Lemma 3.4(3) we have

= PUH.N(X).

Uil(diimRM) dim, ;N
)= I ) 3

-1
o~ - Pyux) = 1_[ - -
ReBraid(H) dimM ReBraid(H) dimN
Here, the last equation () follows from the map Braid(H) —> Braid(°H), R —> °R being bijective by Lemma 3.4(1). O

Let A be a Hopf algebra over a field k, and K be an extension field of k. Then AX = A ® K becomes a Hopf algebra over K,
and the automorphism group Aut(K /k) acts on A¥ as follows:

o-(a®c)=a®oao(c) (o €Aut(K/k),a e A, c €K). (3.3)

We set H = AX. Then foreach o € Aut(K /k) the left action on H given by (3.3) defines a Hopf algebra isomorphism from H to
°H,denoted by 6 : H —> “H. Furthermore, we see that, if R is a universal R-matrix of H, then 6 becomes a homomorphism
of quasitriangular Hopf algebras from (H, R) to (°H, °R). Thus Aut(K/k) acts on Braid(H) from the right by

R € Braid(H) —> (6 '®x 6 ")(°R) € Braid(H).

Theorem 3.6. Let K /k be a finite Galois extension of fields, and A be a semisimple and cosemisimple Hopf algebra over k of finite
dimension. Then Pf\‘,? (x) € (kN Zg)[x] for each positive integer d.

Proof. First of all, let us check to see that the Hopf algebra H = AX is semisimple and cosemisimple. Since the Hopf algebra
A is semisimple, it is separable (see [14, Corollary 2.2.2]). Thus H is a semisimple Hopf algebra over K of finite dimension.
Applying the same argument to the dual Hopf algebra A*, we see that H is a cosemisimple Hopf algebra over K. Eventually,

we see that H is semisimple and cosemisimple.
Let lrr(()d) (H) denote the set of isomorphism classes [M] of absolutely simple left H-modules M of dimension d, and set

t= ﬁlrréd) (H).Ift = 0, then P,(,d) (x) = 1, and hence Pb(,d) x) € (kN Zg)[x].
Hereinafter, we consider the case when t > 0. For an automorphism o € Gal(K/k), the map

I (H) — Il CH),  [M]+— [°M]

is bijective. Here, by Lemma 3.5 we have o ! oP,(_,d) x) = 5‘2 x) = P,(,d) (x), and we see that P;,d) (x) € k[x]. On the other hand,
since P1(4d) (x) € Zx[x] by Proposition 3.3, it follows that P,f,d) x)eknZylx]l. O

As applications of the above theorem we have two corollaries.

Corollary 3.7. Let K be a finite Galois extension field of Q, and A be a semisimple Hopf algebra over Q of finite dimension. Then

P/(\‘,? (x) € Z[x] for any positive integer d, where Z denotes the rational integral ring.

Proof. By [26], a finite-dimensional semisimple Hopf algebra over a field of characteristic 0 is cosemisimple. Thus the
semisimple Hopf algebra AX is cosemisimple. Since Q N Zx = Z, by applying Theorem 3.6 we have P/iﬁ) x) e zZ[x]. O

Corollary 3.8. Let I" be a finite group, and K be a finite Galois extension field of Q. Then P,E‘E)m(x) € ZI[x] for any positive in-
teger d.

Proof. The group Hopf algebra K[I"] is isomorphic to the scalar extension of Q[I"] by K. Since a group algebra over a field
of characteristic 0 is semisimple, by Corollary 3.7 we have P,i‘?r] (x) € Z[x] for any positive integerd. O
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4. Dual formulas for polynomial invariants

In this section we give a formula to compute the polynomial invariants for a self-dual Hopf algebra of finite dimension
in terms of the braidings of the dual Hopf algebra.

Let us recall the definition of a braiding of a Hopf algebra [3]. Let A be a Hopf algebra over a field k,and leto : AQA — k
be a k-linear map that is invertible with respect to the convolution product. The pair (A, o) is said to be a braided Hopf algebra,
and o is said to be a braiding of A, if the following conditions are satisfied: for allx,y,z € A

(B1) > o (xay, yn)XeY@ = 20 (X@), Y)Y 1)X),
(BZ) U(Xy! Z) = Z G(Xa Z(]))G(y’ 2(2))'
(B3) o (x,y2) = Y 0 (X1), 2)0 (X2), ¥).

It is easy to see that any braiding o of A satisfies
(B4) 0(14,x) = o(x, 14) = e(x) forall x € A.

Let (A, o) be a braided Hopf algebra over k. Then the braiding o defines a braiding ¢ of the monoidal category M
consisting of right A-comodules and A-colinear maps as follows. For two right A-comodules V and W, a k-linear isomorphism
cvw VW — W Q®V is defined by

cvw(w) = ZU(U(I)» wm)we) ®ve eV, weW),

where we use the notations py (v) = Y v() ® vy and pw (w) = Y w) ® wy for the given right coactions py and py of
V and W, respectively. From the axiom of braiding (B1)-(B3), we see that ¢y w is a right A-comodule isomorphism, and the
collectionc = {cy,w : VO W —> W ® V}, oy gives a braiding of M~

Let us consider the element in the braided Hopf algebra which plays the role of the Drinfel’d element in a quasitriangular
Hopf algebra.

Lemma 4.1 ([3, Theorem 1.3] or [27, 3.3.2]). Let (A, o) be a braided Hopf algebra over k, and define u € A* by

@ =Y o, S@m), aecA (4.1)

Then p is convolution-invertible, and the following equation holds for any element a € A:

$2(@) = Y ulaa) i (as)aw).
The k-linear functional w is called the (dual) Drinfel’d element of (A, o).

LetV = (G, ®, 1, a,r,l, c)bealeft rigid braided monoidal category. For each object X € € we choose a left dual X* with
an evaluation morphism ey : X* ® X —> T and a coevaluation morphism ny : I — X ® X*. Then for an endomorphism
f : X — X in C, the braided trace of f in 'V, denoted by Tr .f, is defined by the composition

1% xex 2 xox* 2% x ox 551

In particular, the braided trace of the identity morphism idy is denoted by dim X, and is called the braided dimension of
XinV.

Applying this to the braided monoidal category (M#, ¢) constructed from a braiding o € (A®A)*, we have the following.

Lemma 4.2. Let (A, o) be a braided Hopf algebra over k, and c be the braiding of M? constructed from o. Then for a finite-
dimensional right A-comodule V, the braided dimension dim .V is given by dim |V = u(xv), where u is the Drinfel'd element
of (A, o), and yxy is the character of the comodule V, which is defined by

Xv =Y (] ®idc)(pv(v) € C
i=1
by use of dual bases {vi}_, and {vi}™,.

Lemma 4.3. Let A be a Hopf algebra over k of finite dimension, and ¢ : A* @ A* —> (A ® A)* be the canonical k-linear
isomorphism. Let o be an element of (A ® A)* and set R := 1~ '(c). Then

(1) o is convolution-invertible if and only if R is invertible as an element of the algebra A* ® A*.

(2) o is a braiding of A if and only if R is a universal R-matrix of the dual Hopf algebra A*. In this case, the Drinfel’d element
i € A* of the quasitriangular Hopf algebra (A*, R) is given by u(a) = Y_ o (a@), S(ayy)) foralla € A.

(3) For a finite-dimensional right A-comodule V, the equation dim ,V = dim V holds, where dim ,V is the R-dimension of the
left A*-module V with the actionp - v := Y p(v))v() (p € A*, v € V).

Let C be a coalgebra over a field k. A right C-comodule V is said to be absolutely simple if the right CX-comodule V¥ is
simple for an arbitrary field extension K /k. This condition is equivalent to V being absolutely simple as a left C*-module. We
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note that, if a right C-comodule is simple, then it is automatically finite-dimensional (see [14, Corollary 5.1.2]). So, there is a
one-to-one correspondence between the absolutely simple right C-comodules and the absolutely simple left C*-modules.

Let braid(A) denote the set of all braidings of a Hopf algebra A. Then by Part (2) of Lemma 4.3, the map braid(A) —
Braid(A*) defined by o — (~1(0) is bijective, and by Part (3) of the same lemma, the equation dim 1,V = dim ,V holds
for a finite-dimensional right A-comodule V. Hence we have the following:

Lemma 4.4. Let A be a semisimple and cosemisimple Hopf algebra over k of finite dimension.

(1) For an absolutely simple right A-comodule V,

Pax v (x) =
o ebraid(A)

dimaV>
X — s
dimV

where in the left-hand side Pa v (x) is the polynomial for V regarded as an left A*-module by usual manner.
(2) Let {V1, ..., Vi} be a full set of non-isomorphic absolutely simple right A-comodules of dimension d. Then

t
P (x) = [ [ Paevi ®.
i=1
A Hopf algebra A over a field k of finite dimension is called self-dual if A is isomorphic to the dual Hopf algebra A* as a
Hopf algebra. Applying the above lemma to a self-dual Hopf algebra, we immediately obtain the following proposition.

Proposition 4.5. Let A be a semisimple and cosemisimple Hopf algebra over a field k of finite dimension. If A is self-dual, then
for a positive integer d

t .
dim _V;
(d) _ aim Vi
Py (X)_]_[ 1_[ (X_ dimVi)’

i=1 o ebraid(A)

where {V1, ..., V;} is a full set of non-isomorphic absolutely simple right A-comodules of dimension d.

By using the above formula, we compute the self-dual Hopf algebras Am introduced by Suzuki [12] in the next section.

5. Examples

In this section we give several computational results of polynomial invariants of Hopf algebras. By comparing polynomial
invariants one may find new examples of pairs of Hopf algebras such that their representation rings are isomorphic, but they
are not monoidally Morita equivalent.

5.1. Eight-dimensional non-commutative semisimple Hopf algebras

By Masuoka [11], it is known that there are exactly three types of eight-dimensional non-commutative semisimple
Hopf algebras over an algebraically closed field k of ch(k) # 2. They are k[Dsg], k[Qg] and Kg, where Dg and Qg are the
dihedral group of order 8 and the quaternion group, respectively, and Kg is the unique eight-dimensional semisimple Hopf
algebra which is non-commutative and non-cocommutative, which is called the Kac-Paljutkin algebra [10]. Tambara and
Yamagami [9] and also Masuoka [7] showed that their representation rings are isomorphic meanwhile their representation
categories are not. In this subsection we derive this result by using our polynomial invariants. Throughout this subsection,
we fix the following group presentation(s) of Dg and Qs:

Dg = (s,t|s4 =1,t>=1,st = ts_l), Qs = (s,tls4 =1,t>=¢%st = ts_l).

Let us start by determining the universal R-matrices of the group Hopf algebras k[Dg] and k[Qg]. For this the following
proposition is useful.

Lemma 5.1. Let G be a group, and k be a field. Then for a universal R-matrix R of k[G] there is a commutative and normal finite
subgroup H such that R € k[H] ® k[H].

Proof. We set A = k[G]. By [23, Proposition 2(a)], B = {(id ® @)(R) | @« € A*},H := {(¢ ® id)(R) | « € A*} are finite-
dimensional subHopf algebras of A. Since, for each g € G, kg is a subcoalgebra of A = EBgec kg, by [15, Lemma 9.0.1(b)] the
subcoalgebra B is written as B = EBgec BNkg.WesetK := BN G.Then K is a subgroup of G, and BN kg # {0} if and only if
g € K.ThusB = @geK BNkg = @geK kg = k[K]. Since B is finite-dimensional, K is a finite group. As a similar argument,
we see that there is a finite subgroup L of G satisfying H = Kk[L]. Since by [23, Proposition 2(c)] k[K]**°P = Kk[L] as Hopf
algebras, L is commutative. Furthermore, L is a normal subgroup of G since Lg C gH, or equivalently g~ 'Lg C H = Kk[L]
by [23, Proposition 3]. Similarly, we see that K is a commutative and normal subgroup of G.
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At this point, R € k[K] ® k[L] C k[LK] ® k[LK] is verified. To complete the proof it is sufficient to show that LK is
a commutative and normal subgroup of G. Since L is normal, it follows immediately that LK is normal. To show that LK is
commutative, we write R in the form R = )", k ® X (Xi € K[L]). Since A“P(k’) - R = R- A(K') for all k¥’ € K, we have

X1 = k'Xk' ™" for all k, k' € K. Since K is commutative, this condition is equivalent to Xgk' = k'Xi. It follows from
k[L] = H = Span{X; | k € K} that any element | € L is represented by a k-linear combination of {X; | k € K}. Thus Ik = k'

holds. This means that LK is commutative. O

For a cyclic group the universal R-matrices of the group Hopf algebra are given by (2.1) in Example 2.3 in Section 2. For a
direct product of two cyclic groups the universal R-matrices of the group Hopf algebra are given as in the following lemma.
The lemma can be verified by use of the same method as that used in the proof of Lemma 5.13 given later.

Lemma 5.2. Let G be the direct product of the cyclic groups C,, = (g) and G, = (h), and let w be a primitive mn-th root of unity
in a field k whose characteristic does not divide mn. We set X(m,n) = {d € {0, 1,...,m — 1} | dn = 0 (mod m)}. Then any
universal R-matrix of k[G] is given by the formula

m—1 n—1
ng{gfg] — Z Z wn(p!j+rkj)+m(skl+qll)Eik ® Eﬂ,
ij=0 k.1=0
where p € X(m, m), q € X(n,m), r € X(m,n),s € X(n,n),and By = ;- > " S0 1 p—nii=mklgipl,

By using Lemmas 5.1 and 5.2, one can determine that the quasitrlangular structures of k[Dg] and k[Qg] as described in
the following lemma [28].

Lemma 5.3. Let k be a field of ch(k) = 2 that contains a primitive 4-th root of unity ¢.
(1) The universal R-matrices of k[Dg] are given by

k[DS] Z é‘flk k ® sdi (d — O, «1’ 27 3)’

1I<

R:;-[ﬁfl — Z ( 1) ij—ki 1 Zk 152(]'+dl) (d =0, 1)’
Ijkl 0

1
R = LY (s e ) (=0, 1),
i,j,k,I=0

The Drinfel’d element uk[DS] of R"[DS] is given by

1 (d=0,4,6),

1a+§4)+lm+@xz(dzn
uksl — | 2 2 '

s* (d=2,57),

1(1+)+1(1+’1)2 (d=3)
2 D+5 £ e

(2) The universal R-matrices of k[Qg] are given by

RYCs! . 2:;W®ﬂ'm_0123
zk 0

Risi = Zc Ktk @ (T (@ =0, 1),
lk 0

Rivs' = Z {4 @ () (@ =0,1),
zk 0

The Drinfel’d element ud[Qsl of Ry klGs] 4 given by

1 (d=0),
%1 -1 ]1 )$2 (d=1,4,6

ost _ 5 +¢ )+§(+CS =1,4,6),

’ s (d=2),

1 1 1\ 2
5(1+§)+5(1+§ )s° (d=3,5,7).
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Proof. In the case of either k[Dg] or k[Qg], the proof of the lemma can be done by the same method. So, we will determine
the universal R-matrices only in the case of k[Qg] (for k[Dg] see also Proposition 5.15 given later).

It is easy to show that the maximal commutative and normal subgroups of Qg coincide with one of H; = (s), H = (t) and
Hs = (ts). Therefore, by Lemma 5.1 any universal R-matrix of k[Qg] is that of k[H;] for some i = 1, 2, 3. Let R be a universal
R-matrix of k[H;]. Then A“P(t) - R = R- A(t) holds, and hence R is a universal R-matrix of k[Qg]. Similarly, we see that any
universal R-matrix of k[H;] for i = 2, 3 satisfies A“P(s) - R = R - A(s), and hence it is a universal R-matrix of k[Qg]. O

Next, we describe the quasitriangular structures of the Kac-Paljutkin algebra Kg, which were determined by Suzuki [12].
As an algebra the Kac-Paljutkin algebra Kg coincides with the group algebra k[Dg]. Let us consider the primitive orthogonal

idempotents eg = 145 e = 1_252 in Kg = k[Dg]. Then the Hopf algebra structure of Ky is described as follows [7]:

5
A(t) =t ® ept + st ® eqt, A(S) =s®@egs +5 ! @ eys,
e(t) =1, e(s)y =1,
S(t) = et +eist,  S(s) = eos™! + eys.

We note that A(eg) = e X eg + €1 R eq, A(er) = eg ® e+ e1 Qeg, e(eg) = 1,e(e1) = 0,S(eg) = eg, S(eq) = ey, and

therefore, key + ke is a subHopf algebra of Kg which is isomorphic to the group Hopf algebra k[C;]. Let ¢ € k be a primitive
4-th root of unity. Then

'—1(1+ )+1(1— )s! h'—l(l— )5+ 21+ )5
g._2 ¢)s 5 g)s -, =3 ¢)s 5 ¢)s

satisfy g2 = h?> = 1, and k[(s)] = k1 + kg + kh + kgh holds. Moreover, since g and h are group-like, the subHopf algebra
k[(s)] of Kg is isomorphic to the group Hopf algebra k[C, x G;].

Lemma 5.4. Let k be a field of ch(k) # 2 that contains a primitive 8-th root of unity w. Then the universal R-matrices of Kg are
given as follows:

(i) universal R-matrices of k[(g, h)] = k[C; x C]:

1 & o . .
R’;Z = Z Z (_1)*(lj+kl)gzhk ®gpj+(q+1)lhq;+pl (P, qe {0’ 1})’
ij,k,1=0
(ii) minimal universal R-matrices of Kg:

R = 1 3 @D =G =G (= PHrHGEH DT+ U0 bt @ figThs (] = 0,1, 2, 3).
ij,p,q,r,s=0,1

The Drinfel'd elements uy%, and u;® of R, and R}®, respectively, are given by

1< . ,
Kg __ _ 1\ (+p)I+p) 5ipl
Ups EE, (=D g'h (p.qef0,1}),
i,I=0
21-1

2

Kg
Y

1
(1 —gh)—i—i(g—l—h) (1=0,1,2,3).

Proof. Since the universal R-matrix Ry$ of k[(g, h)] satisfies A©P(t) - RS = Rys - A(t), we see immediately that Ry? is a

universal R-matrix of Kg. It can be also verified straightforwardly that Rfs is indeed a universal R-matrix of Kg, although the
proof is tedious. Since Kg is isomorphic to the Suzuki Hopf algebra A, (for example see [29]), by [12, Proposition 3.10(ii)]
the number of universal R-matrices of Kg is 8. Thus there is no universal R-matrix of Kg other than RIIJ(S (p,q € {0,1}) and
R® (1=0,1,2,3). O

Let k be a field of ch(k) # 2 that contains a primitive 4-th root of unity ¢. Then for any of the algebras k[Dg], k[Qs], Ks
the number of isomorphism classes of (absolutely) simple modules is 5. They consist of four one-dimensional modules and
one two-dimensional simple module. The one-dimensional modules of k[Dg], k[Qg] and Kg are givenby V;; =k (i,j =0, 1)
equipped with the left actions p;; defined by

pi(s) = (=1, py(t) = (=1).

For both k[Dg] and Kg a two-dimensional simple module, which is unique up to isomorphism, is given by V = k@k equipped
with the left action p defined by

p(s)=(? ‘01), p(r)=(‘01 ?)
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and for k[Qg] it is given by V = k @ k equipped with the left action p defined by

p(s):(g ;31), p(t>=<‘1) ‘01).

Suppose that k contains a primitive 8-th root of unity w. Then by the above two lemmas we see that the polynomial

invariants of k[Dg], k[Qg], Kg are given by P,EE,)JS](X) = ,(‘Eés](x) =(x—1)%, P,g)(x) =(x—1)"%x+ 1) and

Putbg) ) = Pupgv () = (x — D>x + 1 (x = x4+ §) =2 — 2 + 26" — 1,
Putb1®) = Puggglv (@) = (x = Dx+ Dx = & +0)° =¥ + 25 — 2 — 1,

3
PO =Pev = [[ &= (D" [[a-o®") =2 -2 +2x* — 26 +1.
p.q=0,1 =0

Since the polynomials P,%S] %), P,E%()zs] %), P,((? (x) are mutually distinct, we conclude that the Hopf algebras k[Dg], k[Qs], Kg

are not mutually monoidally Morita equivalent by Theorem 2.6.

5.2. The Hopf algebra A},

Suzuki introduced a family of cosemisimple Hopf algebras of finite dimension parameterized by v, A, N, n, where
v,A = £1l,and N > 1and n > 2 are integers. This family includes not only the Kac-Paljutkin algebra Kg, but also
Hopf algebras which can be regarded as a generalization of Kg. In this subsection we compute the polynomial invariants
for Suzuki’s Hopf algebras.

Let us recall the definition of Suzuki’s Hopf algebras A,‘i,ﬁ [12]. Let k be a field of ch(k) # 2, which contains a primitive
4nN-th root of unity, and let C be the 2 x 2-matrix coalgebra over k. By definition C has a basis {X11, X12, X21, X22} which
satisfies the equation A(X;) = Xiy ® Xq; + Xix ® Xy and e(Xj;) = §;. Since C is a coalgebra, the tensor algebra 7 (C) of C has
a bialgebra structure in a natural way. Let I be the coideal of 7 (C) defined by

I=kOG —X0) + kX = X5)+ Y kXXm),
i—jzl—m (mod 2)

and consider the quotient bialgebra B := 7 (C)/(I). We write x;; for the image of X;; under the natural projection 7 (C) — B.
We fix N > 1,n > 2 and v, A = %1, and use the following notations. For m > 1, we set

m m
m .__ | > mo..__ ¢
X11 = X11X22X11 ... o - s X2y = X0X11X22 .o .ot s
m m
— —
mo.__ mo._
X12 = X12X21X12 ... - s X271 = X21X12X21 -+ - . .. .
Here,

m m . .
—_— (X11X22) 2 if mis even,
X11X22X11 + v v v v« = m—1 . .

(x11x22) 2 x17 ifmisodd,

and the other notation has the same meaning as that, too. Let ],‘\;ﬁ be the following subspace of B:

ﬁﬁ = "(X%I;] + Vx?zv =D+ k() — x25) + R(=Ax15 + x31)-

Since the subspace ]y is a coideal of B, we obtain the quotient bialgebra A}, := B/(Jy»). This bialgebra A}, becomes a
4nN-dimensional cosemisimple Hopf algebra over k. For the image of x; under the natural projection 7 : B —> Am we
write x;;, again. Then A,”\,)}, is equipped with the basis

(X150 XXz | T<S<2N,0<t <n-—1}, (5.1)
and the Hopf algebra structure is given by

Alxy) =X @ x1j + X @ Xj £(xy) =85, SCxy) =x3" .
So, the following equations hold:

A =X @ X+ X ® xgp (m=>1,i,j=1,2).
Thus, fors, t > Owiths+t > 1,

A1 X5) = X1 Xz2 ® X11 X2 + X2 X01 ® %31 X126

A(X5X51) = X1 Xz2 ® X12 X1 + X Xa1 ® Xy X1y
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Furthermore,
XPNTREES L (s, t are even),
S06xL) = xZ]: z;z::zxziz (s %s odd, and t is‘ even),
(sis even, and t is odd),
xgzzN DEEDFSyE (s, t are odd), 53)
XNTREES L (s, t are even), .
S0, xL) = x%: z;z::leiz (s ?s odd, and t is‘ even),
Xy5 X1, (siseven,andtisodd),
XENTDEIE L (s, t are odd).

For eachi, j =1, 2, the square xizj is in the center of A}, and the following equations hold in A}

2 2 2 2 0
Xiy = X33, X1y = Xy1, XiiXim —O(l—jzél—m(rrsod 2)). )
If nis even, then (Xx2x11) 2 = (X11X22) 2, (X21X12) 2 = A(X12X21) 2.
. n—1 n—1 n—1 n-1
If nis odd, then (x22X11) Z X2 = (X11X22) 2 X11, (X21X12) Z X21 = A(X12X21) 2 X12.

[ )
IN+1 +17
L4 X” = Xii, x, it1 = VXiit1.
o XY+ =
n n 2n
o (X11x)" = x“, (X21%12)" = A5,

If ch(k) t 2nN, then A"A is semisimple [12, Theorem 3.1(viii)]. Moreover, A . is isomorphic to the Kac-Paljutkin algebra
Kg, and the Hopf algebras A‘ﬁfr and A’Ln_ are isomorphic to the Hopf algebras A4n and By, respectively, that were introduced
by Masuoka [7,29].

Hereafter to the end of this subsection we suppose that N > 1,n > 2 and v, A = %1, and that k is a field of ch(k) # 2,
which contains a primitive 4nN-th root of unity. The following proposition was proved by Suzuki.

Proposition 5.5 ([12, Theorem 3.1]).
(1) The dimension of a simple subcoalgebra of A nis1or4.
(2) The order of the group G := G(Ay; ) is 4N, and G is explicitly given by
= (£ X8, BT £ VoxEH I 1 < s < N).
(3) There are exactly N(n — 1) simple subcoalgebras of dimension 4, and they are given by
Coe = kXTS5, + kxS0, + kxS xh + kx3ixs, O<s<N-1,1<t<n-1).

Therefore, the cosemisimple Hopf algebra A 1+ Is decomposed to the direct sum of simple subcoalgebras such as A EBgec kg ®

P o<s<v-1 Cy.
1<t<n-—-1

Since A“ is cosemisimple, a full set of non- 1somorph1c simple right A“—comodules can be obtained by taking a simple
right D- comodule for each simple subcoalgebra D of A - and by collecting them So, we have:

Corollary 5.6. The set {kg | g € G(Ay )} U {kxn)(22 + kx%;xzfl |0 <s<N-1,1 <t < n— 1}is a full set of non-
isomorphic (absolutely) simple right A,‘{,ﬁ -comodules, where the coactions of the comodules listed above are given by restrictions
of the coproduct A.

Let us explain on the braiding structures of ANn, which were determined by Suzuki [12]. Suppose that «, 8 € k satisfy

(@B)N = v, (@B~ = A.Then there is a braiding Oup ofA » such that the values oqg (x;;, Xu) (i, j, k, | = 1, 2) are given by
the list below

X Yy

X11 X12 X21 X22
X11 0 0 0 0
X12 0 o ,3 0
X21 0 ,3 o 0
Xy 0 0 0 0

In fact, by using the braiding conditions (B2) and (B3), described in Section 4, repeatedly, we see that the values of 0,4
on the basis (5.1) are given as follows: for integers s, s’, t,t’ > Owiths+t > 1lands' +t' > 1,andj =1, 2,



t s Lt
Oup (X11 X225 Xy Xajr1) =

t ot _
Oup (X2 X215 Xy Xoj1) =
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t s+(s+t)s

!
80,0817 ¢ (B) Bt (sand s are even),
t s+(s+t)s —t ’ . .
81,t0147,¢ (f) ot CHD (siseven, and s’ is odd),
m / . .
Sowdyc(@p) 2 oVt (sis odd, and s’ is even),
ts+(s+0)s' = (1+t4t') /
81087 ¢ (@) 2 BEDEFD  (sand s are odd),
t s+(s+t)s ! ,
81,0014y ¢ (e B) o sand s’ are even),
t s+(s+t)s —t ’ . .
80,8147 ¢ (B) prE+n sis even, and s’ is odd),

r/s+(s+t)s’—t’ /
—_ t+1)t
Siedye@p) 2 B
s+ (s+t)s’ —(14t+t')

80,[’8]",[(0[,3)72 Ol(r+l)([/+])

(
(
(
(

sand s’ are odd),

where the indices of x and § are treated as modulo 2.
above braidings o4, for y, & € k which satisfy y? = &2, y?N = 1 there is a braiding 7,
of A,‘i,)\z such that the values t,¢ (x;;, Xx) (i, j, k, | = 1, 2) are given by the list below, where x;; and x;; correspond to a row and

When n = 2, in addition to the

a column, respectively.

X )y
X11 X12 X21 X22

X1 Y 0 0 %‘

X12 0 0 0 0
X1 0 0 0 0
X202 )\.-‘;: 0 0 Y

sisodd, and s’ is even),

713

We see also that the values of 7,¢ on the basis (5.1) are given as follows: for integers s, s’, t,t" > 0 withs +t > 1and

s+t '>1andj =1,2,

s .t St _
Tyg (X11X22’X51j’X2.j/+1) =

ss’ i+i i+i /
Sny” ()72 (VAE) 7z (t and t’ are even),
ss’ s (t+1)t Jr(t 1)/
Sr1y” (A6) 7 (7/)»%“)
104 + ) s(t -1 t(t -1
Sy E (vE) * (y28) %

st S _
Tye (X2 X271 Xslj/Xz,j/+1) =0,

(t— 1)(r+1) s(t -1 D=1 | (t=1s
+ 3

Sy TEE) (vE) (yA8)

where the indices of x and § are treated as modulo 2.

Theorem 5.7 ([12, Proposition 3.10]). If n > 3, then the braidings of Am are given by

{owp | &, B €k, (@f) = v,

and if n = 2, then they are given by
{oup | &, B €k, (@B) =,

@B~ =1},

@B =MU{relv.Eck,y’ =8 y™N =1).

From (4.1), (5.2) and (5.3) we have the following lemma.

Lemma 5.8. (1) For o, B € k sati

Maﬂ(xsantz) =1 (01/3)

[—0—1(0[5)

MHap (X§2X2[1) =0.

(tis odd, and t’ is even),
(t is even, and t’ is odd),

(t and t’" are odd),

sfying (@B)N = v, (@B™")" = A, the Drinfel'd element i,z of the braided Hopf algebra
(A,”\,ﬁ, oqp) is given as follows: for all integers s, t > Owiths 4+t > 1,

=2 g2 g2 )
P foct (s is even),

2 .
—t st—t (t+l) (5 is Odd),

(2) For v, & € ksatisfying y* = &2, y* = 1, the Drinfel'd element 1,¢ of the braided Hopf algebra (A}, T,¢) is given as
follows: for all integers s, t > O withs +t > 1,

2
—s2_2st—t2 A b

2
—s2—2st—t2 A (H%

y (sand t are even),
21
Eorly = y_sz_zst_[z)»[T (t is odd, and s is even),
M}/E( 11X22) = 252, L+ . .
y A3 (t is even, and s is odd),
Y

Myt (Xquz[l) =0.

(sand t are odd),
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By using Lemma 5.8, we know the braided dimensions of the simple right Am—comodules.

Lemma 5.9. (1) Let ., B be elements in k satisfying («B)N = v and (af~1)" = A.
(i) For an element g€ G(A,”V’;) the character x, € Am of the simple right A,“\,,ﬁ-comodule kg is given by x; = g, and the
braided dimension dim Oup kg with respect to the braiding o, is given by

W
dim kg=1@P " (g =xi) £x; (1 =5 <N)),
——0ap vn( /3)725272sn7n2an2 (g — X%s]+lX22 1 + fX25+1X21 (1 <s< N))
(ii) For the simple right A}:-comodule Vy; = kx“)(22 + kx¥3x5, (0 <s < N—1,1 <t < n— 1), the character
Xst € ANn of Vi is given by xo = x2er1 x22 T+ xn X22v and the braided dimension dim cup Ve is given by @Uaﬂ Vg =

2
zvrat (Olﬂ) —2s2 25t —t

(2) Let y, & be elementsin k such that y?> = &2, y?N = 1.
(i) Foranelement g € G(AK,AZ) the braided dlmenswn dim_ kg is given by
—452 2s
dim, kg = y—4(s+1)2 i x;;j]: M (129 = N))
y @ =X K E VA e (1 <5 < N)).

(ii) For the simple rlghtA -comodule V51 = kx 1X22 + kxlzxm (0 < s < N — 1), the braided dimension dim% Vs is given
_ 2
by dim, Vi =2y @s+1)7,

Let @ € k be a primitive 4nN-th root of unity. The set I, = { (&, 8) € k x k | (@f)¥ = v, (@B~")" = A} can be
expressed as

_ Qi+ 152 +N @+ 15 /) "IN+ =0,1,...,N—1, }
= {@ izt noi
M CHIFNG ) neir 1Ny |T=0,1 0 N — 1,]
U[(a) ’ ) ]_0,1,...,n—1 ’

Similarly, the set ] = { (y, &) € k x k | y? = &2, y®" = 1} can be expressed as
J={@*, ") |i=0,1,...,2N = 1} U {(o¥, —0*) |i=0,1,...,2N = 1}.
We putA = ANn, and compute the polynomial P4+ v (x) for an absolutely simple right A-comodule V by using Lemmas 4.4

and 5.9.
Let g be an element of G(A). In the case wheng = xll + x?i if n > 3, then by Lemma 5.9(1)(i)

Prae@ = [] (x—(aﬁ)‘zs)—]_[(x @RI,

(a, )l
and if n = 2, then by Lemma 5.9(2)(i)

N-1
PA*,kg(X) — l_[ (X _ (aﬁ)—ZSZ) . l_[ (X _ y—452) — H(X o w—8(21‘+1;7v>5 1_[(X —]615
i=0

(a, B)ely (v.6)¢]
In the case when g = x35"" x5 ' & Vx5 x7 !, if n > 3, then by Lemma 5.9(1)(i)

PA*,kg(X) = 1_[ (X — v”(aﬁ)*ZS 725n—n2an2)

(. B)€lyy,

-1
209 1=v 12 .
H(Xz — s 2it )(_1)7”)11 (nis odd),

250y 1= 1-2 .
]_[(x — &R ()27 )2 (0> 4is even),

and if n = 2, then by Lemma 5.9(2)(i)

262 _ 4 _ 5
PA*,kg(X) = 1_[ (X _ (0!/3) 2s5°—4s 40(4) A 1_[ (X —y 4(s+1) )\)
@ Pel .

N—1
_ H(X_ —4(s+1)22i+ 15 “)( 1) )4 l—[(x —16i(s+1)2)\)4_

For the simple right A-comodule V; = kxn)(22 + kxu)(21 (0<s<N-—-1,1<t <n— 1), the polynomial P4« v, (X) is
given as follows. If n > 3, then by Lemma 5.9(1)(ii),
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Prve®@ = [] x—via@p ")

(a,p)elyy
= 2941 2(piy A1
1—[ H(X2 2D Qi+ 5") 2Nt @+530) (¢t is odd)
i=0 j=0
Py 2910 120 _Ne2(gia A=1
1—[ H(X — st RiH T -NE Q)+ 251 )2 (t is even),
i=0 j=0

and if n = 2, then by Lemma 5.9(2)(ii),

o2 95 _ 2

Py, = [] x=—va@p)™ > J] x—y &)
(o, B)ely (v.&)¢l
N i 1—=v 2 Nt . 2
H(X4 — 8@ EH DTNy H(Xz — o SistD?y2.
i=0 i=0

In the case when N is odd and v = +, if A and n satisfy the condition
(A) A=—1,0r
(B) A =1,and nis odd,

then the Hopf algebra Am is self-dual (see Corollary A.6 in the next section). Therefore, by using Proposition 4.5 we have:

Proposition 5.10. Let N > 1 be an odd integer and w € k a primitive 4nN-th root of unity. Suppose that A and n satisfy the
above condition (A) or (B). Then

is2 i 2 1-2 .
(X _ w—8ms )4n(x2 _ a)—4m(25+1) (_1) 2”‘)2" (n is Odd),
s=0 i=0
N—1N—1 . .
. ;. n .
P;r)A (x) = l_[ (X — @ BTy (x — 8INT (1) 2 )4 (n > 4is even),
Nn s=0 i=0
N—-1N—-1 ‘2 ‘2 5
H(X_ w*]GIS )16(x+w7815 )8(X+C()71615 )8 (n — 2)’
s=0 i=0
N—1 5 N gy

5 -
l—[ 1—[ H(Xz _ w—4m(2s+1)2—2N(2r—1)2(2j+*2;1))

2
p f(ﬁ)x x) =
Nn

where €(n) = 0if nis even, and e(n) = 1if nis odd.

From the above proposition the polynomial invariants of the Kac-Paljutkin algebra Kg = ATZ_ are computed, again.

5.3. The group Hopf algebra k[Gn,]

If Nisodd,n > 2,and A = +1, then Am is isomorphic to the group algebra of the finite group

G=(htiw|?=h"=1,w"=h""ZN tw=w"t, ht = th, hw = wh)
as an algebra (see the next Appendix A.1). The order of G is 4nN. If (n, A) = (even, 1) or (n, A) = (odd, —1), then the group
G is isomorphic to the direct product Dy, x Con. If (n, A) = (even, —1) or (n, ) = (odd, 1), then G is isomorphic to the
semidirect product of H := (w, h | h*¥ = 1, w" = A", wh = hw) and C,, where the action of C; = (t) on H is given by
t-w:=w"'andt-h:= h.In particular, when N = 1, the group G is the dihedral group of order 4n.

We shall determine the universal R-matrices of the group Hopf algebra k[G], and calculate the polynomial invariants of

it in the case when (n, A) = (even, —1) or (n, A) = (odd, 1). In this case, G coincides with the group

Gvn=(h,t,w|t>? =h"N =1, w" =h", tw = w't, ht = th, hw = wh).

Lemma 5.11. Let N be an odd integer, and n > 2 be an integer.

(1) If n = 3, then the finite group Gy, has a unique maximal commutative normal subgroup, which is given by H = (h, w).

(2) If n = 2, then the finite group Gy, has exactly three maximal commutative normal subgroups, which are given by
Hy = (h, w), H, = (h, t) and H3 = (h, tw).
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Proof. We set G = Gy It is clear that H (=H;) is a commutative and normal subgroup of G, and it is not hard to show
that H is maximal between commutative subgroups. Hence H is a maximal commutative normal subgroup of G. In the case
when n = 2 we see that H, and H3 are also commutative and normal subgroups of G, and maximal between commutative
subgroups.

We show that the converse is true.

(1) Let K be a maximal commutative normal subgroup K of G = Gpy,. Suppose that K ¢ H. Then K N (G — H) # &.
So, if we take an element tw'W € KN (G—H) (0 < i < n,0 < j < N), then wtw'H)w™ = tw 2N ¢ K;
that is, tw'W e K implies that h7w=+%t = (tw™?W)~! e K. Since K is commutative, we have the equation
w? = h w2t twih = twh -h w2t = w2 = w22 = W2+ — 2N This is a contradiction since n > 3.
Thus K C H. This implies that K = H from maximality of K.

Let K be a maximal commutative normal subgroup K of G = Gy,. Then (h) C K holds from maximality of K since K (h) is
a commutative and normal subgroup of G. If K C Hy, then K = H; since H; is a maximal commutative normal subgroup
of G. So, we suppose that K ¢ Hy. Then tw'W € K for somei, j(i=0,1,j=0,1,...,N — 1).Since (h) C K, we have
tw' € K.Ifi = 0,thent € K, and hence H, C K. By maximality of H,, we see that K = H,. By the same argument, we
see that, ifi = 1, then K = Hs. Thus there is no maximal commutative normal subgroup of G except for Hy, H, H3. O

—
N
—

In what follows, we assume that the characteristic ch(k) does not divide 2nN. To determine the universal R-matrices of
k[H], we use the basis consisting of the primitive idempotents of k[H].

Lemma 5.12. Let N > 1 be an odd integer, and n > 2 be an integer. Let H be the commutative group of order 2nN defined by
= (h,w | *N =1, w" = h", hw = wh), and w be a primitive 4nN-th root of unity in k. For i, k € Z, we set

1 n—12N—1 i ) ]
— —2Nj(k+2i)—2nkl 1
Ei= o Z > o wh' € k[H].
j=0 I=0

Then{Ey |i=0,1,...,n—1,k=0,1,...,2N — 1} is the set of primitive idempotents of k[H], and the following equations
hold: foralli,j, k,1 € Z

Eitnk = Ei, Ei-Nk+2n = Eik, (5.4)

(2N) ¢(2n) (2N) ¢(2n)
EikE]’ - 8kl 6k+n21 142j J’ - 5 8/{-:21 H—Z]Elk’ (5'5)

where

sm 1 (k=1(mod m))
10 (kI (mod m))

for m = 2N or m = 2n. Furthermore, the coproduct A, the counit e, and the antipode S of the group Hopf algebra k[H] are given
as follows:

A(Eik) = Z Z Eap ® EbQ7 (56)

0<p,q<2N—-1 0<a,b<n—-1
p+q=k (mod 2N) a+b+7_k_2p+q =i (mod n)

€(Ei) = 8i,00k,0, (5.7)
S(Ei) = E_i . (5.8)

Proof. Eqgs. (5.4) and (5.7) are obtained immediately. For integers i and k, let Xjk be the group homomorphism from H to k
defined by yy(w) = w®*+2) 5. (h) = ©?™. Then the set {xi | i =0, 1, —1,k=0,1,...,2N — 1} consists of all

irreducible characters of H. Eqgs. (5.5), (5.6) and (5.8) follow from w/h! bemg wrltten aswh' = Z ZZN 1 NiQith+2nklg,
which comes from the orthogonality of characters. O

Lemma 5.13. Let N > 1 be an odd integer, and n > 2 be an integer. Let H be the commutative group of order 2nN defined in
Lemma 5.12, and w € k be a primitive 4nN-th root of unity. Then any universal R-matrix R of k[H] is given by

n—12N—1
R = § : § : vklezJN(ZlJrk)(21+l)+2n(qkl+2pjk+2ru)E'_k ® Eﬂ (5'9)
i,j=0 k,I=0

forsomev € {£1},a € {0,1,...,n—1}andp,q,r € {0, 1, ..., N — 1} such that pn, rn are multiples of N, where {E;} is the
set of primitive idempotents of k[H] defined in Lemma 5.12. Conversely, R given above by (5.9) is a universal R-matrix of k[H].

Proof. Let R be an element of k[H] ® k[H], and write R in the form

n—1 2N—1

Z Z 1I< ® E][ R'k [S k)

i,j=0 k,I=0
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We treat the indices i and j of R};‘ as modulo n; therefore Rﬂ‘ has a meaning for all integers i and j. For0 < m < 4N — 1, we
define §(m) by

O0O=<m=<2N-1),
5(”‘):{1 (2N <m < 4N — 1).

Then we have

n—1 2N-1
(A ®id)(R) = Z Z Rja]+b+Na<p+q),p+q—2N5(p+q)Eap ® Epg ® Ej,
j,a,b=01,p,q=0
n—1 2N-1
RisRy3 = Z Z R’ R;'Eqp ® Epg ® Ej.
j,a,b=01,p,q=0

Hence (A ® id)(R) = Ri3R,3 if and only if

a-+b-+N8(p+q),p+q—2N3(p+q) __ pappbq
Rﬂ = Rj, Rﬂ (5.10)

forallj,a,b=0,1,...,n—1andl,p,q=0,1,...,2N — 1. Similarly, (id ® A)(R) = Ri3R;> if and only if

Re b N5 40).p40-2N5 1) = RogRap (5.11)
fori,a,b=0,1,...,n—1andk,p,q=0,1,...,2N — 1, and also we have (¢ ® id)(R) = (id ® €)(R) = 1 if and only if

RY = Rpy =1 (5.12)
forj=0,1,...,n—1and[=0, 1, ..., 2N — 1. Thus Ris a universal R-matrix of k[H] if and only if Egs. (5.10)-(5.12) hold.
From the Eqgs. (5.10) and (5.11), R?;‘ can be expressed in the form

le _ (Rm)kl(R )jk(RlO II(Rl() Ij

I
Since (R)Y)" = R3? = RY? = 1and (R9))" = R% = R)y = 1by (5.10), we see that R} and R} can be written as

daN

RY =w Ry =™ (0<ab<n-1). (5.13)

By using Eqs. (5.10) and (5.11), repeatedly, we have
(Rg%)ZN (RO})ZN_ZR% — Rg%RO 2N—1 — RNO (R w4aNz,
i . i

Therefore w®N = w*N+4" must be required for some 0 < p < N — 1 such that pn is a multiple of N. From equation

(R9H2V = %N’ e may set (R9!)? = w*N+4n (0 < g < N — 1), and hence

RS} = Lo?Nt2m, (5.14)
By using Eq. (5.10), repeatedly, we have (RI))N = Ri% = (Ri)*N = w8V So, RIS can be expressed as
R}g — BaN+4m (5.15)

for some 0 < r < N — 1 such that rn is a multiple of N. From (5.13)-(5.15) we see that a universal R-matrix R of k[H] is
written in the form

n—12N—1
— Z Z Rﬁ{Eik ® Ej], lek _ vkleGN(21+k)(2]+l)+2n(qkl+2pjk+2nj) (516)
i,j=0 k,1=0
forsomev € {£1},a € {0,1,...,n—1}andp,q,r € {0, 1, ... — 1} such that pn, rn are multiples of N.

Conversely, it is not hard to check that R € k[H] ® k[H] Wthh is given by the form above is a universal R-matrix of
k[H]. O

By use of Lemmas 5.1 and 5.13 one can determine the universal R-matrices of k[Gyy].

Proposition 5.14. Let N > 1 be an odd integer, and n > 2 be an integer. Let w be a primitive 4nN-th root of unity in k, and
{Eir} be the set of primitive idempotent of k[H] defined in Lemma 5.12. Then for any v € {+1},a € {0,1,...,n — 1},q €
{0,1,...,N—1},

n—12N-1
Raqv — Z Z l)kleaN(21+k)(2j+l)+2qklnEik ® Ej( (517)
Jj=0 k,I=0

i,j=0 k,I=
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is a universal R-matrix of the group Hopf algebra k[Gyy,]. Furthermore,

® Ryq is a universal R-matrix of the group Hopf algebra k[(h)] if and only if a = 0, and
e if n > 3, then any universal R-matrix is given by the above form; therefore, the number of universal R-matrices of k[Gny] is
2nN.

Proof. Let R be a universal R-matrix of k[H], where H is the subgroup of Gy, defined in Lemma 5.13, and write it in the form
(5.16). By using Eyt = tE_;_y x we have

n—12N—1 n—12N—1
AP -R=) Y RNEx ®tE.  R-AM) =) Y R|\tEx ® tEy.
i,j=0 k,I=0 i,j=0 k,I=0
Hence R is a universal R-matrix of k[Gy,] if and only if R:}:;f’lk = R]'f‘ forall i, j, k, I. Therefore, we have

R:jl:ﬁ,lk — R]';( wZn(—2p(2]+l)k+2r(kj+ll+k1)) —

Considering the equations in RH.S. for (i, j, k, ) = (1,0,0, 1) and (i, ], k, ) = (0, 0, 1, 1), we see that R is a universal
R-matrix of k[Gy,] if and only if 0*P" = @*™ = 1. This condition is equivalent to both p and r being multiples of N. It follows
from0 <p,r <N-—1thatp=r=0. O

Proposition 5.15. Let N > 1 be an odd integer, and let w be a primitive 8N-th root of unity in a field k whose characteristic
does not divide 2N. Then the number of universal R-matrices of the group Hopf algebra k[Gy-] is 8N, and they are given by the
list below.

e Universal R-matrices of k[{h)]:

2N—1
Ry = Z o' ME, QF (d=0,1,...,2N — 1),
k,1=0

where E = 5 S i o=,
e Universal R-matrices of k[H:], where H; = (h, w):

2N—1
Rigy = Z Z YKl 2N Qi QD +HakE, o Ei (@=0,1,...,N—1,v==%1),
i,j=0,1 k,I=0
where Ej, = i =01 lei’(;l(_])ijw—ﬂ\ljk—dejhl.
e Universal R-matrices of k[H,], where H, = (h, t):
2N—1 o
R" .= RhlLl — Z Z (=1 * e, @ By (d=0,1,...,2N — 1), (5.18)
1j=0,1 k,I=0

where Ej, = ﬁ 0.1 Z%ﬁo—l(_l)ﬁwf%ltjhl.
e Universal R-matrices of k[Hs], where H3 = (h, tw):
2N—-1 o
RY =Roed = 3 > (1o E @ Fy (d=0,1,...,2N — 1), (5.19)
i,j=0,1 k,I=0
where By = 75 3o | S (=)o~ (tw) R,

Proof. By Proposition 5.14, it is sufficient to determine the universal R-matrices of k[Gy;] which come from that of k[H;]
or k[Hs]. By Lemma 5.2, it follows from H; = C, x Cyy fori = 2, 3 that a universal R-matrix of k[H;] is given by

m—1 n—1
R!;[[Ilris,-] — Z Z(_-l)(p1+rl<)]w2(skl+qtl)Eik ® Ej,
ij=0k,I=0

wherep,r € {0,1},q € {O,N},s € {0,1,...,2N — 1}.
Let us consider the case wheni = 2 andR = RZ%Z]. We set Rif = (— 1)/ 24+ Then, by using Eyw = wEi;yx, we
have

AP (w) R =R A(w) = Ry =Ry foralli,j kI
— (_1)70*1)Pl{71(ﬂi+rl()w72lqk —1 foralli,j. kI
< (0,4, =(0,0,0) or(p,g,r) = (O,N, 1).
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Thus R,’,f,g';?] is a universal R-matrix of k[Gy-] if and only if (p, q, r) = (0, 0, 0) or (p, g, 1) = (0, N, 1). It is easily proved that

Rgggﬁl is a universal R-matrix of k[(h)], and Rg,[ﬁzsl is not. In a similar manner, it is shown that a universal R-matrix R’;([,Zﬂ of

k[Hs] is a universal R-matrix of k[G] if and only if (p, q,r) = (0,0, 0), (O, N, 1), and R',;gi?] is that of k[(h)] if and only if

(p,q,r) =(0,0,0). O
Lemma 5.16. Let N > 1 be an odd integer, and n > 2 be an integer.

(1) The Drinfel’'d element u,q, associated to Rqq, in Proposition 5.14 is given by

n—12N—-1

_ k, —2aN(Qi+k)?—2nqk?
Ugqy = E E Vv w ¢ ) a Ei,

i=0 k=0
where {Ey} is the set of primitive idempotents of k[H] defined in Lemma 5.12.

(2) In the case when n = 2, for each i = 1, 2 the Drinfel'd element ufj) associated to Rff) given by (5.18) and (5.19) is given by

) 2N—1 5
ug) — } :w—4dk E,
k=0

where By = 5 30 w4 L
Proof. The proof follows from direct computations. O
Let w € k be a primitive 4nN-th root of unity. Then a full set of non-isomorphic simple left k[Gy,]-modules is given by
Vi 1,j=0,1,k=0,2,...,2N =2} U {Vy | k=0,1,...,2N —1,j=1,2,...,n — 1,j = k(mod 2)},
where the action y;j, of K[Gn,] on Vi = k is given by

2kn

i ; w niseven),
X ® = (=1, ) = (=1, m®=me( :

(nis odd), (5.20)

and the left action pj, of K[Gn,] on Vj, = k @ k is given by

0 1 a)ZjN 0 a)zkn 0
P (t) = <1 0) » pik(w) = ( 0 w—sz) ; pi(h) = ( 0 o) (5:21)

For each universal R-matrix R of k[Gy,], the braided dimensions of the simple left k[Gy,]-modules Vi, and Vj, are given
as follows.

Forn > 2,
—2ngk? i n 2 i2
diI‘l‘lR e = a)' . . (nis even), dimR ij — zvkw—ank —2Ngj* (5.22)
agy V/(_])a]w—2nq(/+k) (n is Odd), aqv
Forn =2,
. . —4dk? . . —4dK2
d'ng” Vi = dlng) Viie = w4 dlngnV]k = dlmejz> Vik = 204, (5.23)

Combining the results in Proposition 5.14, Proposition 5.15 and Egs. (5.22), (5.23), we have the following.

Proposition 5.17. Let N > 1 be an odd integer, and n > 2 be an integer, and consider the group
Gwn=(ht,w|t?=0" =1, w"=h", tw = w™'t, ht = th, hw = wh).

Let w be a primitive 4nN-th root of unity in a field k whose characteristic does not divide 2nN. Then the polynomial invariants of
the group Hopf algebra k[Gy,] are given by the following.

Pt Nf](x _ w—an52)4n(X2 _ w—4nq(23+1)2)2n (nis odd),
<t
P,ﬁEéNn](x) = H ]_[(x — 7 8nasT)8n (n > 4is even),
i
(x — o 1005) 32 (n=2),

0

«
Il
=

£~
Il
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N-1 2 n—1N-1 ) )
l_[ l_[ H(Xz — 4R 4Nae=1)?) )
s=0 t=1 a=0 q=0
n—24¢(n)
P(z) B N-1—73 — n—1N-1 " ,
K[Gnn ](x) = « (x — @ 8(nas”+Nat?)y2 (n>3),
s=0 t=1 a=0 gq=0
N—-1N—-1 ) 5
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where €(n) = 0if niseven, and e(n) = 1if nis odd.

Proof. First, we consider the case when n > 3. By Proposition 5.14, any universal R-matrix of k[Gy,] coincides with exactly
oneof Ryg, (@ =0,1,...,n—=1,g=0,1,...,N—1,v ==%1).

Suppose that n (>4) is even. Then, by (5.22), the polynomial invariant P,(‘[é ](x) is given by

1 N-1 N—-1N-1 N—1N-1
(1) —ans 2n __ —ans
Pl = [T [T Puswrna0 = T TT e~ = [T~
i,j=0 s=0 i,j=0 s=0 q=0 s=0 q=0

By the same lemma, since Py(cy,1.v;, (%) is given by Pjcy,1.v; 0 = [Too [Tozp [T,—sq® — v kgy=20k* +Na) for the simple
left k[Gyn]-module Vj,, we have

n -2
N-1 3 -1
() _
PGy ®) = ( [ [ PetGunt.var1.201- (X)> (l_[ H K(GNn].Var Zs(x))
s=0 t=1 s=0 t=1
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_ l_[ (P — o~ 4@ +Na@e=1)y l_[ (X — ¢ 80> +Nar))2.
s=0 t=1a=0 q=0 s=0 t=1 a=0 q=0

By a quite similar consideration, we calculate the polynomial invariants of k[Gy,] in the case when n (>3) is odd.
Next, we consider the case when n = 2 Then, by Proposition 5.15, any universal R-matrix of k[Gy>] coincides with

exactly one of Ryq, (a = 0, 1 q=20,1, —1,v==1), R(]) R(z) (d=0,1,...,2N — 1). Thus, by (5.22) and (5.23),
the polynomial invariant P, k[GN 1(x) is given by

N=1 /N-1 2N—1 N—1N=1

(1) 202974 —4d(25)%2 1605732

Pl = TT TT([Tor om0t Tl —omy) = [ [T
d=0

i,j=0,1 s=0 s=0 gq=

Similarly, by Proposition 5.15 and Eqgs. (5.22), (5.23), we have

N-1,1 N—1 2N—1

2 2 —4aN—8q(2s+1)2 —4d(25+1)%2

Pl = [T(TT[Tee = orrseset’y T o o'y,
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s=0 “a=0 q=0
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s=0 gq=0

For an odd integer N > 1 and an integer n > 2, we set
A AdT if n is odd,
[O 1 cm]AY  ifniseven.

We see immediately that, if n is odd, then PX::,: x) = ,%Nn] (x) for d = 1, 2. So, our polynomial invariants do not detect the

difference between the representation categories of Ay, and k[Gy,]. However, for an even integer n we have:

Corollary 5.18. Let N > 1 be an odd integer, and n > 2 be an even integer. Let w be a primitive 4nN-th root of unity in a field
k whose characteristic does not divide 2nN. Then two Hopf algebras An, and k[Gy,] are not monoidally Morita equivalent.
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Proof. First,let us consider the case whenn > 3,and compare me (x) and P,(jém 1 (x). By Proposition 5.10, we see that o N is a

root of the polynomial Pglzvl (x) since n is even. On the other hand, by Proposition 5.17, an arbitrary root of P,ﬁ%();Nn] (x) is written

(2) N

in the form w?* for some integer k. If P/gil)n (%) = Pyig,, ) (X), then P,ﬁ%();Nn] (x) has to possess ™" as a root. Then ™ = w?* for

some k; that is, N 4+ 2k = 0 (mod 4nN). This leads to a contradiction such that N is even. So, Pf(\il (x) # P,E%ém](x), and, by
Theorem 2.6, 4, M and gjc,,|M are not equivalent as k-linear monoidal categories.

Next, let us consider the case whenn = 2, and compare Pé:l)z

of the polynomial PA}VL (x). However, by Proposition 5.17, an arbitrary root of P,ﬂ();m] (x) is written in the form w'®* for some

(x) and P,(‘Eém] (x). By Proposition 5.10, we see that —1is aroot

integer k. By a similar argument to that above, we see that —1 = »*" is not a root of P,ﬂ();m 1(x). Thus P,i;,)z (x) # P,(Jém 1),
and hence, by Theorem 2.6, 4,,M and gc,,]M are not equivalent as k-linear monoidal categories. O

Example 5.19. For a non-negative integer h, @, denotes the h-th cyclotomic polynomial. Then, by using Maple12 software,
we see that the polynomial invariants of Hopf algebras k[Gy;] and Ay, for N = 1, 3,5 and n = 2, 3, 4 are given as in the
following table.

1 2 1 2

A P () P (%) A Py () P (x)

k[Gp] ®7? DyD; D] k[Gs3] 24 4572 gy 54 g 162 4 51254 51259527 b9 27

Ay (15;1645116 ¢8¢zz¢iz Ass P Ps Py Py P30 P15 P10 Ps5” P P3P, P

k[Gs,] ¢>3§;‘¢£° " ¢§2¢§¢§¢§¢%2¢§2 k[G14] o3 PLDIDE DS

Az P 0P 03 DL, DDl Di 010! A 2

k[Gs2] @%jgdéigs ¢§O¢ég¢éz<1;2¢§7q>f k[Gs4] 54160 03,040 PP 07D, 00 D0

144 5 144 4 1 1

As» P Ps P, P, Py P10 Ps P P, Py Asq >t @2‘8451‘g<1>§2d>f°

k[G13] k[qu] (DS (pS d>24d>24(p'8(p'8<1)54<p54

A13 ¢§3(p118 ¢5¢;¢2¢’? A54 (135128¢$88 40 20q>180¢516d>818¢436 2 1
30 P20 P16 P4

k[Gs3] 12 g5 36 gy 30 gy 90 9527 9 27

n 00PN DY PP

We note that the representation rings of Ay, and k[Gy,] are isomorphic as rings with x-structure (for details see
Proposition A.3 in the next section). Thus the pair of Hopf algebras Ay, and k[Gy,] gives an example of their representation
rings being isomorphic, though their representation categories are not.
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Appendix. The representation ring and self-duality of A,':,':

In this Appendix, in the case when N > 1 is odd, by analyzing the algebraic structure of Aﬁ,;\ we introduce a “convenient”
basis ol’A,‘Vﬁ.,A to compute the braidings o, 4 givenin Section 5, and determine the structure of the representation ring of it. As an
application, we determine when A,ﬁ is self-dual. As a further application, we show that, if n is even, then the representation

ring of A,J\j;r is non-commutative. This means that the dual Hopf algebra ofAﬁ,;\ has no quasitriangular structure. These results
have already been shown in [29] in the case when N = 1.
Throughout this section we assume that N > 1is an odd integer, n > 2 is an integer, and A = +£1.

A.1. The algebra structure of A}

First of all, we determine the algebra structure of the Hopf algebra A,J\jnA This was done by Masuoka [7] for the case of
N = 1 (see also [29]). Let G be the finite group presented by

G=(ht,w|t2=h" =1, w" = kTN ty = w='t, ht = th, hw = wh). (A1)

Then there is an algebra isomorphism ¢ : k[G] —> A" such that
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p(h) =3, — X3y, (A2)
p(t) = x); + x5, (A.3)
p(w) = X?[]\FIXZZ - X§77]X12~ (A4)

Thus Ay, is isomorphic to k[Gy;,] as algebras. Set N = 2m + 1, and consider the following elements in A;nl:

h=x2 =%, t=x+x,, w=x"Tx — &V xp,.
If ch(k) # 2, then the following relations hold:

r—1
o t2=hN =1, w" = h"+ TNty = wt, ht = th, hw = wh.

—m(N+1) 4 pm(N+1)+1 —m(N+1) _pm(N+1)+1
® Xy = % , X12 = %t-
o 2N RN gD
hN 41 mN —1
oA = wt, |, =— t,
. 2 2
N HN—1 N hN+1
Xy = 3 wt, Xyy = 2 t.
N N
IN-1 1+h N—1 an-1_ -1 4
N 1 X2 = W, Xp M1 =Xy = —o—w
—1+hN N +1
IN-1 IN-1 IN-1 -1
X1 X12 = 5 w, Xy X11 = X22X(4 = TLU .

In particular, w™" = x2) " 'x11 — X2y 'xa1.
Proposition A.1. Let G be the finite group given in (A.1). For the group algebra k[G] over k of ch(k) # 2, we define algebra

maps A : k[G] ® k[G] —> Kk[G], ¢ : k|G] —> k and an anti-algebra map S : k[G] —> k[G] as follows:

Ah)y=h®h, A(t) = Nwt @ egt +t ® egt, Aw)=wew+w ! ®ew,
ehy=1, =1, ew =1,
Shy=h"", S@t)=(eg—ew)t, Sw)=-ew ' +ew,

where ey = #, e = % Then the algebra isomorphism ¢ : k[G] —> Aﬁnk is a Hopf algebra isomorphism.

A.2. The representation ring of Ay

Via the algebra isomorphism ¢ given in Appendix A.1, one can determine the structure of the representation ring of Am

Let us recall the definition of the representation ring of a semisimple Hopf algebra, which is a natural extension of that
of a finite group [30,31]. Let A be a semisimple Hopf algebra of finite dimension over a field k. By JR(A) we denote the set of
isomorphism classes of finite-dimensional left A-modules, and for a finite-dimensional left A-module V we denote by [V]
the isomorphism class of V. Then $R(A) has a semiring structure induced by [V] + [W] = [V & W] and [V][W] = [V @ W].
Also, R(A) has the unit element, which is given by [k], where the left A-module action of k is due to the counit . Let Rep(A)
denote the Grothendieck group constructed from the enveloping group of fR(A) as an abelian semigroup. Then the semiring
structure of R(A) uniquely determines a ring structure of Rep(A). Furthermore, the ring Rep(A) has an anti-homomorphism
of rings * : Rep(A) — Rep(A), which induced from the antipode S. Explicitly, this anti-homomorphism = is defined
by [V] — [V*] for a finite-dimensional left A-module V. We call the ring Rep(A) with * the representation ring of A. In
general, x : Rep(A) —> Rep(A) is not an involution, and the representation ring Rep(A) is not commutative. However, if
the Hopf algebra A possesses a universal R-matrix, then * is an involution, and for two left A-modules V and W an A-linear
isomorphismcy w : V® W — W ® V is defined by use of R, and hence we see that Rep(A) is commutative. We note
that Rep(A) is a free Z-module with finite rank, and a Z-basis of Rep(A) is given by the isomorphism classes of simple left
A-modules.

Lemma A.2. Let k be a field whose characteristic does not divide 2nN, and suppose that there is a primitive 4nN-th root of unity
in k. For integers i, j and an even integer k let ;. be the one-dimensional representation of the algebra Ax, = Kk[Gyy] given by
(5.20), and for integers j, k with j = k (mod 2) let pj be the two-dimensional representation of the algebra Ax, = k[Gy,] given
by (5.21). We set €(n) = 0if nis even, and e(n) = 1if nis odd. Then as representations of the Hopf algebra An, the following
hold fori,j, k,i,j, k' € Z.

o (i) [p2ntjk] = Loj] = Lo—j] for j = k (mod 2), [pnyjk] = [on—jk] for n+j =k (mod 2),

(i1) [pok] = [xook @ X10k] for k = 0 (mod 2), [puk] = [X01,k—eny D X11,k—e(m] for k = n (mod 2).
e On representations of tensor products

(iii) [xijk ® xrywl = [Xiti j+7.k+k' ], Where k, k' are even,

(iv) [xik ® oyl = Loy @ Xkl = [onj+ir ki +emyjl for k =0, j' = k' (mod 2),
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V) [ojk ® pyi] = [Pj4j k+ie ® Pj—jt ki1 for j =k, j =K (mod 2).
e On contragredient representations X;k and pj’;

(i) [xji] = [Xi,—j.—«] for k = 0 (mod 2),

(vii) [p] = [pj,—«] for j = k (mod 2).

Proof. (i) By definition, [ 02,4kl = [pj«] and [o_; k] = [pj] are obtained immediately. By using these equations we have
[on+ik] = [P—@+i.k] = [o2n—n+) ] = [on—jikl-

(ii) Let {eq, e} be the standard basis of Vo, = k & k. Then the subspaces k(e; + e;) and k(e; — e;) are pgr-invariant, and
k(e; + e2) = Voor and k(eq — ey) = Vygr as submodules of Vji. This implies that [pox] = [xook @ x10k]. Similarly, the
subspaces k(e; + e;) and k(e; — e;) of Vy are also ppg-invariant, and

Vitk (niseven),

) Vou (nis even),
ke +e) = { Vitk-1 (nisodd),

Vor,k—1  (nis odd), and k(e —ey) = {

as submodaules of V. This proves that [on] = [X01,k—em) @ X11,k—em)]-

(lll) This follows from Xijk ® Xk = Xi+i j+i k+k -

(iv) By using the coproduct A given in Proposition A.1, we see that (x;x ® pyi)(t), (xijk ® py)(w), (xijx @ pyr)(h) are
represented by the matrices

(_1)i+k/j 0 1 wZ(n_H—j)N 0 , w2(k+k/+€(n)j)n 10
1 0) 0 2w 0 1)

respectively. Let {e;, e;} be the standard basis of k2. Then by considering the matrix presentation of y; ® Pjk With

respect to the basis {e;, (—1)" 7e,}, we see that [ ® pii] = [Onji/ kik'+ey-
Similarly, we see that, if n or j is even, then (o ® xii) (£), (Oy & Xij) (W), (pyr & xik) (h) are represented by the
matrices

(0 1 W WIN 0 K +empn (10
1 0)° 0 @ 2N |0 0o 1)’

respectively, and, if n and j are odd, then they are represented by the matrices

1 0 2N 2N 0 L2k (10
=20 HON 0 ’ 0 W2 W+ON | 0o 1)

respectively. So, in the case when n or j is even, by changing basis from {e;, e;} to {e1, (—1)e,} we see that oy @ xijk] =
[Pnj+7’ k+k +emj), and in the case when n and j are odd, by changing basis from {ey, e} to {ez, (—1)'w?™ *)Ne;} we have
the same equation, [pj ® Xijk] = [onj1i kk+5] = LOnjair ke +emyi]-

Let {e, e,} and {e}, €} be the bases of Vj and Vj, such that the matrix representations of p; and py with respect to
the bases are given by (5.21), respectively. Then the action of pj ® oy on Vix ® Vjy is given by

(v

—

e3_ o ®e5 (if ¥’ is even),

t-e, Qe = PN e
e [wz( DWNe,  ®ey , (ifK is odd),

1—a; 1=by . .
WX EVTIHEDTN @ e (if K is even),

w-e, e, = ) 1-by
e {J“””WU MNe, @€,  (if K is odd),

h- e ® e; — wz(kHd)nea ® e;}
fora, b = 1, 2. Therefore, we see that [pj ® pjw] = [Pj+j k+k @ Pj—j k+k'] Dy considering the matrix presentation of
pik ® pyi with respect to the basis {e; ® €}, e, @€}, e1® €, e, @€} or {e; @€}, w* " MNe; ®e), e, ®€), W "INe; @6}
according to the case whether K is even or odd. A
(vi) Since x5 () = (=1, x5 (w) = (=17, x5 (h) = o 247 we have x3, = xi_j—t.
(vii) Let {ey, e, } be the standard basis of Vx = k@®k. Then with respect to the dual basis {e], €5} of {e, e,}, the contragredient

wfzkn 0 A A * 0 1 "
0 ,—2kn ,and, if k is even, then pjk(t) =17 o ,,ojk(w) =
0

2N 0 . . . 0 _o 2N N W2N . .
( 0 wsz>, and, if k is odd, then pj,((t) = (7(”21'” 0 ) , pjk(w) = ( 0 w,sz). Thus in the case when k is

even, by considering the matrix presentation of ,0;,; with respect to the basis {e}, e7}, we see that [p;,‘{] = [0j,—«]. In the

representation pj’z is represented as follows: pj’,‘{(h) = (

case when k is odd, by considering the matrix presentation of pj’,; with respect to the basis {e7, —wN e}, we have the
same result: [pj’;] =[pj—]. O

From the above lemma, we see that the representation ring of Ay, is described as in the following proposition. In the case
when N = 1, this result has already proved by [7, Proposition 3.9].
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Proposition A.3. Let k be a field whose characteristic does not divide 2nN, and suppose that there is a primitive 4nN-th root of
unity in k.

(1) If nis even, then the representation rings of An, and k[Gy,] are isomorphic as rings with x-structure, and both of them

are isomorphic to the commutative ring generated by a, b, ¢, X1, ..., X,_1 Subject to the commutativity relations and the
following relations:
a?=p=c=1, (A.5)
ax;=x (i=1,2,...,n—=1), (A6)
bxi=x,; (=1,2,...,n—1), (A7)
1—(=1l ..
XXi=c¢ 2 (X +xpy) (j=12,...,n—-1), (A8)

where the indices of x in the right-hand side of (A.8) are treated under the rules
X=1+a, X, =b(1+a), Xnpi =X (=1,2,...,n—1).

o _ =ni-1
The x-structure is given by a* = a,b* =b,c* =c ', xf =c 2z x(i=1,....,n—1).

(2) If nis odd, then the representation rings of An, and k[Gyy,] are isomorphic as rings with x-structure, and both of them are

1

isomorphic to the commutative ring generated by a, b, X1, . . ., x,_1 subject to the commutativity relations and the following
relations:
@ =pN =1, (A.9)
ax;=x (=1,...,n—1), (A.10)
bxi=x,_; (i=2,4,...,n—1), (A11)
X% =b"V (i +xiyg) Gj=1.....n—1) (A12)

where the indices of x in the right-hand side of (A.12) are treated under the rules
Xo=1+a, x, = b(1+a), Xnvi=X—i (=1,2,...,n—1).
The -structure is given by a* = a,b* = b™!, x¥ = pD' =1y, i=1,...,n—1).
Proof. Since the same results as in Lemma A.2 hold for the group Hopf algebra k[Gy,], it is sufficient to prove that the

representation ring of Ay, is isomorphic to the commutative ring (R which is presented by the given generators and relations
described in the proposition. By Proposition A.1, we may assume that Ay, = K[Gyy] as algebras.

(1) By using Lemma A.2, we see that the representation ring Rep(Ay,) is the commutative ring generated by a = [ x100], b =
[xo10], ¢ = [X002], Xi = [piey] (i = 1, ..., n— 1) with relations (A.5)-(A.8), where x;; and pj are the one-dimensional
and two-dimensional representations of the algebra Ay, = k[Gn,] given by (5.20) and (5.21), respectively, and € (i) is
equal to 0 or 1 according to whether i is even or odd, respectively. Furthermore, we have xqg = [xo00] + [X100] = 1+
a, xn = [xo10]+ [x110] = [X010] + [x010][X100] = B(1+ @), and x1; = [onti,emn] = [on—i.erri] = [Pn—i.e—i)] = Xn—i.
From the results argued so far, we see that there is a ring homomorphism f : R —> Rep(Any) such that

f(@) = [xi00l, f(b) = [xo10l, f(©) = [xo02], f&x) =lpie] (=1,2,...,n—=1).
The map f is bijective. The inverse map g : Rep(Ay,) —> R is the Z-linear map defined by

g(xid) = abct (i,j=0,1,k=0,2,...,2N —2),
k—e(j
glop) =c 5% (k=0,1,....2N—1,j=1,2,....n—1.j = k (mod 2)).
We conclude that f : R —> Rep(Ayy) is a ring isomorphism.
The x-structure in Rep(Ayy) is also determined by Parts (vi) and (vii) of Lemma A.2.

(2) In the same manner as above, it can be verified that there is a ring isomorphism f : R — Rep(An,) such that
f@ = [xi00l, f(b) = [xo010). f(*i) = [piey] i = 1,...,n — 1) preserving *-structures. Here, what we should take
account of is the following fact. If we set b = [x010], then [x02] = b?, and since n is odd, it follows from Parts (i) and
(iv) of Lemma A.2 that

[X002 ® Pn—io] = b’xn_; (iis odd),

bx; = [xo10llpicy] = [onti,14+¢i)] = [Pn—i14eiy] = {[Xooo ® poin] = Xn_i (iis even).

This is equivalent to bx; = x,_; for all even integersi. O

Remark A.4. In the case when (A, n) = (+, even) or (A, n) = (—, odd), as an algebra Am isisomorphic to the group algebra
k[G}, ], where

Gy = (ht,w | > =1 =1,w"=1,tw = w't, ht = th, hw = wh).
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In a similar manner as in the proofs of Lemma A.2 and Proposition A.3, one can determine the structure of Rep(A,J\jn+ ) in the
case when n is even, and the structure of Rep(Ay, ) in the case when n is odd. As a result, we see that in the case when n is
even the representation ring Rep(A,ﬁn+ ) is not commutative (see Lemma A.7 in Appendix A.3), whereas the representation
ring Rep(k[Gy,]) is commutative since k[G),] is cocommutative. Therefore, two representation rings of A,’VL: and k[G,,] are
not isomorphic. On the contrary, in the case when n is odd, we see that Rep(A;jn_ ) ®z k and Rep(k[Gy,]) ® k are isomorphic
as algebras with x-structure over k.

A.3. Self-duality of A

Based on Proposition A.1, we identify A;* with k[G] such as

.2 2
h=Xx1; — X2,

_ N N _ N-1 N
=Xy +Xp =Xy X2 + X5,

_ ,2N-1 N1, _ 2N—-1, _ ON-2. 2
W=Xp X2 =X X2 =X;p X2 — X Xare
-1 _ . ,2N-1 2N—1 _ ,2N-2 2 2N-1

Then w™" = xpX[;  —X12X3;  =X|; Xy — X3 X21-

Suppose that o, 8 € k satisfy ()Y = 1and (@f~")" = A, and consider the braiding oup Of Am defined in
Theorem 5.7. We set § := a8 and n := ™. By induction one can determine the values of 0,4 on the elements of the basis
{hiwkt? |0 <i<2N—1,0 <k <n—1,p =0, 1} of A* as follows. For i, j, k, | > 0,

oup(Hwk, Ww) = &20p~2H, (A13)
O.aﬂ(hiwk’ hiw’t) — (_1)i+k§2ijn—k(2171), (A14)
oup(Bwt, Hw') = (1Y g2l (A.15)
Ga/g(hiwkt, ftiwlt) — (_])i+j+k+l§.2ij+$n2kl—k—1a. (A.]G)

From here to the end of the paper, we suppose that k is a field whose characteristic does not divide 2nN, and that it
contains a primitive 4nN-th root of unity.

Theorem A.5. Let o, 8 be elements in k satisfying (¢ )N = 1and (¢ B~")" = A. Suppose that . = —1 or (A, n) = (1, odd).
Then the braiding o, of A,t,f is non-degenerate if and only if

(i) aB is a primitive N-th root of unity, and
(ii) B~ is a primitive n-th root of A.

Proof. To show the “if” part, we show the contraposition.
Suppose that a8 is not a primitive N-th root of unity. Then N > 3 is required since, if N = 1, then a8 = («B)" = 1. Let
& be a primitive N-th root of unity. Then « 8 is represented by af = £™ for some divisor m (# 1) of N. Hence, by setting

m' = N/m (< N), we have a,5(h*" , Fw') = (@f)*™ = 1 = 6,5(1, Hw'), 045", Ww't) = (=1)*™ (@f)*™ =1 =
0up(1, Ww't). Thus o,5(1 — h*™ @) = O foralla € A" Since 1 < 2m’ < 2N, we see that 1 — h®" # 0. Therefore, 0,4
degenerates as a bilinear form on Ay}

Next, suppose that @8~" is not a primitive n-th root of A. Then there isanr € Nsuchthat1 < r < n and
(@B~ = A.So, (@f~")"" = 1.By (A.13) and (A.14), we have o4 (w" ", Fw') = (@B~ )2 = 1, gpp(w" ", Ww't) =
(=) (@B~H~"N@=D — (—1)"" Thus, if n — r is even, then g,s(1 — w"™",a) = 0 foralla € A" It follows from
0 <n—r <n—1that1—w""" # 0,and hence 0,4 degenerates. If n —r is odd, then 4 (W —w"™ ", a) = 0foralla € Am
Since hN — w™" # 0, the braiding 04 also degenerates as a bilinear form.

We will show the “only if”" part. Let us consider the linear map F : Ay —> (A{")* defined by

2N—1 n—1 2N—1 n—1
F@ =YY oupla P YWw)* + D > oupa Fu'y(Wuw't®  (aeAf).
j=0 =0 j=0 [=0

Here, {(Hw'tP)* |0 <j <2N —1,0 <1 <n,p =0, 1} stands for the dual basis of the basis { Fw't? | 0 <j <2N —1,0 <
I<n,p=0,1} of Al* Setting & = af, n = af~", we have
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2N—-1n-1
F(hiwk) — Z Zé2yn_2’{l((wwl)* + (_])H_knk(hiwlt)*),
=0 1=0
2N—1 n—1 )
F(hlwkt) _ Z Z( 1)/+I$2un2kl [((h’w) + (= 1)l+’<é n_ka(h’w't)*).
j=0 I=0

In what follows, let & be a primitive N-th root of unity, and » be a primitive n-th root of A.
Since N is odd, for j, j’ € Z we have

2N—1 2N—1
_ 2N ifj=j (mod N), i 22—
2i(—j) _ _1)ig2i(—) —
Z § { otherwise, _20:( P =0.
i=
Furthermore, since n2("l’) = lifand only if | — I' = 0 (mod n) under the condition A = —1 or (A, n) = (1, odd), it follows
that, for I € Z,
&« 0 otherwise
2k(-1') _ )
Do = {n if1=I' (mod n). (A.17)
k=0
Therefore,
2N7‘1 nil U 3l ; o U ;! i’
Z Z nZkl 5721] F(hlwk) — an((h] wl )* + (hl +Nwl )*)’
i=0 k=0
2N71 nil i’ s ; i i’ U ! i’ ! i’
Z Z 7’72’(1 57211 F(hlwkt) — an(—l)j +1 n*l ((h] wl )* _ (hl +Nwl )*)
i=0 k=0

From these equations, we have

2N—1 n—1 2N—-1 n—-1
(hj’wl’)* LN <Z Z,ﬁkl’s 2ij’ F(h'w )+ (— 1)/ 4+ l Z Zn—Zkl’ —2ij’ F(h'w t))

=0 i=0
2N—1n—-1 2N—1 n—1
(h/ +N Z nzkl -2 F(hlwk (_1)j/+l/nl, Z Z nlecl/gfzij,F(hiwkt) .
~ 4nN i=0 k=0 i=0 k=0

In a similar manner, it can be proved that (W w' t)* and (W +Nw! t)* are linear combinations of {F (h'w*), F(hiwkt) | 0 <
i <2N—1,0 < k < n—1}.Thus F is surjective, and hence F is an isomorphism. This implies that o, is non-degenerate. O

Corollary A.6. Suppose that A = —1, or (A, n) = (1, odd). Then the Hopf algebraA is self-dual.

Proof. In general, for a finite-dimensional Hopf algebra A, any braiding ¢ : A ® A — k gives rise to the Hopf pairing
(,):AP®A — k defined by (x,y) = o (x, y) for x, y € A, and this pairing induces a Hopf algebramap F : A —> (A“P)*
defined by (F(a))(b) = a(a b) for a, b € A. Applying this fact to the Hopf algebra A“ and the braiding o,g, we have a
Hopf algebra map F : A — ((A“)COP)* Furthermore, an algebra isomorphism ¢ : A“ — A“ can be defined by
o) = x;; (1, = 1,2), and we see that it becomes a Hopf algebra isomorphism formA to (A )COp [12]. So, if ogp is
non-degenerate, then the composition ‘¢ o F : A“‘ A‘“\)* gives a Hopf algebra 1somorph15m

To complete the proof, by Theorem A.5, it sufflces to show that there are «, 8 such that o8 is a primitive N-th root of
unity, and 8~ is a primitive n-th root of . Let @ € k be a primitive 4nN-th root of unity. In the case when A = —1, we take
a=o""?" B =w*" N . Thenapf~' = »?" is a primitive n-th root of —1, and a8 = w*" is a primitive N-th root of unity. In
the case when A = 1 and nis odd, we take @ = ?"*?", 8 = w?" 2. Then ¢~ = w* and af = w*" are primitive n-th
and primitive N-th roots of unity, respectively. O

To show that A,ﬁ,f is not self-dual for any even integer n, we compare the groups of group-like elements of A,J\jn+ and
(A++)* The structure ofG(AK,ﬁ) forallN > 1,n > 2and A, v = £1 has already been determined by Suzuki [12]. In the case
when N is odd, and v = +, the group G(A}; ) is given as follows.

C, x Gy (niseven,or (n, 1) = (odd, 1)),

CAw) = {QN (nisodd, and A = —1). (A.18)

On the contrary, we have:

Lemma A.7. The structure of G((A“) ) is given as follows.
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e ~ ) SAsy (nis even), 4y ~ |G x G x Gy (niseven),
G((ANn ) ) = {CZ x Con (n is Odd), G((ANn ) ) I Y] (n is Odd),

where SAsy is the finite group of order 8N defined by SAgy = (b, ¢ | b*> = ¢*N =1, cb = bc?NT1).
Proof. Let w be a primitive 4nN-th root of unity.

(1) If n is even, then G((Ay,)*) = {xij | i,j = 0,1,k = 0,1,...,2N — 1}, where xz : A4~ —> Kk is the
algebra map defined by xi(t) = (=1, xj(w) = (—1), xj(h) = @' Since the product of G((A};,")*) is given
by XikXijk = Xiti+(+iok j+i k+k for allintegersi, i, j, i, k, k', and a := x100, b := X010, € := Xo01 satisfy the equations
a*> =b* =1,c® = a, cb = bc®M*1, we have G((A,1)*) = (b, c | b = ¢ = 1,cb = bc®M 1) = SAgy.
Ifnis odd, then G((Ay,")*) = {xa | i=0,1,k=0,1,...,2N — 1}, where xy : At —> Kk is the algebra map defined
by xi(t) = (= 1), xx(w) = (=D, xie(h) = »*™. Since the product of G((Aj;")*) is given by xixix = Xi+ ki for all
integers i, ', k, k', we see that G((A;,)*) = G, x Con.
If n is even, then we see that G((A,J\jn_)*) ={xxli,j=0,1k=0,2,...,2N — 2}, where y;j is the algebra map
defined in the same way as in the proof of Part (1). Since the product of G((A;jn_ )*) is given by Xik Xij = Xiti' j+i k-+K'»
and @ == X100, b := Xo10, € = Xo02 Satisfy the equations a> = b*> = 1, c¥ = 1, we see that G((A};, )*) = G x G x Cy.
If n is odd, then G((A:,'n_)*) ={xx |1 =0,1,k=0,2,...,2N — 2}, where yj, : Af\jn_ —> k is the algebra map
such that xu (1) = (—=1)', xu(w) = 1, xi(h) = w?™. The product of G((Ay; )*) is given by xiXik = Xi+i-+kk k+k» and
a:= x10and b := o satisfy the equations a> = 1, b* = a. Hence G((A},;)*) = Cav. O

1R

—
\S]
—

If a semisimple Hopf algebra A possesses a quasitriangular structure, the representation ring needs to be commutative.

In the case when N > 1 is odd, and n is even, by Lemma A.7 the representation ring of the dual Hopf algebra (A,J\jn+ *is not

commutative, and therefore there is no quasitriangular structure of (A;j;r *.By (A.18) and Lemma A.7 we have:

Proposition A.8. If n is even, then the Hopf algebra A,t,f is not self-dual.

Proof. The group G(A,tn*) = (G, x Gy is commutative by (A.18); meanwhile, G((A;n*)*) = SAgy is not by Lemma A.7. This
implies that G(A%,F) 2 G((A},D)"), and Al 2 (ALDH*. D

Corollary A.9. If nis even, then all braidings of A,t,f degenerate.

Proof. Assume that there is a non-degenerate braiding of A,‘;n* . Then there is a Hopf algebra isomorphism F : A:,';r —
(A%, H)%Py*. Let us consider the Hopf algebra isomorphism ¢ : Af-" — (A7) defined by ¢ (x;) = x;i (i, j = 1, 2). Then
the composition ‘¢ o F : Aj-" — (AJ.7)* is also a Hopf algebra isomorphism. This contradicts Proposition A.8. [
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