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a b s t r a c t

We introduce new polynomial invariants of a finite-dimensional semisimple and
cosemisimple Hopf algebra A over a field k by using the braiding structures of A. The
coefficients of polynomial invariants are integers if k is a finite Galois extension of
Q , and A is a scalar extension of some finite-dimensional semisimple Hopf algebra
over Q . Furthermore, we show that our polynomial invariants are indeed tensor
invariants of the representation category of A, and recognize the difference between the
representation category and the representation ring of A. Actually, by computing and
comparing polynomial invariants, we find new examples of pairs of Hopf algebras whose
representation rings are isomorphic, but whose representation categories are distinct.
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1. Introduction

In representation theory of Hopf algebras over a field k, it is a fundamental problem to know conditions for which the
representation categories of two given Hopf algebras are equivalent as (abstract) k-linear monoidal categories. A complete
answer for this is given by Schauenburg [1,2]. He introduced the notion of bi-Galois extensions, and showed that the
monoidal equivalences of comodule categories over Hopf algebras are classified by bi-Galois extensions of the base field
k. In the finite-dimensional case, they are also classified by cocycle deformations of Hopf algebras, which were introduced
by Doi [3]. Many researchers have been successful in determining the bi-Galois objects and the cocycle deformations for
various special families of Hopf algebras; see, for example, [4–7]. However, it is very difficult to do so in general.
In this paper we introduce a new family of invariants of a semisimple and cosemisimple Hopf algebra of finite dimension

by using the braiding structures of it, and show that our invariants are useful for examining whether the representation
categories of two such Hopf algebras are monoidal equivalent or not.
The basic idea of our method is to utilize quantum invariants of low-dimensional manifolds, which are topological

invariants defined by using quantum groups, namely, Hopf algebras with braiding structures. In contrast to most current
investigations on quantum invariants inwhich topological problems of low-dimensionalmanifolds are studied under a fixed
Hopf algebra, in this research, we fix a framed knot or link, and study the representation categories of the Hopf algebras. In
particular, in this paper, by use of quantum invariants of the unknot with (+1)-framing for a finite-dimensional semisimple
and cosemisimpleHopf algebraA over k, we introduce polynomials P (d)A (x) (d = 1, 2, . . .) as invariants ofA. For each positive
integer d the polynomial P (d)A (x) is defined by

P (d)A (x) =
t∏
i=1

∏
R:braidings of A

(
x−

dim RMi
dimMi

)
∈ k[x],
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where {M1, . . . ,Mt} is a full set of non-isomorphic absolutely simple left A-modules of dimension d (so, dimMi = d for all
i), and dim RMi ∈ k is the quantum invariant of the unknot with (+1)-framing and colored by Mi. In algebraic language,
dim RMi is the category-theoretic rank of Mi in the left rigid braided monoidal category (AM

f.d., cR) [8], where AMf.d. is the
monoidal category of finite-dimensional left A-modules and A-linear maps, and cR is the braiding of AMf.d. determined by R.
Provided that the polynomial P (d)A (x) is not a constant, all roots of P

(d)
A (x) are n-th roots of unity for somepositive integer n.

Furthermore, the polynomial has an integer property in the following sense. All coefficients of the polynomial are integers if
k is a finite Galois extension of the rational number fieldQ, and A is a scalar extension of some finite-dimensional semisimple
Hopf algebra over Q.
It is more interesting to note that our polynomial invariants are indeed invariants of the representation categories of

Hopf algebras, and recognize the difference between representation categories and representation rings of those algebras.
In general, if the representation categories of two finite-dimensional semisimple Hopf algebras are equivalent as monoidal
categories, then their representation rings are isomorphic. However, the converse is not true. For example, Tambara and
Yamagami [9], and also Masuoka [7], proved that if the characteristic of k is 0 or p > 2, then three non-commutative
and semisimple Hopf algebras k[D8], k[Q8], K8 of dimension 8 have the same representation ring, but their representation
categories are not mutually equivalent, where D8 is the dihedral group of order 8, Q8 is the quaternion group, and K8 is the
Kac–Paljutkin algebra [10,11]. This result is again confirmed by our polynomial invariants. Moreover, by computing and
comparing polynomial invariants we find new examples of pairs of Hopf algebras, whose representation rings are the same,
but whose representation categories are distinct.
This paper consists of six sections in total, and they are divided into two parts following this introduction: in Section 2

to Section 4 the definition and general properties of the polynomial invariants are discussed, and from Section 5 on, several
concrete examples are computed, and applications are described. Detailed contents are as follows. In Section 2we introduce
the definition of our polynomial invariants of a semisimple and cosemisimple Hopf algebra of finite dimension. It is proved
that the polynomial invariants are indeed invariants of the representation category of such a Hopf algebra. In Section 3 some
basic properties of polynomial invariants are studied. It is shown that the polynomial invariants have a nice property such as
the integer property. In Section 4, by dualizing the method of construction of our polynomial invariants, we state a formula
to compute them in terms of coalgebraic and comodule-categorical language. In Section 5 we demonstrate computations
of polynomial invariants for several Hopf algebras including the Hopf algebras A+λNn (N is odd, and λ = ±1), which were
introduced by Suzuki [12], and by comparing themwe re-prove the result of Tambara, Yamagami andMasuoka as previously
mentioned, and also find some pairs of Hopf algebras, whose representation rings are isomorphic, but whose representation
categories are distinct. In the final section, as an Appendix, we determine the structures of representation rings of the Hopf
algebras A+λNn , and determine when they are self-dual; this is used in Section 5.
Throughout this paper, we use the notation ⊗ instead of ⊗k , and denote by ch(k) the characteristic of the field k. For

a Hopf algebra A, denoted by ∆, ε and S are the coproduct, the counit, and the antipode of A, respectively, and G(A) is the
group consisting of the group-like elements in A, and Acop is the resulting Hopf algebra obtained from A by replacing∆ by the
opposite coproduct∆cop. We use the sigma notation, such as∆(x) =

∑
x(1) ⊗ x(2) for x ∈ A. We write AM for the k-linear

monoidal category whose objects are left A-modules and morphisms are left A-linear maps, and write AM for the k-linear
monoidal category whose objects are left A-comodules and morphisms are left A-colinear maps. For general references on
Hopf algebras we refer to Abe’s book [13], Montgomery’s book [14] and Sweedler’s book [15]. For general references on
monoidal categories we refer to MacLane’s book [16] and Joyal and Street’s paper [17].

2. Definition of polynomial invariants

In this sectionwe introduce a new family of invariants of a semisimple and cosemisimpleHopf algebra of finite dimension
over an arbitrary field. They are given by polynomials derived from the quasitriangular structures of the Hopf algebra.
By the method of construction of the polynomials they also become invariants under the monoidal equivalence of the
representation categories of Hopf algebras.
Let us recall the definition of a quasitriangular Hopf algebra [18]. Let A be a Hopf algebra over a field k, and R ∈ A⊗ A be

an invertible element. The pair (A, R) is said to be a quasitriangular Hopf algebra, and R is said to be a universal R-matrix of A,
if the following three conditions are satisfied:

• ∆cop(a) = R ·∆(a) · R−1 for all a ∈ A,
• (∆⊗ id)(R) = R13R23,
• (id⊗∆)(R) = R13R12.

Here∆cop = T ◦∆, T : A⊗ A −→ A⊗ A, T (a⊗ b) = b⊗ a, and Rij ∈ A⊗ A⊗ A is given by R12 = R⊗ 1, R23 = 1⊗ R, R13 =
(T ⊗ id)(R23) = (id⊗ T )(R12).
If R =

∑
i αi⊗ βi is a universal R-matrix of A, then the element u =

∑
i S(βi)αi of A is invertible, and it has the following

properties:

(i) S2(a) = uau−1 for all a ∈ A,
(ii) S(u) =

∑
i αiS(βi).
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The above elementu is called theDrinfel’d element associated toR. IfA is semisimple and cosemisimple of finite dimension,
then the Drinfel’d element u belongs to the center of A by property (i) and S2 = idA [19, Corollary 3.2(i)].
Let (A, R) be a quasitriangular Hopf algebra over a field k and u be the Drinfel’d element associated to R. For a finite-

dimensional left A-module M , we denote by dim RM the trace of the left action of u on M , and call it the R-dimension of
M . The R-dimension dim RM is a special case of the braided dimension of M in the left rigid braided monoidal category
(AMf.d., cR) (see Section 4 for the definition of braided dimensions).
To define polynomial invariants, we use the following result established by Etingof and Gelaki [19].

Theorem 2.1 (Etingof and Gelaki). Let A be a cosemisimple Hopf algebra of finite dimension over a field k. Then

(1) the set of universal R-matrices Braid(A) is finite,
(2) provided that A is semisimple, (dimM)1k 6= 0 for any absolutely simple left A-module M.

Remark 2.2. The proof of Part (1) was given in [19, Corollary 1.5]. In an extra case such as characteristic 0 or positive
characteristic with some additional assumptions, it was proved by Radford [20, Theorem 1]. The proof of Part (2) was given
in [19, Corollary 3.2(ii)]. The Etingof and Gelaki proof is based on Larson’s result [21, Theorem 2.8], which is the same as Part
(2) with the assumption S2 = idA.

Let A be a semisimple and cosemisimple Hopf algebra of finite dimension over a field k. For a finite-dimensional left
A-moduleM with (dimM)1k 6= 0, we have a polynomial

PA,M(x) :=
∏

R∈Braid(A)

(
x−

dim RM
dimM

)
∈ k[x].

Furthermore, for each positive integer d a polynomial P (d)A (x) is defined by

P (d)A (x) :=
t∏
i=1

PA,Mi(x) ∈ k[x],

where {M1, . . . ,Mt} is a full set of non-isomorphic absolutely simple left A-modules of dimension d. Here, if there is no
absolutely simple left A-module of dimension d, then we set P (d)A (x) = 1.

Example 2.3. Let G = Cm be the cyclic group of order m generated by g , and let k be a field whose characteristic does not
divide m. Suppose that k contains a primitive m-th root of unity ω. Then any universal R-matrix of the group Hopf algebra
k[Cm] is given by

Rd =
m−1∑
i,j=0

ωdijEi ⊗ Ej (d = 0, 1, . . . ,m− 1), (2.1)

where Ei = 1
m

∑m−1
j=0 ω

−ijg j (see [22] for example). LetMj = k be the (absolutely) simple left k[Cm]-module equipped with
the action χj(gp) = ωjp (p = 0, 1, . . . ,m− 1). For each d and i, then dimRdMj = ω

−dj2 since the Drinfel’d element ud of Rd
is given by ud =

∑m−1
i=0 ω

−di2Ei. Thus we have

P (1)k[Cm](x) =
m−1∏
d,j=0

(x− ω−dj
2
) =

m−1∏
j=0

(x
m

gcd(j2,m) − 1)gcd(j
2,m).

Two Hopf algebras A and B over k are said to be monoidally Morita equivalent if the monoidal categories AM and BM are
equivalent as k-linear monoidal categories.

Lemma 2.4. Let A and B be Hopf algebras of finite dimension over k. If a k-linear monoidal functor F : AM −→ BM is an
equivalence between monoidal categories, then dimM = dim F(M) for any finite-dimensional left A-module M.

Proof. For a left A-moduleM we have an A-module isomorphism

A⊗M0 −→ A⊗M, a⊗m 7−→
∑
a(1) ⊗ a(2)m,

where M0 stands for the trivial A-module with underlying vector space M . Thus if M is finite-dimensional, we have an
isomorphism

F(A)⊗ F(M) ∼= F(A⊗M) ∼= F(A⊗M0) ∼= F(A⊕ dimM) ∼= F(A)⊕ dimM .

This implies that dim F(M) = dimM . �
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Lemma 2.5. Let A and B be Hopf algebras of finite dimension over k. If a k-linear monoidal functor (F , φ, ω) : AM −→ BM is an
equivalence between monoidal categories, then there is a bijectionΦ : Braid(A) −→ Braid(B) such that for a finite-dimensional
left A-module M and a universal R-matrix R ∈ Braid(A),

dim RM = dimΦ(R)F(M).

Proof. Let (G, φ′, ω′) : BM −→ AM be a quasi-inverse of (F , φ, ω). Then there are k-linear monoidal natural
transformations ϕ : (F , φ, ω) ◦ (G, φ′, ω′) =⇒ 1BM and ψ : (G, φ

′, ω′) ◦ (F , φ, ω) =⇒ 1AM, where 1ν stands for the
identity functor on ν = AM, BM.
A universal R-matrix R =

∑
i αi⊗βi of A defines a braiding c = {cM,N : M⊗N −→ N⊗M}M,N∈AM consisting of A-linear

isomorphisms

cM,N(m⊗ n) =
∑
i

βin⊗ αim (m ∈ M, n ∈ N).

The braiding c gives rise to a braiding c ′ of BM, which consists of B-linear isomorphisms c ′P,Q : P⊗Q −→ Q⊗P (P,Q ∈ BM)
such that the following diagram commutes.

P ⊗ Q
c′P,Q

−−−−−−−−→ Q ⊗ P

ϕ(P)⊗ϕ(Q )

x xϕ(Q )⊗ϕ(P)
FG(P)⊗ FG(Q ) FG(Q )⊗ FG(P)

φG(P),G(Q )

y yφG(Q ),G(P)
F(G(P)⊗ G(Q ))

F(cG(P),G(Q ))
−−−−−−→ F(G(Q )⊗ G(P))

ThenΦ(R) := (T ◦c ′B,B)(1) is a universal R-matrix of B, where T : B⊗B −→ B⊗B is defined by T (a⊗b) = b⊗a (a, b ∈ B).
It is easy to see from the definition that the mapΦ : Braid(A) −→ Braid(B) defined as above is bijective.
LetM be a finite-dimensional left A-module, and eM and nM be the evaluation and coevaluation morphisms defined by

eM : M∗ ⊗M −→ k, eM(f ⊗m) = f (m) (f ∈ M∗,m ∈ M),

nM : k −→ M ⊗M∗, nM(1) =
∑
i

ei ⊗ e∗i (the canonical element).

Then eM ◦ cM,M∗ ◦nM = (dim RM)idk . So, wemay identify dim RM = eM ◦ cM,M∗ ◦nM . We set e
′

F(M) := ω
−1
◦F(eM)◦φM∗,M

and n′F(M) := φ−1M,M∗ ◦ F(nM) ◦ ω. Then (F(M
∗), e′F(M), n

′

F(M)) is a left dual for F(M). Since the k-linear monoidal functor
(F , φ, ω) becomes a braided monoidal functor from (AM, c) to (BM, c ′), it follows that

dimΦ(R)F(M) = e
′

F(M) ◦ c
′

F(M),F(M∗) ◦ n
′

F(M)

= ω−1 ◦ F(eM ◦ cM,M∗ ◦ nM) ◦ ω = (dim RM)ω
−1
◦ F(idk) ◦ ω = dim RM. �

Theorem 2.6. Let A and B be semisimple and cosemisimple Hopf algebras of finite dimension over k. If A and B are monoidally
Morita equivalent, then P (d)A (x) = P

(d)
B (x) for any positive integer d.

Proof. Let F : AM −→ BM be a k-linear monoidal functor which gives an equivalence of monoidal categories, and let us
consider the bijectionΦ : Braid(A) −→ Braid(B) given as in the proof of Lemma 2.4.
Let M be an absolutely simple left A-module. Then F(M) is also an absolutely simple left B-module, and by Lemmas 2.4

and 2.5 we have

PA,M(x) = PB,F(M)(x). (2.2)

Let {M1, . . . ,Mt} be a full set of non-isomorphic absolutely simple left A-modules of dimension d. Then
{F(M1), . . . , F(Mt)} is also a full set of non-isomorphic absolutely simple left B-modules of dimension d. Applying Eq. (2.2)
toM = Mi (i = 1, . . . , t), and taking the product of them, we have P

(d)
A (x) = P

(d)
B (x). �

Remark 2.7. Our polynomial invariants are useful only if a semisimple and cosemisimple Hopf algebra has a quasitriangular
structure. However, by considering the polynomial invariants of the Drinfel’d double of it we have monoidal invariants of
the original (arbitrary) semisimple Hopf algebra of finite dimension.
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3. Integer property of polynomial invariants

In this section we investigate basic properties of the polynomial invariants P (d)A (x) (d = 1, 2, . . .) defined in Section 2.
We prove that all coefficients of P (d)A (x) are integers if k is a finite Galois extension of Q, and A is a scalar extension of some
finite-dimensional semisimple Hopf algebra over Q.
First of all, we show that the coefficients of P (d)A (x) lie in the integral closure of the prime ring of the base field of A. To do

this we need the following lemma.

Lemma 3.1. Let (A, R) be a quasitriangular Hopf algebra over k and u be the Drinfel’d element associated to R. If A is semisimple
and cosemisimple, then u(dim A)

3
= 1.

Proof. Let us consider the subHopf algebras B = {(α ⊗ id)(R) | α ∈ A∗} and H = {(id ⊗ α)(R) | α ∈ A∗} of A. By [23,
Proposition 2], the Hopf algebra B is isomorphic to the Hopf algebra H∗cop. Let (D(H),R) be the Drinfel’d double of H .
By [23, Theorem 2], there is a homomorphism F : (D(H),R) −→ (A, R) of quasitriangular Hopf algebras. It follows that
the Drinfel’d element ũ of (D(H),R) satisfies F(ũ) = u. Since A is semisimple, the subHopf algebras H and H∗cop ∼= B are
also semisimple [24, Corollary 2.5]. Thus H is semisimple and cosemisimple. So, we have ũ(dimH)

3
= 1 by [25, Theorem

2.5 & Theorem 4.3], and u(dimH)
3
= 1. Since dim A is divided by dimH [23, Proposition 2], the equation u(dim A)

3
= 1 is

obtained. �

For a field K , let ZK denote the integral closure of the prime ring of K ; that is, if the characteristic of K is 0, then ZK is the
ring of algebraic integers in K , and if the characteristic of K is p > 0, then ZK is the algebraic closure of the prime field Fp
in K .

Lemma 3.2. Let (H, R) be a semisimple and cosemisimple quasitriangular Hopf algebra over a field K . If M is an absolutely simple
left H-module, then (by Theorem 2.1 (dimM)1K 6= 0 and,)(

dim RM
dimM

)(dimH)3
= 1.

In particular, dim RMdimM ∈ ZK .

Proof. The Drinfel’d element u of (H, R) belongs to the center of H since H is semisimple and cosemisimple. Thus the left
action uM : M −→ M of u is a left H-endomorphism. Since M is absolutely simple, uM is a scalar multiple of the identity

morphism, so it can be written as uM = ωM idM for some ωM ∈ K . Then by Lemma 3.1 we have dimM = Tr(u
(dimH)3
M ) =

ω
(dimH)3
M Tr(idM) = ω

(dimH)3
M dimM . Thus ω(dimH)

3

M = 1. This implies that ωM =
dim RM
dimM belongs to ZK . �

Form Lemma 3.2, we have the following immediately.

Proposition 3.3. Let H be a semisimple and cosemisimple Hopf algebra of finite dimension over a field K . Then for any absolutely
simple left H-module M, the coefficients of the polynomial PH,M(x) are in ZK . Therefore, P

(d)
H (x) ∈ ZK [x] for any positive integer d.

Now, we will examine relationship between polynomial invariants and Galois extensions of fields. Let K/k be a field
extension, and let Aut(K/k) denote the automorphism group of K/k. For a K -linear spaceM and σ ∈ Aut(K/k), a K -linear
space σM is defined as follows:
(i) σM = M as additive groups,
(ii) the action ? of K on σM is given by

c ?m := σ(c) ·m (c ∈ K ,m ∈ M), (3.1)

where · in the right-hand side stands for the original action of K onM .

For a K -linear map f : M −→ N and σ ∈ Aut(K/k), we have
f (c ?m) = f (σ (c) ·m) = σ(c) · f (m) = c ? f (m) (c ∈ K ,m ∈ M);

thus f can be regarded as a K -linear map from σM to σN . We denote by σ f the K -linear map f : σM −→ σN .
The monoidal category KM of K -linear spaces and K -linear maps has a canonical braiding, which is given by usual twist

maps. For an automorphism σ ∈ Aut(K/k), the functor
σ F : KM −→ KM, M 7−→ σM, f 7−→ σ f (3.2)

gives a K -linear braided monoidal functor. Since σ F ◦ τ F = στ F for all σ , τ ∈ Aut(K/k), the functor σ F : KM −→ KM gives
an isomorphism of K -linear braided monoidal categories. In general, a K -linear braided monoidal functor F : KM −→ KM
maps a Hopf algebra to a Hopf algebra. So, for a Hopf algebra H over K and an automorphism σ ∈ Aut(K/k), σH is also a
Hopf algebra over K . The Hopf algebra structure of σH is the same as that of H with the exception that the action of K on σH
is given by (3.1), and the counit εσH of σH is given by εσ H = σ−1 ◦ εH .
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Lemma 3.4. Let K/k be a field extension, and H be a Hopf algebra over K . Let R ∈ H⊗K H be a universal R-matrix of H, and
σ ∈ Aut(K/k). Then
(1) R is also a universal R-matrix of σH. We write σR for this universal R-matrix of σH.
(2) The Drinfel’d element of the quasitriangular Hopf algebra (σH, σR) coincides with the Drinfel’d element of (H, R).
(3) For a finite-dimensional left H-module M, we have dimσ R

σM = σ−1(dim RM).

Proof. Parts (1) and (2) follow from the definition. We show Part (3). Let u ∈ H be the Drinfel’d element of (H, R). By Part
(2), u is also the Drinfel’d element of (σH, σR). Let {ei}ni=1 be a basis ofM over K , and write u · ei =

∑n
j=1 ajiej (aji ∈ K). Then

u · ei =
∑n
j=1 σ

−1(aji) ? ej, and hence dimσ R
σM =

∑n
i=1 σ

−1(aii) = σ−1(
∑n
i=1 aii) = σ

−1(dim RM). �

For a field automorphism σ : K −→ K and a polynomial P(x) = c0+ c1x+ · · · + cmxm (ci ∈ K , i = 1, . . . ,m), we define
σ · P(x) ∈ K [x] by σ · P(x) := σ(c0)+ σ(c1)x+ · · · + σ(cm)xm.

Lemma 3.5. Let K/k be a field extension, and H be a semisimple and cosemisimple Hopf algebra over K of finite dimension.
If M is a finite-dimensional left H-module such that (dimM)1K 6= 0, then for an automorphism σ ∈ Aut(K/k) we have
σ−1 · PH,M(x) = PσH,σM(x).

Proof. Setting N = σM , by Lemma 3.4(3) we have

σ−1 · PH,M(x) =
∏

R∈Braid(H)

(
x−

σ−1(dim RM)
dimM

)
=

∏
R∈Braid(H)

(
x−

dimσ RN
dimN

)
=
(∗)
PσH,N(x).

Here, the last equation (∗) follows from the map Braid(H) −→ Braid(σH), R 7−→ σR being bijective by Lemma 3.4(1). �

Let A be a Hopf algebra over a field k, and K be an extension field of k. Then AK = A⊗ K becomes a Hopf algebra over K ,
and the automorphism group Aut(K/k) acts on AK as follows:

σ · (a⊗ c) = a⊗ σ(c) (σ ∈ Aut(K/k), a ∈ A, c ∈ K). (3.3)

We setH = AK . Then for each σ ∈ Aut(K/k) the left action onH given by (3.3) defines aHopf algebra isomorphism fromH to
σH , denoted by σ̃ : H −→ σH . Furthermore, we see that, if R is a universal R-matrix ofH , then σ̃ becomes a homomorphism
of quasitriangular Hopf algebras from (H, R) to (σH, σR). Thus Aut(K/k) acts on Braid(H) from the right by

R ∈ Braid(H) 7−→ (σ̃−1⊗K σ̃
−1)(σR) ∈ Braid(H).

Theorem 3.6. Let K/k be a finite Galois extension of fields, and A be a semisimple and cosemisimple Hopf algebra over k of finite
dimension. Then P (d)AK (x) ∈ (k ∩ ZK )[x] for each positive integer d.

Proof. First of all, let us check to see that the Hopf algebra H = AK is semisimple and cosemisimple. Since the Hopf algebra
A is semisimple, it is separable (see [14, Corollary 2.2.2]). Thus H is a semisimple Hopf algebra over K of finite dimension.
Applying the same argument to the dual Hopf algebra A∗, we see that H is a cosemisimple Hopf algebra over K . Eventually,
we see that H is semisimple and cosemisimple.
Let Irr(d)0 (H) denote the set of isomorphism classes [M] of absolutely simple left H-modules M of dimension d, and set

t = ]Irr(d)0 (H). If t = 0, then P
(d)
H (x) = 1, and hence P

(d)
H (x) ∈ (k ∩ ZK )[x].

Hereinafter, we consider the case when t > 0. For an automorphism σ ∈ Gal(K/k), the map

Irr(d)0 (H) −→ Irr(d)0 (
σH), [M] 7−→ [σM]

is bijective. Here, by Lemma 3.5 we have σ−1 ·P (d)H (x) = P
(d)
σH(x) = P

(d)
H (x), and we see that P

(d)
H (x) ∈ k[x]. On the other hand,

since P (d)H (x) ∈ ZK [x] by Proposition 3.3, it follows that P
(d)
H (x) ∈ (k ∩ ZK )[x]. �

As applications of the above theorem we have two corollaries.

Corollary 3.7. Let K be a finite Galois extension field of Q, and A be a semisimple Hopf algebra over Q of finite dimension. Then
P (d)AK (x) ∈ Z[x] for any positive integer d, where Z denotes the rational integral ring.

Proof. By [26], a finite-dimensional semisimple Hopf algebra over a field of characteristic 0 is cosemisimple. Thus the
semisimple Hopf algebra AK is cosemisimple. Since Q ∩ ZK = Z, by applying Theorem 3.6 we have P

(d)
AK (x) ∈ Z[x]. �

Corollary 3.8. Let Γ be a finite group, and K be a finite Galois extension field of Q. Then P (d)K [Γ ](x) ∈ Z[x] for any positive in-
teger d.

Proof. The group Hopf algebra K [Γ ] is isomorphic to the scalar extension of Q[Γ ] by K . Since a group algebra over a field
of characteristic 0 is semisimple, by Corollary 3.7 we have P (d)K [Γ ](x) ∈ Z[x] for any positive integer d. �
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4. Dual formulas for polynomial invariants

In this section we give a formula to compute the polynomial invariants for a self-dual Hopf algebra of finite dimension
in terms of the braidings of the dual Hopf algebra.
Let us recall the definition of a braiding of a Hopf algebra [3]. Let A be a Hopf algebra over a field k, and let σ : A⊗A −→ k

be ak-linearmap that is invertiblewith respect to the convolution product. The pair (A, σ ) is said to be a braidedHopf algebra,
and σ is said to be a braiding of A, if the following conditions are satisfied: for all x, y, z ∈ A

(B1)
∑
σ(x(1), y(1))x(2)y(2) =

∑
σ(x(2), y(2))y(1)x(1),

(B2) σ(xy, z) =
∑
σ(x, z(1))σ (y, z(2)),

(B3) σ(x, yz) =
∑
σ(x(1), z)σ (x(2), y).

It is easy to see that any braiding σ of A satisfies

(B4) σ(1A, x) = σ(x, 1A) = ε(x) for all x ∈ A.

Let (A, σ ) be a braided Hopf algebra over k. Then the braiding σ defines a braiding c of the monoidal category MA
consisting of rightA-comodules andA-colinearmaps as follows. For two rightA-comodulesV andW , a k-linear isomorphism
cV ,W : V ⊗W −→ W ⊗ V is defined by

cV ,W (v ⊗ w) =
∑

σ(v(1), w(1))w(0) ⊗ v(0) (v ∈ V , w ∈ W ),

where we use the notations ρV (v) =
∑
v(0) ⊗ v(1) and ρW (w) =

∑
w(0) ⊗w(1) for the given right coactions ρV and ρW of

V andW , respectively. From the axiom of braiding (B1)–(B3), we see that cV ,W is a right A-comodule isomorphism, and the
collection c = {cV ,W : V ⊗W −→ W ⊗ V }V ,W∈MA gives a braiding ofMA.
Let us consider the element in the braided Hopf algebra which plays the role of the Drinfel’d element in a quasitriangular

Hopf algebra.

Lemma 4.1 ([3, Theorem 1.3] or [27, 3.3.2]). Let (A, σ ) be a braided Hopf algebra over k, and define µ ∈ A∗ by

µ(a) =
∑

σ(a(2), S(a(1))), a ∈ A. (4.1)

Then µ is convolution-invertible, and the following equation holds for any element a ∈ A:

S2(a) =
∑

µ(a(1))µ−1(a(3))a(2).

The k-linear functional µ is called the (dual) Drinfel’d element of (A, σ ).

LetV = (C,⊗, I, a, r, l, c) be a left rigid braidedmonoidal category. For each object X ∈ C we choose a left dual X∗ with
an evaluation morphism eX : X∗ ⊗ X −→ I and a coevaluation morphism nX : I −→ X ⊗ X∗. Then for an endomorphism
f : X −→ X in C, the braided trace of f in V , denoted by Tr c f , is defined by the composition

I
nX
−−→ X ⊗ X∗

f⊗id
−−→ X ⊗ X∗

cX,X∗
−−→ X∗ ⊗ X

eX
−→ I.

In particular, the braided trace of the identity morphism idX is denoted by dim cX , and is called the braided dimension of
X in V .
Applying this to the braidedmonoidal category (MA, c) constructed from a braiding σ ∈ (A⊗A)∗, we have the following.

Lemma 4.2. Let (A, σ ) be a braided Hopf algebra over k, and c be the braiding of MA constructed from σ . Then for a finite-
dimensional right A-comodule V , the braided dimension dim cV is given by dim σV = µ(χV ), where µ is the Drinfel’d element
of (A, σ ), and χV is the character of the comodule V , which is defined by

χV :=

n∑
i=1

(v∗i ⊗ idC )(ρV (vi)) ∈ C

by use of dual bases {vi}ni=1 and {v
∗

i }
n
i=1.

Lemma 4.3. Let A be a Hopf algebra over k of finite dimension, and ι : A∗ ⊗ A∗ −→ (A ⊗ A)∗ be the canonical k-linear
isomorphism. Let σ be an element of (A⊗ A)∗ and set R := ι−1(σ ). Then

(1) σ is convolution-invertible if and only if R is invertible as an element of the algebra A∗ ⊗ A∗.
(2) σ is a braiding of A if and only if R is a universal R-matrix of the dual Hopf algebra A∗. In this case, the Drinfel’d element

µ ∈ A∗ of the quasitriangular Hopf algebra (A∗, R) is given by µ(a) =
∑
σ(a(2), S(a(1))) for all a ∈ A.

(3) For a finite-dimensional right A-comodule V , the equation dim RV = dim σV holds, where dim RV is the R-dimension of the
left A∗-module V with the action p · v :=

∑
p(v(1))v(0) (p ∈ A∗, v ∈ V ).

Let C be a coalgebra over a field k. A right C-comodule V is said to be absolutely simple if the right CK -comodule V K is
simple for an arbitrary field extension K/k. This condition is equivalent to V being absolutely simple as a left C∗-module.We
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note that, if a right C-comodule is simple, then it is automatically finite-dimensional (see [14, Corollary 5.1.2]). So, there is a
one-to-one correspondence between the absolutely simple right C-comodules and the absolutely simple left C∗-modules.
Let braid(A) denote the set of all braidings of a Hopf algebra A. Then by Part (2) of Lemma 4.3, the map braid(A) −→

Braid(A∗) defined by σ 7−→ ι−1(σ ) is bijective, and by Part (3) of the same lemma, the equation dim ι−1(σ )V = dim σV holds
for a finite-dimensional right A-comodule V . Hence we have the following:

Lemma 4.4. Let A be a semisimple and cosemisimple Hopf algebra over k of finite dimension.

(1) For an absolutely simple right A-comodule V ,

PA∗,V (x) =
∏

σ∈braid(A)

(
x−

dim σV
dim V

)
,

where in the left-hand side PA∗,V (x) is the polynomial for V regarded as an left A∗-module by usual manner.
(2) Let {V1, . . . , Vt} be a full set of non-isomorphic absolutely simple right A-comodules of dimension d. Then

P (d)A∗ (x) =
t∏
i=1

PA∗,Vi(x).

A Hopf algebra A over a field k of finite dimension is called self-dual if A is isomorphic to the dual Hopf algebra A∗ as a
Hopf algebra. Applying the above lemma to a self-dual Hopf algebra, we immediately obtain the following proposition.

Proposition 4.5. Let A be a semisimple and cosemisimple Hopf algebra over a field k of finite dimension. If A is self-dual, then
for a positive integer d

P (d)A (x) =
t∏
i=1

∏
σ∈braid(A)

(
x−

dim σVi
dim Vi

)
,

where {V1, . . . , Vt} is a full set of non-isomorphic absolutely simple right A-comodules of dimension d.

By using the above formula, we compute the self-dual Hopf algebras A+λNn introduced by Suzuki [12] in the next section.

5. Examples

In this sectionwe give several computational results of polynomial invariants of Hopf algebras. By comparing polynomial
invariants onemay find new examples of pairs of Hopf algebras such that their representation rings are isomorphic, but they
are not monoidally Morita equivalent.

5.1. Eight-dimensional non-commutative semisimple Hopf algebras

By Masuoka [11], it is known that there are exactly three types of eight-dimensional non-commutative semisimple
Hopf algebras over an algebraically closed field k of ch(k) 6= 2. They are k[D8], k[Q8] and K8, where D8 and Q8 are the
dihedral group of order 8 and the quaternion group, respectively, and K8 is the unique eight-dimensional semisimple Hopf
algebra which is non-commutative and non-cocommutative, which is called the Kac–Paljutkin algebra [10]. Tambara and
Yamagami [9] and also Masuoka [7] showed that their representation rings are isomorphic meanwhile their representation
categories are not. In this subsection we derive this result by using our polynomial invariants. Throughout this subsection,
we fix the following group presentation(s) of D8 and Q8:

D8 = 〈s, t | s4 = 1, t2 = 1, st = ts−1〉, Q8 = 〈s, t | s4 = 1, t2 = s2, st = ts−1〉.

Let us start by determining the universal R-matrices of the group Hopf algebras k[D8] and k[Q8]. For this the following
proposition is useful.

Lemma 5.1. Let G be a group, and k be a field. Then for a universal R-matrix R of k[G] there is a commutative and normal finite
subgroup H such that R ∈ k[H] ⊗ k[H].

Proof. We set A = k[G]. By [23, Proposition 2(a)], B = {(id ⊗ α)(R) | α ∈ A∗},H := {(α ⊗ id)(R) | α ∈ A∗} are finite-
dimensional subHopf algebras of A. Since, for each g ∈ G, kg is a subcoalgebra of A =

⊕
g∈G kg , by [15, Lemma 9.0.1(b)] the

subcoalgebra B is written as B =
⊕
g∈G B∩ kg . We set K := B∩ G. Then K is a subgroup of G, and B∩ kg 6= {0} if and only if

g ∈ K . Thus B =
⊕
g∈K B ∩ kg =

⊕
g∈K kg = k[K ]. Since B is finite-dimensional, K is a finite group. As a similar argument,

we see that there is a finite subgroup L of G satisfying H = k[L]. Since by [23, Proposition 2(c)] k[K ]∗cop ∼= k[L] as Hopf
algebras, L is commutative. Furthermore, L is a normal subgroup of G since Lg ⊂ gH , or equivalently g−1Lg ⊂ H = k[L]
by [23, Proposition 3]. Similarly, we see that K is a commutative and normal subgroup of G.
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At this point, R ∈ k[K ] ⊗ k[L] ⊂ k[LK ] ⊗ k[LK ] is verified. To complete the proof it is sufficient to show that LK is
a commutative and normal subgroup of G. Since L is normal, it follows immediately that LK is normal. To show that LK is
commutative, we write R in the form R =

∑
k∈K k ⊗ Xk (Xk ∈ k[L]). Since ∆cop(k′) · R = R · ∆(k′) for all k′ ∈ K , we have

Xk′kk′−1 = k
′Xkk′

−1 for all k, k′ ∈ K . Since K is commutative, this condition is equivalent to Xkk′ = k′Xk. It follows from
k[L] = H = Span{Xk | k ∈ K} that any element l ∈ L is represented by a k-linear combination of {Xk | k ∈ K}. Thus lk′ = k′l
holds. This means that LK is commutative. �

For a cyclic group the universal R-matrices of the group Hopf algebra are given by (2.1) in Example 2.3 in Section 2. For a
direct product of two cyclic groups the universal R-matrices of the group Hopf algebra are given as in the following lemma.
The lemma can be verified by use of the same method as that used in the proof of Lemma 5.13 given later.

Lemma 5.2. Let G be the direct product of the cyclic groups Cm = 〈g〉 and Cn = 〈h〉, and let ω be a primitive mn-th root of unity
in a field k whose characteristic does not divide mn. We set X(m, n) = {d ∈ {0, 1, . . . ,m − 1} | dn ≡ 0 (mod m)}. Then any
universal R-matrix of k[G] is given by the formula

Rk[G]pqrs :=

m−1∑
i,j=0

n−1∑
k,l=0

ωn(pij+rkj)+m(skl+qil)Eik ⊗ Ejl,

where p ∈ X(m,m), q ∈ X(n,m), r ∈ X(m, n), s ∈ X(n, n), and Eik = 1
mn

∑m−1
j=0

∑n−1
l=0 ω

−nij−mklg jhl.

By using Lemmas 5.1 and 5.2, one can determine that the quasitriangular structures of k[D8] and k[Q8] as described in
the following lemma [28].

Lemma 5.3. Let k be a field of ch(k) 6= 2 that contains a primitive 4-th root of unity ζ .
(1) The universal R-matrices of k[D8] are given by

Rk[D8]d :=
1
4

3∑
i,k=0

ζ−iksk ⊗ sdi (d = 0, 1, 2, 3),

Rk[D8]d+4 :=
1
4

1∑
i,j,k,l=0

(−1)−ij−klt is2k ⊗ t ls2(j+dl) (d = 0, 1),

Rk[D8]d+6 :=
1
4

1∑
i,j,k,l=0

(−1)−ij−kl(ts)is2k ⊗ (ts)ls2(j+dl) (d = 0, 1).

The Drinfel’d element uk[D8]d of Rk[D8]d is given by

uk[D8]d =



1 (d = 0, 4, 6),
1
2
(1+ ζ−1)+

1
2
(1+ ζ )s2 (d = 1),

s2 (d = 2, 5, 7),
1
2
(1+ ζ )+

1
2
(1+ ζ−1)s2 (d = 3).

(2) The universal R-matrices of k[Q8] are given by

Rk[Q8]d :=
1
4

3∑
i,k=0

ζ−iksk ⊗ sdi (d = 0, 1, 2, 3),

Rk[Q8]d+4 :=
1
4

3∑
i,k=0

ζ−iktk ⊗ t(2d+1)i (d = 0, 1),

Rk[Q8]d+6 :=
1
4

3∑
i,k=0

ζ−ik(ts)k ⊗ (ts)(2d+1)i (d = 0, 1).

The Drinfel’d element uk[Q8]d of Rk[Q8]d is given by

uk[Q8]d =



1 (d = 0),
1
2
(1+ ζ−1)+

1
2
(1+ ζ )s2 (d = 1, 4, 6),

s2 (d = 2),
1
2
(1+ ζ )+

1
2
(1+ ζ−1)s2 (d = 3, 5, 7).
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Proof. In the case of either k[D8] or k[Q8], the proof of the lemma can be done by the same method. So, we will determine
the universal R-matrices only in the case of k[Q8] (for k[D8] see also Proposition 5.15 given later).
It is easy to show that themaximal commutative and normal subgroups ofQ8 coincidewith one ofH1 = 〈s〉,H2 = 〈t〉 and

H3 = 〈ts〉. Therefore, by Lemma 5.1 any universal R-matrix of k[Q8] is that of k[Hi] for some i = 1, 2, 3. Let R be a universal
R-matrix of k[H1]. Then∆cop(t) · R = R ·∆(t) holds, and hence R is a universal R-matrix of k[Q8]. Similarly, we see that any
universal R-matrix of k[Hi] for i = 2, 3 satisfies∆cop(s) · R = R ·∆(s), and hence it is a universal R-matrix of k[Q8]. �

Next, we describe the quasitriangular structures of the Kac–Paljutkin algebra K8, which were determined by Suzuki [12].
As an algebra the Kac–Paljutkin algebra K8 coincides with the group algebra k[D8]. Let us consider the primitive orthogonal
idempotents e0 = 1+s2

2 , e1 = 1−s2
2 in K8 = k[D8]. Then the Hopf algebra structure of K8 is described as follows [7]:

∆(t) = t ⊗ e0t + st ⊗ e1t, ∆(s) = s⊗ e0s+ s−1 ⊗ e1s,
ε(t) = 1, ε(s) = 1,
S(t) = e0t + e1st, S(s) = e0s−1 + e1s.

We note that ∆(e0) = e0 ⊗ e0 + e1 ⊗ e1,∆(e1) = e0 ⊗ e1 + e1 ⊗ e0, ε(e0) = 1, ε(e1) = 0, S(e0) = e0, S(e1) = e1, and
therefore, ke0+ke1 is a subHopf algebra of K8 which is isomorphic to the group Hopf algebra k[C2]. Let ζ ∈ k be a primitive
4-th root of unity. Then

g :=
1
2
(1+ ζ )s+

1
2
(1− ζ )s−1, h :=

1
2
(1− ζ )s+

1
2
(1+ ζ )s−1

satisfy g2 = h2 = 1, and k[〈s〉] = k1+ kg + kh+ kgh holds. Moreover, since g and h are group-like, the subHopf algebra
k[〈s〉] of K8 is isomorphic to the group Hopf algebra k[C2 × C2].

Lemma 5.4. Let k be a field of ch(k) 6= 2 that contains a primitive 8-th root of unity ω. Then the universal R-matrices of K8 are
given as follows:

(i) universal R-matrices of k[〈g, h〉] ∼= k[C2 × C2]:

RK8pq :=
1
4

1∑
i,j,k,l=0

(−1)−(ij+kl)g ihk ⊗ gpj+(q+1)lhqj+pl (p, q ∈ {0, 1}),

(ii) minimal universal R-matrices of K8:

RK8l :=
1
8

∑
i,j,p,q,r,s=0,1

ω(2l+1)
1−(−1)i
2 ·

1−(−1)j
2 (−1)jp+ir+(j(i+1)+lj+r+s)(li+p+q)t igphq ⊗ t jg rhs (l = 0, 1, 2, 3).

The Drinfel’d elements uK8p,q and u
K8
l of R

K8
p,q and R

K8
l , respectively, are given by

uK8pq =
1
2

1∑
i,l=0

(−1)(i+p)(l+p)g ihl (p, q ∈ {0, 1}),

uK8l =
ω2l−1

2
(1− gh)+

1
2
(g + h) (l = 0, 1, 2, 3).

Proof. Since the universal R-matrix RK8pq of k[〈g, h〉] satisfies ∆cop(t) · R
K8
pq = R

K8
pq · ∆(t), we see immediately that R

K8
pq is a

universal R-matrix of K8. It can be also verified straightforwardly that R
K8
l is indeed a universal R-matrix of K8, although the

proof is tedious. Since K8 is isomorphic to the Suzuki Hopf algebra A+−12 (for example see [29]), by [12, Proposition 3.10(ii)]
the number of universal R-matrices of K8 is 8. Thus there is no universal R-matrix of K8 other than R

K8
pq (p, q ∈ {0, 1}) and

RK8l (l = 0, 1, 2, 3). �

Let k be a field of ch(k) 6= 2 that contains a primitive 4-th root of unity ζ . Then for any of the algebras k[D8], k[Q8], K8
the number of isomorphism classes of (absolutely) simple modules is 5. They consist of four one-dimensional modules and
one two-dimensional simplemodule. The one-dimensional modules of k[D8], k[Q8] and K8 are given by Vij = k (i, j = 0, 1)
equipped with the left actions ρij defined by

ρij(s) = (−1)i, ρij(t) = (−1)j.

For both k[D8] andK8 a two-dimensional simplemodule,which is unique up to isomorphism, is given byV = k⊕k equipped
with the left action ρ defined by

ρ(s) =
(
0 −1
1 0

)
, ρ(t) =

(
−1 0
0 1

)
,
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and for k[Q8] it is given by V = k ⊕ k equipped with the left action ρ defined by

ρ(s) =
(
ζ 0
0 ζ−1

)
, ρ(t) =

(
0 −1
1 0

)
.

Suppose that k contains a primitive 8-th root of unity ω. Then by the above two lemmas we see that the polynomial
invariants of k[D8], k[Q8], K8 are given by P

(1)
k[D8](x) = P

(1)
k[Q8](x) = (x− 1)

32, P (1)K8 (x) = (x− 1)
16(x+ 1)16, and

P (1)k[D8](x) = Pk[D8],V (x) = (x− 1)
3(x+ 1)3(x− ζ )(x+ ζ ) = x8 − 2x6 + 2x2 − 1,

P (2)k[D8](x) = Pk[Q8],V (x) = (x− 1)(x+ 1)(x− ζ )
3(x+ ζ )3 = x8 + 2x6 − 2x2 − 1,

P (2)K8 (x) = PK8,V (x) =
∏
p,q=0,1

(x− (−1)p) ·
3∏
l=0

(x− ω2l−1) = x8 − 2x6 + 2x4 − 2x2 + 1.

Since the polynomials P (2)k[D8](x), P
(2)
k[Q8](x), P

(2)
K8
(x) are mutually distinct, we conclude that the Hopf algebras k[D8], k[Q8], K8

are not mutually monoidally Morita equivalent by Theorem 2.6.

5.2. The Hopf algebra AνλNn

Suzuki introduced a family of cosemisimple Hopf algebras of finite dimension parameterized by ν, λ,N, n, where
ν, λ = ±1, and N ≥ 1 and n ≥ 2 are integers. This family includes not only the Kac–Paljutkin algebra K8, but also
Hopf algebras which can be regarded as a generalization of K8. In this subsection we compute the polynomial invariants
for Suzuki’s Hopf algebras.
Let us recall the definition of Suzuki’s Hopf algebras AνλNn [12]. Let k be a field of ch(k) 6= 2, which contains a primitive

4nN-th root of unity, and let C be the 2 × 2-matrix coalgebra over k. By definition C has a basis {X11, X12, X21, X22} which
satisfies the equation∆(Xij) = Xi1 ⊗ X1j + Xi2 ⊗ X2j and ε(Xij) = δij. Since C is a coalgebra, the tensor algebra T (C) of C has
a bialgebra structure in a natural way. Let I be the coideal of T (C) defined by

I = k(X211 − X
2
22)+ k(X212 − X

2
21)+

∑
i−j6≡l−m (mod 2)

k(XijXlm),

and consider the quotient bialgebra B := T (C)/〈I〉.Wewrite xij for the image of Xij under the natural projection T (C) −→ B.
We fix N ≥ 1, n ≥ 2 and ν, λ = ±1, and use the following notations. Form ≥ 1, we set

χm11 :=

m︷ ︸︸ ︷
x11x22x11 . . . . . . , χm22 :=

m︷ ︸︸ ︷
x22x11x22 . . . . . . ,

χm12 :=

m︷ ︸︸ ︷
x12x21x12 . . . . . . , χm21 :=

m︷ ︸︸ ︷
x21x12x21 . . . . . . .

Here,
m︷ ︸︸ ︷

x11x22x11 . . . . . . =

{
(x11x22)

m
2 ifm is even,

(x11x22)
m−1
2 x11 ifm is odd,

and the other notation has the same meaning as that, too. Let JνλNn be the following subspace of B:

JνλNn := k(x2N11 + νx
2N
12 − 1)+ k(χn11 − χ

n
22)+ k(−λχn12 + χ

n
21).

Since the subspace JνλNn is a coideal of B, we obtain the quotient bialgebra A
νλ
Nn := B/〈J

νλ
Nn 〉. This bialgebra A

νλ
Nn becomes a

4nN-dimensional cosemisimple Hopf algebra over k. For the image of xij under the natural projection π : B −→ AνλNn we
write xij, again. Then AνλNn is equipped with the basis

{xs11χ
t
22, x

s
12χ

t
21 | 1 ≤ s ≤ 2N, 0 ≤ t ≤ n− 1}, (5.1)

and the Hopf algebra structure is given by

∆(xij) = xi1 ⊗ x1j + xi2 ⊗ x2j, ε(xij) = δij, S(xij) = x2N−1ji .

So, the following equations hold:

∆(χmij ) = χ
m
i1 ⊗ χ

m
1j + χ

m
i2 ⊗ χ

m
2j (m ≥ 1, i, j = 1, 2).

Thus, for s, t ≥ 0 with s+ t ≥ 1,

∆(xs11χ
t
22) = x

s
11χ

t
22 ⊗ x

s
11χ

t
22 + x

s
12χ

t
21 ⊗ x

s
21χ

t
12,

∆(xs12χ
t
21) = x

s
11χ

t
22 ⊗ x

s
12χ

t
21 + x

s
12χ

t
21 ⊗ x

s
22χ

t
11.

(5.2)
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Furthermore,

S(xs11χ
t
22) =


x(2N−2)(t+s)+s11 χ t11 (s, t are even),

x(2N−2)(t+s)+s11 χ t22 (s is odd, and t is even),

x(2N−2)(t+s)+s11 χ t22 (s is even, and t is odd),

x(2N−2)(t+s)+s22 χ t11 (s, t are odd),

S(xs12χ
t
21) =


x(2N−2)(t+s)+s12 χ t21 (s, t are even),

x(2N−2)(t+s)+s21 χ t12 (s is odd, and t is even),

x(2N−2)(t+s)+s12 χ t12 (s is even, and t is odd),

x(2N−2)(t+s)+s12 χ t21 (s, t are odd).

(5.3)

For each i, j = 1, 2, the square x2ij is in the center of A
νλ
Nn, and the following equations hold in A

νλ
Nn.

• x211 = x
2
22, x

2
12 = x

2
21, xijxlm = 0 (i− j 6≡ l−m (mod 2)).

• If n is even, then (x22x11)
n
2 = (x11x22)

n
2 , (x21x12)

n
2 = λ(x12x21)

n
2 .

• If n is odd, then (x22x11)
n−1
2 x22 = (x11x22)

n−1
2 x11, (x21x12)

n−1
2 x21 = λ(x12x21)

n−1
2 x12.

• x2N+1ii = xii, x2N+1i i+1 = νxi i+1.
• x4N11 + x

4N
12 = 1.

• (x11x22)n = x2n11, (x21x12)
n
= λx2n12.

If ch(k) - 2nN , then AνλNn is semisimple [12, Theorem 3.1(viii)]. Moreover, A
+−

12 is isomorphic to the Kac–Paljutkin algebra
K8, and the Hopf algebras A++1n and A

+−

1n are isomorphic to the Hopf algebrasA4n andB4n, respectively, that were introduced
by Masuoka [7,29].
Hereafter to the end of this subsection we suppose that N ≥ 1, n ≥ 2 and ν, λ = ±1, and that k is a field of ch(k) 6= 2,

which contains a primitive 4nN-th root of unity. The following proposition was proved by Suzuki.

Proposition 5.5 ([12, Theorem 3.1]).
(1) The dimension of a simple subcoalgebra of AνλNn is 1 or 4.
(2) The order of the group G := G(AνλNn) is 4N, and G is explicitly given by

G = {x2s11 ± x
2s
12, x

2s+1
11 χn−122 ±

√
λx2s+112 χn−121 | 1 ≤ s ≤ N}.

(3) There are exactly N(n− 1) simple subcoalgebras of dimension 4, and they are given by

Cst = kx2s11χ
t
11 + kx2s12χ

t
12 + kx2s12χ

t
21 + kx2s11χ

t
22 (0 ≤ s ≤ N − 1, 1 ≤ t ≤ n− 1).

Therefore, the cosemisimple Hopf algebra AνλNn is decomposed to the direct sum of simple subcoalgebras such as A
νλ
Nn =

⊕
g∈G kg⊕⊕

0≤s≤N−1
1≤t≤n−1

Cst .

Since AνλNn is cosemisimple, a full set of non-isomorphic simple right A
νλ
Nn-comodules can be obtained by taking a simple

right D-comodule for each simple subcoalgebra D of AνλNn and by collecting them. So, we have:

Corollary 5.6. The set {kg | g ∈ G(AνλNn)} ∪ {kx
2s
11χ

t
22 + kx2s12χ

t
21 | 0 ≤ s ≤ N − 1, 1 ≤ t ≤ n − 1} is a full set of non-

isomorphic (absolutely) simple right AνλNn-comodules, where the coactions of the comodules listed above are given by restrictions
of the coproduct ∆.

Let us explain on the braiding structures of AνλNn, which were determined by Suzuki [12]. Suppose that α, β ∈ k satisfy
(αβ)N = ν, (αβ−1)n = λ. Then there is a braiding σαβ of AνλNn such that the values σαβ(xij, xkl) (i, j, k, l = 1, 2) are given by
the list below.

x y
x11 x12 x21 x22

x11 0 0 0 0
x12 0 α β 0
x21 0 β α 0
x22 0 0 0 0

In fact, by using the braiding conditions (B2) and (B3), described in Section 4, repeatedly, we see that the values of σαβ
on the basis (5.1) are given as follows: for integers s, s′, t, t ′ ≥ 0 with s+ t ≥ 1 and s′ + t ′ ≥ 1, and j′ = 1, 2,
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σαβ(xs11χ
t
22, x

s′
1j′χ

t ′
2,j′+1) =


δ0,t ′δ1+j′,t(αβ)

t′s+(s+t)s′
2 β tt

′

(s and s′ are even),

δ1,t ′δ1+j′,t(αβ)
t′s+(s+t)s′−t

2 αt(t
′
+1) (s is even, and s′ is odd),

δ0,t ′δj′,t(αβ)
t′s+(s+t)s′−t′

2 α(t+1)t
′

(s is odd, and s′ is even),

δ1,t ′δj′,t(αβ)
t′s+(s+t)s′−(1+t+t′)

2 β(t+1)(t
′
+1) (s and s′ are odd),

σαβ(xs12χ
t
21, x

s′
1j′χ

t ′
2,j′+1) =


δ1,t ′δ1+j′,t(αβ)

t′s+(s+t)s′
2 αtt

′

(s and s′ are even),

δ0,t ′δ1+j′,t(αβ)
t′s+(s+t)s′−t

2 β t(t
′
+1) (s is even, and s′ is odd),

δ1,t ′δj′,t(αβ)
t′s+(s+t)s′−t′

2 β(t+1)t
′

(s is odd, and s′ is even),

δ0,t ′δj′,t(αβ)
t′s+(s+t)s′−(1+t+t′)

2 α(t+1)(t
′
+1) (s and s′ are odd),

where the indices of χ and δ are treated as modulo 2.
When n = 2, in addition to the above braidings σαβ , for γ , ξ ∈ k which satisfy γ 2 = ξ 2, γ 2N = 1 there is a braiding τγ ξ

of AνλN2 such that the values τγ ξ (xij, xkl) (i, j, k, l = 1, 2) are given by the list below, where xij and xkl correspond to a row and
a column, respectively.

x y
x11 x12 x21 x22

x11 γ 0 0 ξ
x12 0 0 0 0
x21 0 0 0 0
x22 λξ 0 0 γ

We see also that the values of τγ ξ on the basis (5.1) are given as follows: for integers s, s′, t, t ′ ≥ 0 with s + t ≥ 1 and
s′ + t ′ ≥ 1, and j′ = 1, 2,

τγ ξ (xs11χ
t
22, x

s′
1j′χ

t ′
2,j′+1) =


δj′1γ

ss′(γ ξ)
tt′
4 +

st′
2 (γ λξ)

tt′
4 +

ts′
2 (t and t ′ are even),

δj′1γ
ss′(λξ)s

′

(γ ξ)
(t−1)t′
4 +

st′
2 (γ λξ)

(t+1)t′
4 +

(t−1)s′
2 (t is odd, and t ′ is even),

δj′1γ
ss′ξ s(γ ξ)

t(t′+1)
4 +

s(t′−1)
2 (γ λξ)

t(t′−1)
4 +

ts′
2 (t is even, and t ′ is odd),

δj′1γ
ss′+1ξ s(λξ)s

′

(γ ξ)
(t−1)(t′+1)

4 +
s(t′−1)
2 (γ λξ)

(t+1)(t′−1)
4 +

(t−1)s′
2 (t and t ′ are odd),

τγ ξ (xs12χ
t
21, x

s′
1j′χ

t ′
2,j′+1) = 0,

where the indices of χ and δ are treated as modulo 2.

Theorem 5.7 ([12, Proposition 3.10]). If n ≥ 3, then the braidings of AνλNn are given by

{σαβ | α, β ∈ k, (αβ)N = ν, (αβ−1)n = λ},

and if n = 2, then they are given by

{σαβ | α, β ∈ k, (αβ)N = ν, (αβ−1)2 = λ} ∪ {τγ ξ | γ , ξ ∈ k, γ 2 = ξ 2, γ 2N = 1}.

From (4.1), (5.2) and (5.3) we have the following lemma.

Lemma 5.8. (1) For α, β ∈ k satisfying (αβ)N = ν, (αβ−1)n = λ, the Drinfel’d element µαβ of the braided Hopf algebra
(AνλNn, σαβ) is given as follows: for all integers s, t ≥ 0 with s+ t ≥ 1,

µαβ(xs11χ
t
22) =

{
νt(αβ)

−s2
2 −st−t

2
αt
2

(s is even),

νt+1(αβ)
−1−s2
2 −t−st−t2α(t+1)

2
(s is odd),

µαβ(xs12χ
t
21) = 0.

(2) For γ , ξ ∈ k satisfying γ 2 = ξ 2, γ 2N = 1, the Drinfel’d element µγ ξ of the braided Hopf algebra (AνλN2, τγ ξ ) is given as
follows: for all integers s, t ≥ 0 with s+ t ≥ 1,

µγ ξ (xs11χ
t
22) =


γ−s

2
−2st−t2λ

t2
4 (s and t are even),

γ−s
2
−2st−t2λ

t2−1
4 (t is odd, and s is even),

γ−s
2
−2st−t2λ

t(t+2)
4 (t is even, and s is odd),

γ−s
2
−2st−t2λ

(t+1)2
4 (s and t are odd),

µγ ξ (xs12χ
t
21) = 0.
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By using Lemma 5.8, we know the braided dimensions of the simple right AνλNn-comodules.

Lemma 5.9. (1) Let α, β be elements in k satisfying (αβ)N = ν and (αβ−1)n = λ.
(i) For an element g ∈ G(AνλNn) the character χg ∈ A

νλ
Nn of the simple right A

νλ
Nn-comodule kg is given by χg = g, and the

braided dimension dim σαβ
kg with respect to the braiding σαβ is given by

dim σαβ
kg =

{
(αβ)−2s

2
(g = x2s11 ± x

2s
12 (1 ≤ s ≤ N)),

νn(αβ)−2s
2
−2sn−n2αn

2
(g = x2s+111 χn−122 ±

√
λx2s+112 χn−121 (1 ≤ s ≤ N)).

(ii) For the simple right AνλNn-comodule Vst = kx2s11χ
t
22 + kx2s12χ

t
21 (0 ≤ s ≤ N − 1, 1 ≤ t ≤ n − 1), the character

χst ∈ AνλNn of Vst is given by χst = x
2s+1
11 χ t−122 + x

2s
11χ

t
22, and the braided dimension dim σαβ

Vst is given by dim σαβ
Vst =

2νtαt
2
(αβ)−2s

2
−2st−t2 .

(2) Let γ , ξ be elements in k such that γ 2 = ξ 2, γ 2N = 1.
(i) For an element g ∈ G(AνλN2) the braided dimension dimτγ ξ kg is given by

dimτγ ξ kg =

{
γ−4s

2
(g = x2s11 ± x

2s
12 (1 ≤ s ≤ N)),

γ−4(s+1)
2
λ (g = x2s+111 χ22 ±

√
λx2s+112 χ21 (1 ≤ s ≤ N)).

(ii) For the simple right AνλN2-comodule Vs1 = kx2s11x22+ kx2s12x21 (0 ≤ s ≤ N − 1), the braided dimension dimτγ ξ Vs1 is given

by dimτγ ξ Vs1 = 2γ
−(2s+1)2 .

Let ω ∈ k be a primitive 4nN-th root of unity. The set Iνλ = { (α, β) ∈ k × k | (αβ)N = ν, (αβ−1)n = λ } can be
expressed as

Iνλ =
{
(ωn(2i+

1−ν
2 )+N(2j+ 1−λ2 ), ωn(2i+

1−ν
2 )−N(2j+ 1−λ2 ))

∣∣∣∣ i = 0, 1, . . . ,N − 1,j = 0, 1, . . . , n− 1

}
∪

{
(−ωn(2i+

1−ν
2 )+N(2j+ 1−λ2 ),−ωn(2i+

1−ν
2 )−N(2j+ 1−λ2 ))

∣∣∣∣ i = 0, 1, . . . ,N − 1,j = 0, 1, . . . , n− 1

}
.

Similarly, the set J = { (γ , ξ) ∈ k × k | γ 2 = ξ 2, γ 2N = 1 } can be expressed as
J = {(ω4i, ω4i) | i = 0, 1, . . . , 2N − 1} ∪ {(ω4i,−ω4i) | i = 0, 1, . . . , 2N − 1 }.

We put A = AνλNn, and compute the polynomial PA∗,V (x) for an absolutely simple right A-comodule V by using Lemmas 4.4
and 5.9.
Let g be an element of G(A). In the case when g = x2s11 ± x

2s
12, if n ≥ 3, then by Lemma 5.9(1)(i)

PA∗,kg(x) =
∏

(α,β)∈Iνλ

(x− (αβ)−2s
2
) =

N−1∏
i=0

(x− ω−4n(2i+
1−ν
2 )s2)2n,

and if n = 2, then by Lemma 5.9(2)(i)

PA∗,kg(x) =
∏

(α,β)∈Iνλ

(x− (αβ)−2s
2
) ·

∏
(γ ,ξ)∈J

(x− γ−4s
2
) =

N−1∏
i=0

(x− ω−8(2i+
1−ν
2 )s2)4 ·

N−1∏
i=0

(x− ω−16is
2
)4.

In the case when g = x2s+111 χn−122 ±
√
λx2s+112 χn−121 , if n ≥ 3, then by Lemma 5.9(1)(i)

PA∗,kg(x) =
∏

(α,β)∈Iνλ

(x− νn(αβ)−2s
2
−2sn−n2αn

2
)

=


N−1∏
i=0

(x2 − ω−2n(2s+n)
2(2i+ 1−ν2 )(−1)

1−λ
2 )n (n is odd),

N−1∏
i=0

(x− ω−n(2s+n)
2(2i+ 1−ν2 )(−1)

n
2
1−λ
2 )2n (n ≥ 4 is even),

and if n = 2, then by Lemma 5.9(2)(i)

PA∗,kg(x) =
∏

(α,β)∈Iνλ

(x− (αβ)−2s
2
−4s−4α4) ·

∏
(γ ,ξ)∈J

(x− γ−4(s+1)
2
λ)

=

N−1∏
i=0

(x− ω−4(s+1)
2(2i+ 1−ν2 )(−1)

1−λ
2 )4 ·

N−1∏
i=0

(x− ω−16i(s+1)
2
λ)4.

For the simple right A-comodule Vst = kx2s11χ
t
22 + kx2s12χ

t
21 (0 ≤ s ≤ N − 1, 1 ≤ t ≤ n− 1), the polynomial PA∗,Vst (x) is

given as follows. If n ≥ 3, then by Lemma 5.9(1)(ii),
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PA∗,Vst (x) =
∏

(α,β)∈Iνλ

(x− νtαt
2
(αβ)−2s

2
−2st−t2)

=


N−1∏
i=0

n−1∏
j=0

(x2 − ω−2n(2s+t)
2(2i+ 1−ν2 )−2Nt2(2j+ λ−12 )) (t is odd)

N−1∏
i=0

n−1∏
j=0

(x− ω−n(2s+t)
2(2i+ 1−ν2 )−Nt2(2j+ λ−12 ))2 (t is even),

and if n = 2, then by Lemma 5.9(2)(ii),

PA∗,Vs1(x) =
∏

(α,β)∈Iνλ

(x− να(αβ)−2s
2
−2s−1) ·

∏
(γ ,ξ)∈J

(x− γ−(2s+1)
2
)

=

N−1∏
i=0

(x4 − ω−8(2i+
1−ν
2 )(2s+1)2+2N(1−λ)) ·

N−1∏
i=0

(x2 − ω−8i(2s+1)
2
)2.

In the case when N is odd and ν = +, if λ and n satisfy the condition
(A) λ = −1, or
(B) λ = 1, and n is odd,
then the Hopf algebra A+λNn is self-dual (see Corollary A.6 in the next section). Therefore, by using Proposition 4.5 we have:

Proposition 5.10. Let N ≥ 1 be an odd integer and ω ∈ k a primitive 4nN-th root of unity. Suppose that λ and n satisfy the
above condition (A) or (B). Then

P (1)
A+λNn
(x) =



N−1∏
s=0

N−1∏
i=0

(x− ω−8nis
2
)4n(x2 − ω−4in(2s+1)

2
(−1)

1−λ
2 )2n (n is odd),

N−1∏
s=0

N−1∏
i=0

(x− ω−8nis
2
)4n(x− ω−8ins

2
(−1)

n
2 )4n (n ≥ 4 is even),

N−1∏
s=0

N−1∏
i=0

(x− ω−16is
2
)16(x+ ω−8is

2
)8(x+ ω−16is

2
)8 (n = 2),

P (2)
A+λNn
(x) =



N−1∏
s=0

n−ε(n)
2∏
t=1

N−1∏
i=0

n−1∏
j=0

(x2 − ω−4in(2s+1)
2
−2N(2t−1)2(2j+ λ−12 ))

×

N−1∏
s=0

n−2+ε(n)
2∏
t=1

N−1∏
i=0

n−1∏
j=0

(x− ω−8ins
2
−4Nt2(2j+ λ−12 ))2 (n ≥ 3),

N−1∏
s=0

N−1∏
i=0

(x4 + ω−16i(2s+1)
2
)(x2 − ω−8i(2s+1)

2
)2 (n = 2),

where ε(n) = 0 if n is even, and ε(n) = 1 if n is odd.

From the above proposition the polynomial invariants of the Kac–Paljutkin algebra K8 ∼= A+−12 are computed, again.

5.3. The group Hopf algebra k[GNn]

If N is odd, n ≥ 2, and λ = ±1, then A+λNn is isomorphic to the group algebra of the finite group

G = 〈h, t, w | t2 = h2N = 1, wn = h(n+
λ−1
2 )N , tw = w−1t, ht = th, hw = wh〉

as an algebra (see the next Appendix A.1). The order of G is 4nN . If (n, λ) = (even, 1) or (n, λ) = (odd,−1), then the group
G is isomorphic to the direct product D2n × C2N . If (n, λ) = (even,−1) or (n, λ) = (odd, 1), then G is isomorphic to the
semidirect product of H := 〈w, h | h2N = 1, wn = hN , wh = hw〉 and C2, where the action of C2 = 〈t〉 on H is given by
t · w := w−1 and t · h := h. In particular, when N = 1, the group G is the dihedral group of order 4n.
We shall determine the universal R-matrices of the group Hopf algebra k[G], and calculate the polynomial invariants of

it in the case when (n, λ) = (even,−1) or (n, λ) = (odd, 1). In this case, G coincides with the group
GNn = 〈h, t, w | t2 = h2N = 1, wn = hN , tw = w−1t, ht = th, hw = wh〉.

Lemma 5.11. Let N be an odd integer, and n ≥ 2 be an integer.
(1) If n ≥ 3, then the finite group GNn has a unique maximal commutative normal subgroup, which is given by H = 〈h, w〉.
(2) If n = 2, then the finite group GNn has exactly three maximal commutative normal subgroups, which are given by
H1 = 〈h, w〉,H2 = 〈h, t〉 and H3 = 〈h, tw〉.
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Proof. We set G = GNn. It is clear that H (=H1) is a commutative and normal subgroup of G, and it is not hard to show
that H is maximal between commutative subgroups. Hence H is a maximal commutative normal subgroup of G. In the case
when n = 2 we see that H2 and H3 are also commutative and normal subgroups of G, and maximal between commutative
subgroups.
We show that the converse is true.

(1) Let K be a maximal commutative normal subgroup K of G = GNn. Suppose that K 6⊂ H . Then K ∩ (G − H) 6= ∅.
So, if we take an element twihj ∈ K ∩ (G − H) (0 ≤ i < n, 0 ≤ j < N), then w(twihj)w−1 = twi−2hj ∈ K ;
that is, twihj ∈ K implies that h−jw−i+2t = (twi−2hj)−1 ∈ K . Since K is commutative, we have the equation
w2 = h−jw−i+2t · twihj = twihj ·h−jw−i+2t = w−2 = w2n−2 = w(n−2)+n = wn−2hN . This is a contradiction since n ≥ 3.
Thus K ⊂ H . This implies that K = H from maximality of K .

(2) Let K be amaximal commutative normal subgroup K of G = GNn. Then 〈h〉 ⊂ K holds frommaximality of K since K〈h〉 is
a commutative and normal subgroup of G. If K ⊂ H1, then K = H1 since H1 is a maximal commutative normal subgroup
of G. So, we suppose that K 6⊂ H1. Then twihj ∈ K for some i, j (i = 0, 1, j = 0, 1, . . . ,N − 1). Since 〈h〉 ⊂ K , we have
twi ∈ K . If i = 0, then t ∈ K , and hence H2 ⊂ K . By maximality of H2, we see that K = H2. By the same argument, we
see that, if i = 1, then K = H3. Thus there is no maximal commutative normal subgroup of G except for H1,H2,H3. �

In what follows, we assume that the characteristic ch(k) does not divide 2nN . To determine the universal R-matrices of
k[H], we use the basis consisting of the primitive idempotents of k[H].

Lemma 5.12. Let N ≥ 1 be an odd integer, and n ≥ 2 be an integer. Let H be the commutative group of order 2nN defined by
H = 〈h, w | h2N = 1, wn = hN , hw = wh〉, and ω be a primitive 4nN-th root of unity in k. For i, k ∈ Z, we set

Eik =
1
2nN

n−1∑
j=0

2N−1∑
l=0

ω−2Nj(k+2i)−2nklwjhl ∈ k[H].

Then {Eik | i = 0, 1, . . . , n− 1, k = 0, 1, . . . , 2N − 1} is the set of primitive idempotents of k[H], and the following equations
hold: for all i, j, k, l ∈ Z

Ei+n,k = Eik, Ei−N,k+2N = Eik, (5.4)

EikEjl = δ
(2N)
kl δ

(2n)
k+2i,l+2jEjl = δ

(2N)
kl δ

(2n)
k+2i,l+2jEik, (5.5)

where

δ
(m)
kl =

{
1 (k ≡ l (mod m))
0 (k 6≡ l (mod m))

for m = 2N or m = 2n. Furthermore, the coproduct ∆, the counit ε, and the antipode S of the group Hopf algebra k[H] are given
as follows:

∆(Eik) =
∑

0≤p,q≤2N−1
p+q≡k (mod 2N)

∑
0≤a,b≤n−1

a+b+−k+p+q2 ≡i (mod n)

Eap ⊗ Ebq, (5.6)

ε(Eik) = δi,0δk,0, (5.7)

S(Eik) = E−i,−k. (5.8)

Proof. Eqs. (5.4) and (5.7) are obtained immediately. For integers i and k, let χjk be the group homomorphism from H to k
defined by χik(w) = ω2N(k+2i), χik(h) = ω2nk. Then the set {χik | i = 0, 1, . . . , n− 1, k = 0, 1, . . . , 2N − 1} consists of all
irreducible characters ofH . Eqs. (5.5), (5.6) and (5.8) follow fromwjhl beingwritten aswjhl =

∑n−1
i=0

∑2N−1
k=0 ω2Nj(2i+k)+2nklEik,

which comes from the orthogonality of characters. �

Lemma 5.13. Let N ≥ 1 be an odd integer, and n ≥ 2 be an integer. Let H be the commutative group of order 2nN defined in
Lemma 5.12, and ω ∈ k be a primitive 4nN-th root of unity. Then any universal R-matrix R of k[H] is given by

R =
n−1∑
i,j=0

2N−1∑
k,l=0

νklω2aN(2i+k)(2j+l)+2n(qkl+2pjk+2rij)Eik ⊗ Ejl (5.9)

for some ν ∈ {±1}, a ∈ {0, 1, . . . , n− 1} and p, q, r ∈ {0, 1, . . . ,N − 1} such that pn, rn are multiples of N, where {Eik} is the
set of primitive idempotents of k[H] defined in Lemma 5.12. Conversely, R given above by (5.9) is a universal R-matrix of k[H].
Proof. Let R be an element of k[H] ⊗ k[H], and write R in the form

R =
n−1∑
i,j=0

2N−1∑
k,l=0

Rikjl Eik ⊗ Ejl (Rikjl ∈ k).
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We treat the indices i and j of Rikjl as modulo n; therefore R
ik
jl has a meaning for all integers i and j. For 0 ≤ m ≤ 4N − 1, we

define δ(m) by

δ(m) =
{
0 (0 ≤ m ≤ 2N − 1),
1 (2N ≤ m ≤ 4N − 1).

Then we have

(∆⊗ id)(R) =
n−1∑
j,a,b=0

2N−1∑
l,p,q=0

Ra+b+Nδ(p+q),p+q−2Nδ(p+q)jl Eap ⊗ Ebq ⊗ Ejl,

R13R23 =
n−1∑
j,a,b=0

2N−1∑
l,p,q=0

Rapjl R
bq
jl Eap ⊗ Ebq ⊗ Ejl.

Hence (∆⊗ id)(R) = R13R23 if and only if

Ra+b+Nδ(p+q),p+q−2Nδ(p+q)jl = Rapjl R
bq
jl (5.10)

for all j, a, b = 0, 1, . . . , n− 1 and l, p, q = 0, 1, . . . , 2N − 1. Similarly, (id⊗∆)(R) = R13R12 if and only if

Rika+b+Nδ(p+q),p+q−2Nδ(p+q) = R
ik
bqR

ik
ap (5.11)

for i, a, b = 0, 1, . . . , n− 1 and k, p, q = 0, 1, . . . , 2N − 1, and also we have (ε ⊗ id)(R) = (id⊗ ε)(R) = 1 if and only if

R00jl = R
jl
00 = 1 (5.12)

for j = 0, 1, . . . , n− 1 and l = 0, 1, . . . , 2N − 1. Thus R is a universal R-matrix of k[H] if and only if Eqs. (5.10)–(5.12) hold.
From the Eqs. (5.10) and (5.11), Rikjl can be expressed in the form

Rikjl = (R
01
01)
kl(R0110)

jk(R1001)
il(R1010)

ij.

Since (R1001)
n
= Rn001 = R

00
01 = 1 and (R

01
10)
n
= R01n0 = R

01
00 = 1 by (5.10), we see that R

10
01 and R

01
10 can be written as

R1001 = ω
4aN , R0110 = ω

4bN (0 ≤ a, b ≤ n− 1). (5.13)

By using Eqs. (5.10) and (5.11), repeatedly, we have{
(R0101)

2N
= (R0101)

2N−2R0201 = · · · = R
01
01R

0,2N−1
01 = RN001 = (R

10
01)
N
= ω4aN

2
,

(R0101)
2N
= (R0101)

2N−2R0102 = · · · = R
01
01R

01
0,2N−1 = R

01
N0 = (R

01
10)
N
= ω4bN

2
.

Therefore ω4bN = ω4aN+4pn must be required for some 0 ≤ p ≤ N − 1 such that pn is a multiple of N . From equation
(R0101)

2N
= ω4aN

2
, we may set (R0101)

2
= ω4aN+4qn (0 ≤ q ≤ N − 1), and hence

R0101 = ±ω
2aN+2qn. (5.14)

By using Eq. (5.10), repeatedly, we have (R1010)
N
= R10N0 = (R

10
01)
2N
= ω8aN

2
. So, R1010 can be expressed as

R1010 = ω
8aN+4rn (5.15)

for some 0 ≤ r ≤ N − 1 such that rn is a multiple of N . From (5.13)–(5.15) we see that a universal R-matrix R of k[H] is
written in the form

R =
n−1∑
i,j=0

2N−1∑
k,l=0

Rikjl Eik ⊗ Ejl, Rikjl = ν
klω2aN(2i+k)(2j+l)+2n(qkl+2pjk+2rij) (5.16)

for some ν ∈ {±1}, a ∈ {0, 1, . . . , n− 1} and p, q, r ∈ {0, 1, . . . ,N − 1} such that pn, rn are multiples of N .
Conversely, it is not hard to check that R ∈ k[H] ⊗ k[H] which is given by the form above is a universal R-matrix of

k[H]. �

By use of Lemmas 5.1 and 5.13 one can determine the universal R-matrices of k[GNn].

Proposition 5.14. Let N ≥ 1 be an odd integer, and n ≥ 2 be an integer. Let ω be a primitive 4nN-th root of unity in k, and
{Eik} be the set of primitive idempotent of k[H] defined in Lemma 5.12. Then for any ν ∈ {±1}, a ∈ {0, 1, . . . , n − 1}, q ∈
{0, 1, . . . ,N − 1},

Raqν :=
n−1∑
i,j=0

2N−1∑
k,l=0

νklω2aN(2i+k)(2j+l)+2qklnEik ⊗ Ejl (5.17)
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is a universal R-matrix of the group Hopf algebra k[GNn]. Furthermore,

• Raqν is a universal R-matrix of the group Hopf algebra k[〈h〉] if and only if a = 0, and
• if n ≥ 3, then any universal R-matrix is given by the above form; therefore, the number of universal R-matrices of k[GNn] is
2nN.

Proof. Let R be a universal R-matrix of k[H], where H is the subgroup of GNn defined in Lemma 5.13, and write it in the form
(5.16). By using Eikt = tE−i−k,k we have

∆cop(t) · R =
n−1∑
i,j=0

2N−1∑
k,l=0

Rikjl tEik ⊗ tEjl, R ·∆(t) =
n−1∑
i,j=0

2N−1∑
k,l=0

R−i−k,k
−j−l,l tEik ⊗ tEjl.

Hence R is a universal R-matrix of k[GNn] if and only if R−i−k,k−j−l,l = R
ik
jl for all i, j, k, l. Therefore, we have

R−i−k,k
−j−l,l = R

ik
jl ⇐⇒ ω2n(−2p(2j+l)k+2r(kj+il+kl)) = 1.

Considering the equations in R.H.S. for (i, j, k, l) = (1, 0, 0, 1) and (i, j, k, l) = (0, 0, 1, 1), we see that R is a universal
R-matrix of k[GNn] if and only ifω4pn = ω4rn = 1. This condition is equivalent to both p and r beingmultiples of N . It follows
from 0 ≤ p, r ≤ N − 1 that p = r = 0. �

Proposition 5.15. Let N ≥ 1 be an odd integer, and let ω be a primitive 8N-th root of unity in a field k whose characteristic
does not divide 2N. Then the number of universal R-matrices of the group Hopf algebra k[GN2] is 8N, and they are given by the
list below.

• Universal R-matrices of k[〈h〉]:

Rd =
2N−1∑
k,l=0

ω4dklEk ⊗ El (d = 0, 1, . . . , 2N − 1),

where Ek = 1
2N

∑2N−1
l=0 ω−4klhl.

• Universal R-matrices of k[H1], where H1 = 〈h, w〉:

R1qν =
∑
i,j=0,1

2N−1∑
k,l=0

νklω2N(2i+k)(2j+l)+4qklEik ⊗ Ejl (q = 0, 1, . . . ,N − 1, ν = ±1),

where Eik = 1
4N

∑
j=0,1

∑2N−1
l=0 (−1)ijω−2Njk−4klwjhl.

• Universal R-matrices of k[H2], where H2 = 〈h, t〉:

R(1)d := R
k[H2]
0N1d =

∑
i,j=0,1

2N−1∑
k,l=0

(−1)jk+ilω4dklEik ⊗ Ejl (d = 0, 1, . . . , 2N − 1), (5.18)

where Eik = 1
4N

∑
j=0,1

∑2N−1
l=0 (−1)ijω−4klt jhl.

• Universal R-matrices of k[H3], where H3 = 〈h, tw〉:

R(2)d := R
k[H3]
0N1d =

∑
i,j=0,1

2N−1∑
k,l=0

(−1)jk+ilω4dklEik ⊗ Ejl (d = 0, 1, . . . , 2N − 1), (5.19)

where Eik = 1
4N

∑
j=0,1

∑2N−1
l=0 (−1)ijω−4kl(tw)jhl.

Proof. By Proposition 5.14, it is sufficient to determine the universal R-matrices of k[GN2] which come from that of k[H2]
or k[H3]. By Lemma 5.2, it follows from Hi ∼= C2 × C2N for i = 2, 3 that a universal R-matrix of k[Hi] is given by

Rk[Hi]pqrs =

m−1∑
i,j=0

n−1∑
k,l=0

(−1)(pi+rk)jω2(skl+qil)Eik ⊗ Ejl,

where p, r ∈ {0, 1}, q ∈ {0,N}, s ∈ {0, 1, . . . , 2N − 1}.
Let us consider the case when i = 2 and R = Rk[H2]pqrs . We set Rikjl = (−1)

j(pi+rk)ω2l(sk+qi). Then, by using Eikw = wEi+k,k, we
have

∆cop(w) · R = R ·∆(w) ⇐⇒ Ri−k,kj−l,l = R
ik
jl for all i, j, k, l

⇐⇒ (−1)−(j−l)pk−l(pi+rk)ω−2lqk = 1 for all i, j, k, l
⇐⇒ (p, q, r) = (0, 0, 0) or (p, q, r) = (0,N, 1).
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Thus Rk[H2]pqrs is a universal R-matrix of k[GN2] if and only if (p, q, r) = (0, 0, 0) or (p, q, r) = (0,N, 1). It is easily proved that
Rk[H2]000s is a universal R-matrix of k[〈h〉], and R

k[H2]
0N1s is not. In a similar manner, it is shown that a universal R-matrix R

k[H3]
pqrs of

k[H3] is a universal R-matrix of k[G] if and only if (p, q, r) = (0, 0, 0), (0,N, 1), and Rk[H3]pqrs is that of k[〈h〉] if and only if
(p, q, r) = (0, 0, 0). �

Lemma 5.16. Let N ≥ 1 be an odd integer, and n ≥ 2 be an integer.

(1) The Drinfel’d element uaqν associated to Raqν in Proposition 5.14 is given by

uaqν =
n−1∑
i=0

2N−1∑
k=0

νkω−2aN(2i+k)
2
−2nqk2Eik,

where {Eik} is the set of primitive idempotents of k[H] defined in Lemma 5.12.
(2) In the case when n = 2, for each i = 1, 2 the Drinfel’d element u(i)d associated to R

(i)
d given by (5.18) and (5.19) is given by

u(i)d =
2N−1∑
k=0

ω−4dk
2
Ek,

where Ek = 1
2N

∑2N−1
l=0 ω−4klhl.

Proof. The proof follows from direct computations. �

Let ω ∈ k be a primitive 4nN-th root of unity. Then a full set of non-isomorphic simple left k[GNn]-modules is given by

{Vijk | i, j = 0, 1, k = 0, 2, . . . , 2N − 2} ∪ {Vjk | k = 0, 1, . . . , 2N − 1, j = 1, 2, . . . , n− 1, j ≡ k(mod 2)},

where the action χijk of k[GNn] on Vijk = k is given by

χijk(t) = (−1)i, χijk(w) = (−1)j, χijk(h) =
{
ω2kn (n is even),
ω2(j+k)n (n is odd),

(5.20)

and the left action ρjk of k[GNn] on Vjk = k ⊕ k is given by

ρjk(t) =
(
0 1
1 0

)
, ρjk(w) =

(
ω2jN 0
0 ω−2jN

)
, ρjk(h) =

(
ω2kn 0
0 ω2kn

)
. (5.21)

For each universal R-matrix R of k[GNn], the braided dimensions of the simple left k[GNn]-modules Vijk and Vjk are given
as follows.
For n ≥ 2,

dimRaqνVijk =

{
ω−2nqk

2
(n is even),

ν j(−1)ajω−2nq(j+k)
2

(n is odd),
dimRaqνVjk = 2ν

kω−2nqk
2
−2Naj2 . (5.22)

For n = 2,

dimR(1)d
Vijk = dimR(2)d

Vijk = ω−4dk
2
, dimR(1)d

V1k = dimR(2)d
V1k = 2ω−4dk

2
. (5.23)

Combining the results in Proposition 5.14, Proposition 5.15 and Eqs. (5.22), (5.23), we have the following.

Proposition 5.17. Let N ≥ 1 be an odd integer, and n ≥ 2 be an integer, and consider the group

GNn = 〈h, t, w | t2 = h2N = 1, wn = hN , tw = w−1t, ht = th, hw = wh〉.

Let ω be a primitive 4nN-th root of unity in a field k whose characteristic does not divide 2nN. Then the polynomial invariants of
the group Hopf algebra k[GNn] are given by the following.

P (1)k[GNn](x) =



N−1∏
s=0

N−1∏
q=0

(x− ω−8nqs
2
)4n(x2 − ω−4nq(2s+1)

2
)2n (n is odd),

N−1∏
s=0

N−1∏
q=0

(x− ω−8nqs
2
)8n (n ≥ 4 is even),

N−1∏
s=0

N−1∏
q=0

(x− ω−16qs
2
)32 (n = 2),
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P (2)k[GNn](x) =



N−1∏
s=0

n−ε(n)
2∏
t=1

n−1∏
a=0

N−1∏
q=0

(x2 − ω−4(nq(2s+1)
2
+Na(2t−1)2))

×

N−1∏
s=0

n−2+ε(n)
2∏
t=1

n−1∏
a=0

N−1∏
q=0

(x− ω−8(nqs
2
+Nat2))2 (n ≥ 3),

N−1∏
s=0

N−1∏
q=0

(x4 − ω−16q(2s+1)
2
)(x2 − ω−8q(2s+1)

2
)2 (n = 2),

where ε(n) = 0 if n is even, and ε(n) = 1 if n is odd.

Proof. First, we consider the case when n ≥ 3. By Proposition 5.14, any universal R-matrix of k[GNn] coincides with exactly
one of Raqν (a = 0, 1, . . . , n− 1, q = 0, 1, . . . ,N − 1, ν = ±1).
Suppose that n (≥4) is even. Then, by (5.22), the polynomial invariant P (1)k[GNn](x) is given by

P (1)k[GNn](x) =
1∏
i,j=0

N−1∏
s=0

Pk[GNn],Vij,2s(x) =
1∏
i,j=0

N−1∏
s=0

N−1∏
q=0

(x− ω−8nqs
2
)2n =

N−1∏
s=0

N−1∏
q=0

(x− ω−8nqs
2
)8n.

By the same lemma, since Pk[GNn],Vjk(x) is given by Pk[GNn],Vjk(x) =
∏n−1
a=0

∏N−1
q=0

∏
ν=±1(x − ν

kω−2(nqk
2
+Naj2)) for the simple

left k[GNn]-module Vjk, we have

P (2)k[GNn](x) =
(N−1∏
s=0

n
2∏
t=1

Pk[GNn],V2t−1,2s+1(x)
)
·

(N−1∏
s=0

n−2
2∏
t=1

Pk[GNn],V2t,2s(x)
)

=

N−1∏
s=0

n
2∏
t=1

n−1∏
a=0

N−1∏
q=0

(x2 − ω−4(nq(2s+1)
2
+Na(2t−1)2)) ·

N−1∏
s=0

n−2
2∏
t=1

n−1∏
a=0

N−1∏
q=0

(x− ω−8(nqs
2
+Nat2))2.

By a quite similar consideration, we calculate the polynomial invariants of k[GNn] in the case when n (≥3) is odd.
Next, we consider the case when n = 2. Then, by Proposition 5.15, any universal R-matrix of k[GN2] coincides with

exactly one of Raqν (a = 0, 1, q = 0, 1, . . . ,N − 1, ν = ±1), R
(1)
d , R

(2)
d (d = 0, 1, . . . , 2N − 1). Thus, by (5.22) and (5.23),

the polynomial invariant P (1)k[GN2](x) is given by

P (1)k[GN2](x) =
∏
i,j=0,1

N−1∏
s=0

(N−1∏
q=0

(x− ω−4q(2s)
2
)4 ·

2N−1∏
d=0

(x− ω−4d(2s)
2
)2
)
=

N−1∏
s=0

N−1∏
q=0

(x− ω−16qs
2
)32.

Similarly, by Proposition 5.15 and Eqs. (5.22), (5.23), we have

P (2)k[GN2](x) =
N−1∏
s=0

( 1∏
a=0

N−1∏
q=0

(x2 − ω−4aN−8q(2s+1)
2
) ·

2N−1∏
d=0

(x− ω−4d(2s+1)
2
)2
)
.

Here,
∏2N−1
d=0 (x− ω

−4d(2s+1)2) =
∏N−1
q=0 (x

2
− ω−8q(2s+1)

2
), and hence

P (2)k[GN2](x) =
N−1∏
s=0

(N−1∏
q=0

(x2 − ω−4N−8q(2s+1)
2
) ·

N−1∏
q=0

(x2 − ω−8q(2s+1)
2
)3
)

=

N−1∏
s=0

N−1∏
q=0

(x4 − ω−16q(2s+1)
2
)(x2 − ω−8q(2s+1)

2
)2. �

For an odd integer N ≥ 1 and an integer n ≥ 2, we set

ANn =
{
A++Nn if n is odd,
[0.1 cm]A+−Nn if n is even.

We see immediately that, if n is odd, then P (d)ANn(x) = P
(d)
k[GNn](x) for d = 1, 2. So, our polynomial invariants do not detect the

difference between the representation categories of ANn and k[GNn]. However, for an even integer nwe have:

Corollary 5.18. Let N ≥ 1 be an odd integer, and n ≥ 2 be an even integer. Let ω be a primitive 4nN-th root of unity in a field
k whose characteristic does not divide 2nN. Then two Hopf algebras ANn and k[GNn] are not monoidally Morita equivalent.
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Proof. First, let us consider the casewhenn ≥ 3, and compare P (2)ANn(x) and P
(2)
k[GNn](x). By Proposition 5.10,we see thatω

−N is a

root of the polynomial P (2)ANn(x) since n is even. On the other hand, by Proposition 5.17, an arbitrary root of P
(2)
k[GNn](x) is written

in the form ω2k for some integer k. If P (2)ANn(x) = P
(2)
k[GNn](x), then P

(2)
k[GNn](x) has to possess ω

−N as a root. Then ω−N = ω2k for

some k; that is, N + 2k ≡ 0 (mod 4nN). This leads to a contradiction such that N is even. So, P (2)ANn(x) 6= P
(2)
k[GNn](x), and, by

Theorem 2.6, ANnM and k[GNn]M are not equivalent as k-linear monoidal categories.
Next, let us consider the casewhen n = 2, and compare P (1)AN2(x) and P

(1)
k[GN2](x). By Proposition 5.10,we see that−1 is a root

of the polynomial P (1)ANn(x). However, by Proposition 5.17, an arbitrary root of P
(1)
k[GN2](x) is written in the form ω

16k for some

integer k. By a similar argument to that above, we see that −1 = ω4N is not a root of P (1)k[GN2](x). Thus P
(1)
AN2
(x) 6= P (1)k[GN2](x),

and hence, by Theorem 2.6, AN2M and k[GN2]M are not equivalent as k-linear monoidal categories. �

Example 5.19. For a non-negative integer h,Φh denotes the h-th cyclotomic polynomial. Then, by using Maple12 software,
we see that the polynomial invariants of Hopf algebras k[GNn] and ANn for N = 1, 3, 5 and n = 2, 3, 4 are given as in the
following table.

A P (1)A (x) P (2)A (x) A P (1)A (x) P (2)A (x)

k[G12] Φ321 Φ4Φ
3
2Φ

3
1 k[G53]

A53
Φ2410Φ

72
5 Φ

54
2 Φ

162
1 Φ430Φ

12
15Φ

4
10Φ

12
5 Φ

9
6Φ

27
3 Φ

9
2Φ

27
1A12 Φ162 Φ

16
1 Φ8Φ

2
2Φ

2
1

k[G32] Φ643 Φ
160
1 Φ212Φ

5
4Φ

6
6Φ

6
3Φ

15
2 Φ

15
1 k[G14]

A14
Φ321

Φ28Φ
2
4Φ

6
2Φ

6
1

Φ216Φ
4
4A32 Φ326 Φ

32
3 Φ

80
2 Φ

80
1 Φ224Φ

5
8Φ

4
6Φ

4
3Φ

10
2 Φ

10
1

k[G52] Φ1285 Φ2881 Φ420Φ
12
10Φ

12
5 Φ

9
4Φ

27
2 Φ

27
1 k[G34]

A34
Φ643 Φ

160
1

Φ424Φ
4
12Φ

10
8 Φ

12
6 Φ

12
3 Φ

10
4 Φ

30
2 Φ

30
1

Φ448Φ
10
16Φ

8
12Φ

20
4A52 Φ6410Φ

64
5 Φ

144
2 Φ1441 Φ440Φ

8
10Φ

8
5Φ

9
8Φ

18
2 Φ

18
1

k[G13]
A13

Φ62Φ
18
1 Φ6Φ

3
3Φ2Φ

3
1

k[G54]
A54

Φ1285 Φ2881
Φ840Φ

8
20Φ

24
10Φ

24
5 Φ

18
8 Φ

18
4 Φ

54
2 Φ

54
1

Φ880Φ
16
20Φ

18
16Φ

36
4

k[G33]
A33

Φ126 Φ
36
3 Φ

30
2 Φ

90
1 Φ96Φ

27
3 Φ

9
2Φ

27
1

We note that the representation rings of ANn and k[GNn] are isomorphic as rings with ∗-structure (for details see
Proposition A.3 in the next section). Thus the pair of Hopf algebras ANn and k[GNn] gives an example of their representation
rings being isomorphic, though their representation categories are not.
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Appendix. The representation ring and self-duality of A+λ
Nn

In this Appendix, in the case when N ≥ 1 is odd, by analyzing the algebraic structure of A+λNn we introduce a ‘‘convenient’’
basis ofA+λNn to compute the braidingsσαβ given in Section 5, anddetermine the structure of the representation ring of it. As an
application, we determine when A+λNn is self-dual. As a further application, we show that, if n is even, then the representation
ring of A++Nn is non-commutative. Thismeans that the dual Hopf algebra of A

+λ
Nn has no quasitriangular structure. These results

have already been shown in [29] in the case when N = 1.
Throughout this section we assume that N ≥ 1 is an odd integer, n ≥ 2 is an integer, and λ = ±1.

A.1. The algebra structure of A+λNn

First of all, we determine the algebra structure of the Hopf algebra A+λNn . This was done by Masuoka [7] for the case of
N = 1 (see also [29]). Let G be the finite group presented by

G = 〈h, t, w | t2 = h2N = 1, wn = h(n+
λ−1
2 )N , tw = w−1t, ht = th, hw = wh〉. (A.1)

Then there is an algebra isomorphism ϕ : k[G] −→ A+λNn such that
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ϕ(h) = x211 − x
2
12, (A.2)

ϕ(t) = xN12 + x
N
22, (A.3)

ϕ(w) = x2N−111 x22 − x2N−121 x12. (A.4)

Thus ANn is isomorphic to k[GNn] as algebras. Set N = 2m+ 1, and consider the following elements in A+λNn :

h := x211 − x
2
12, t := xN12 + x

N
22, w := x2N−111 x22 − x2N−121 x12.

If ch(k) 6= 2, then the following relations hold:

• t2 = h2N = 1, wn = h(n+
λ−1
2 )N , tw = w−1t, ht = th, hw = wh.

• x22 = h−m(N+1)+hm(N+1)+1
2 t, x12 = h−m(N+1)−hm(N+1)+1

2 t .
• x2N−111 + x2N−121 = wth−m(N+1)−1.

•

xN11 =
hN + 1
2

wt,

xN21 =
hN − 1
2

wt,

xN12 = −
hN − 1
2

t,

xN22 =
hN + 1
2

t.

•

x2N−111 x22 =
1+ hN

2
w,

x2N−121 x12 =
−1+ hN

2
w,

x2N−112 x21 = x12x
2N−1
21 =

hN − 1
2

w−1,

x2N−122 x11 = x22x
2N−1
11 =

hN + 1
2

w−1.

In particular,w−1 = x2N−122 x11 − x2N−112 x21.

Proposition A.1. Let G be the finite group given in (A.1). For the group algebra k[G] over k of ch(k) 6= 2, we define algebra
maps∆ : k[G] ⊗ k[G] −→ k[G], ε : k[G] −→ k and an anti-algebra map S : k[G] −→ k[G] as follows:

∆(h) = h⊗ h, ∆(t) = hNwt ⊗ e1t + t ⊗ e0t, ∆(w) = w ⊗ e0w + w−1 ⊗ e1w,
ε(h) = 1, ε(t) = 1, ε(w) = 1,
S(h) = h−1, S(t) = (e0 − e1w)t, S(w) = e0w−1 + e1w,

where e0 = 1+hN
2 , e1 = 1−hN

2 . Then the algebra isomorphism ϕ : k[G] −→ A+λNn is a Hopf algebra isomorphism.

A.2. The representation ring of A+λNn

Via the algebra isomorphism ϕ given in Appendix A.1, one can determine the structure of the representation ring of A+λNn .
Let us recall the definition of the representation ring of a semisimple Hopf algebra, which is a natural extension of that

of a finite group [30,31]. Let A be a semisimple Hopf algebra of finite dimension over a field k. ByR(A)we denote the set of
isomorphism classes of finite-dimensional left A-modules, and for a finite-dimensional left A-module V we denote by [V ]
the isomorphism class of V . ThenR(A) has a semiring structure induced by [V ] + [W ] = [V ⊕W ] and [V ][W ] = [V ⊗W ].
Also,R(A) has the unit element, which is given by [k], where the left A-module action of k is due to the counit ε. Let Rep(A)
denote the Grothendieck group constructed from the enveloping group ofR(A) as an abelian semigroup. Then the semiring
structure ofR(A) uniquely determines a ring structure of Rep(A). Furthermore, the ring Rep(A) has an anti-homomorphism
of rings ∗ : Rep(A) −→ Rep(A), which induced from the antipode S. Explicitly, this anti-homomorphism ∗ is defined
by [V ] 7−→ [V ∗] for a finite-dimensional left A-module V . We call the ring Rep(A) with ∗ the representation ring of A. In
general, ∗ : Rep(A) −→ Rep(A) is not an involution, and the representation ring Rep(A) is not commutative. However, if
the Hopf algebra A possesses a universal R-matrix, then ∗ is an involution, and for two left A-modules V andW an A-linear
isomorphism cV ,W : V ⊗ W −→ W ⊗ V is defined by use of R, and hence we see that Rep(A) is commutative. We note
that Rep(A) is a free Z-module with finite rank, and a Z-basis of Rep(A) is given by the isomorphism classes of simple left
A-modules.

Lemma A.2. Let k be a field whose characteristic does not divide 2nN, and suppose that there is a primitive 4nN-th root of unity
in k. For integers i, j and an even integer k let χijk be the one-dimensional representation of the algebra ANn = k[GNn] given by
(5.20), and for integers j, k with j ≡ k (mod 2) let ρjk be the two-dimensional representation of the algebra ANn = k[GNn] given
by (5.21). We set ε(n) = 0 if n is even, and ε(n) = 1 if n is odd. Then as representations of the Hopf algebra ANn the following
hold for i, j, k, i′, j′, k′ ∈ Z.

• (i) [ρ2n+j,k] = [ρjk] = [ρ−j,k] for j ≡ k (mod 2), [ρn+j,k] = [ρn−j,k] for n+ j ≡ k (mod 2),
(ii) [ρ0k] = [χ00k ⊕ χ10k] for k ≡ 0 (mod 2), [ρnk] = [χ01,k−ε(n) ⊕ χ11,k−ε(n)] for k ≡ n (mod 2).
• On representations of tensor products
(iii) [χijk ⊗ χi′j′k′ ] = [χi+i′,j+j′,k+k′ ], where k, k′ are even,
(iv) [χijk ⊗ ρj′k′ ] = [ρj′k′ ⊗ χijk] = [ρnj+j′,k+k′+ε(n)j] for k ≡ 0, j′ ≡ k′ (mod 2),
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(v) [ρjk ⊗ ρj′k′ ] = [ρj+j′,k+k′ ⊕ ρj−j′,k+k′ ] for j ≡ k, j′ ≡ k′ (mod 2).
• On contragredient representations χ∗ijk and ρ

∗

jk
(vi) [χ∗ijk] = [χi,−j,−k] for k ≡ 0 (mod 2),
(vii) [ρ∗jk] = [ρj,−k] for j ≡ k (mod 2).

Proof. (i) By definition, [ρ2n+j,k] = [ρj,k] and [ρ−j,k] = [ρjk] are obtained immediately. By using these equations we have
[ρn+j,k] = [ρ−(n+j),k] = [ρ2n−(n+j),k] = [ρn−j,k].

(ii) Let {e1, e2} be the standard basis of V0k = k ⊕ k. Then the subspaces k(e1 + e2) and k(e1 − e2) are ρ0k-invariant, and
k(e1 + e2) = V00k and k(e1 − e2) = V10k as submodules of Vjk. This implies that [ρ0k] = [χ00k ⊕ χ10k]. Similarly, the
subspaces k(e1 + e2) and k(e1 − e2) of Vnk are also ρnk-invariant, and

k(e1 + e2) =
{
V01k (n is even),
V01,k−1 (n is odd), and k(e1 − e2) =

{
V11k (n is even),
V11,k−1 (n is odd),

as submodules of Vnk. This proves that [ρnk] = [χ01,k−ε(n) ⊕ χ11,k−ε(n)].
(iii) This follows from χijk ⊗ χi′j′k′ = χi+i′,j+j′,k+k′ .
(iv) By using the coproduct ∆ given in Proposition A.1, we see that (χijk ⊗ ρj′k′)(t), (χijk ⊗ ρj′k′)(w), (χijk ⊗ ρj′k′)(h) are

represented by the matrices

(−1)i+k
′j
(
0 1
1 0

)
,

(
ω2(nj+j

′)N 0
0 ω−2(nj+j

′)N

)
, ω2(k+k

′
+ε(n)j)n

(
1 0
0 1

)
,

respectively. Let {e1, e2} be the standard basis of k2. Then by considering the matrix presentation of χijk ⊗ ρj′k′ with
respect to the basis {e1, (−1)i+k

′je2}, we see that [χijk ⊗ ρj′k′ ] = [ρnj+j′,k+k′+ε(n)j].
Similarly, we see that, if n or j is even, then (ρj′k′ ⊗ χijk)(t), (ρj′k′ ⊗ χijk)(w), (ρj′k′ ⊗ χijk)(h) are represented by the

matrices

(−1)i
(
0 1
1 0

)
,

(
ω2(nj+j

′)N 0
0 ω−2(nj+j

′)N

)
, ω2(k+k

′
+ε(n)j)n

(
1 0
0 1

)
,

respectively, and, if n and j are odd, then they are represented by the matrices

(−1)i
(

0 ω2(nj
′
+j′)N

ω−2(nj
′
+j′)N 0

)
,

(
ω−2(nj+j

′)N 0
0 ω2(nj+j

′)N

)
, ω2(k+k

′
+j)n

(
1 0
0 1

)
,

respectively. So, in the casewhen n or j is even, by changing basis from {e1, e2} to {e1, (−1)ie2}we see that [ρj′k′⊗χijk] =
[ρnj+j′,k+k′+ε(n)j], and in the case when n and j are odd, by changing basis from {e1, e2} to {e2, (−1)iω2(nj

′
+j′)Ne1}we have

the same equation, [ρj′k′ ⊗ χijk] = [ρnj+j′,k+k′+j] = [ρnj+j′,k+k′+ε(n)j].
(v) Let {e1, e2} and {e′1, e

′

2} be the bases of Vjk and Vj′k′ , such that the matrix representations of ρjk and ρj′k′ with respect to
the bases are given by (5.21), respectively. Then the action of ρjk ⊗ ρj′k′ on Vjk ⊗ Vj′k′ is given by

t · ea ⊗ e′b =
{
e3−a ⊗ e′3−b (if k′ is even),
ω2(−1)

b(nj+j)Ne3−a ⊗ e′3−b (if k′ is odd),

w · ea ⊗ e′b =

{
ω2((−1)

1−aj+(−1)1−bj′)Nea ⊗ e′b (if k′ is even),
ω2((−1)

aj+(−1)1−bj′)Nea ⊗ e′b (if k′ is odd),

h · ea ⊗ e′b = ω
2(k+k′)nea ⊗ e′b

for a, b = 1, 2. Therefore, we see that [ρjk ⊗ ρj′k′ ] = [ρj+j′,k+k′ ⊕ ρj−j′,k+k′ ] by considering the matrix presentation of
ρjk⊗ρj′k′ with respect to the basis {e1⊗e′1, e2⊗e

′

2, e1⊗e
′

2, e2⊗e
′

1} or {e2⊗e
′

1, ω
2(jn−j)Ne1⊗e′2, e2⊗e

′

2, ω
2(jn+j)Ne1⊗e′1}

according to the case whether k′ is even or odd.
(vi) Since χ∗ijk(t) = (−1)

i, χ∗ijk(w) = (−1)
−j, χ∗ijk(h) = ω

−2(k+ε(n)j)n, we have χ∗ijk = χi,−j,−k.
(vii) Let {e1, e2} be the standard basis of Vjk = k⊕k. Thenwith respect to the dual basis {e∗1, e

∗

2} of {e1, e2}, the contragredient

representation ρ∗jk is represented as follows: ρ
∗

jk(h) =
(
ω−2kn 0
0 ω−2kn

)
, and, if k is even, then ρ∗jk(t) =

(
0 1
1 0

)
, ρ∗jk(w) =(

ω−2jN 0
0 ω2jN

)
, and, if k is odd, then ρ∗jk(t) =

(
0 −ω−2jN

−ω2jN 0

)
, ρ∗jk(w) =

(
ω2jN 0
0 ω−2jN

)
. Thus in the case when k is

even, by considering the matrix presentation of ρ∗jk with respect to the basis {e
∗

2, e
∗

1}, we see that [ρ
∗

jk] = [ρj,−k]. In the
case when k is odd, by considering the matrix presentation of ρ∗jk with respect to the basis {e

∗

1,−ω
2jNe∗2}, we have the

same result: [ρ∗jk] = [ρj,−k]. �

From the above lemma, we see that the representation ring of ANn is described as in the following proposition. In the case
when N = 1, this result has already proved by [7, Proposition 3.9].
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Proposition A.3. Let k be a field whose characteristic does not divide 2nN, and suppose that there is a primitive 4nN-th root of
unity in k.
(1) If n is even, then the representation rings of ANn and k[GNn] are isomorphic as rings with ∗-structure, and both of them
are isomorphic to the commutative ring generated by a, b, c, x1, . . . , xn−1 subject to the commutativity relations and the
following relations:

a2 = b2 = cN = 1, (A.5)
axi = xi (i = 1, 2, . . . , n− 1), (A.6)
bxi = xn−i (i = 1, 2, . . . , n− 1), (A.7)

xixj = c
1−(−1)ij
2 (x|i−j| + xi+j) (i, j = 1, 2, . . . , n− 1), (A.8)

where the indices of x in the right-hand side of (A.8) are treated under the rules

x0 = 1+ a, xn = b(1+ a), xn+i = xn−i (i = 1, 2, . . . , n− 1).

The ∗-structure is given by a∗ = a, b∗ = b, c∗ = c−1, x∗i = c
(−1)i−1
2 xi (i = 1, . . . , n− 1).

(2) If n is odd, then the representation rings of ANn and k[GNn] are isomorphic as rings with ∗-structure, and both of them are
isomorphic to the commutative ring generated by a, b, x1, . . . , xn−1 subject to the commutativity relations and the following
relations:

a2 = b2N = 1, (A.9)
axi = xi (i = 1, . . . , n− 1), (A.10)
bxi = xn−i (i = 2, 4, . . . , n− 1), (A.11)

xixj = b1−(−1)
ij
(x|i−j| + xi+j) (i, j = 1, . . . , n− 1) (A.12)

where the indices of x in the right-hand side of (A.12) are treated under the rules

x0 = 1+ a, xn = b(1+ a), xn+i = xn−i (i = 1, 2, . . . , n− 1).

The ∗-structure is given by a∗ = a, b∗ = b−1, x∗i = b
(−1)i−1xi (i = 1, . . . , n− 1).

Proof. Since the same results as in Lemma A.2 hold for the group Hopf algebra k[GNn], it is sufficient to prove that the
representation ring of ANn is isomorphic to the commutative ringRwhich is presented by the given generators and relations
described in the proposition. By Proposition A.1, we may assume that ANn = k[GNn] as algebras.
(1) By using Lemma A.2, we see that the representation ring Rep(ANn) is the commutative ring generated by a = [χ100], b =
[χ010], c = [χ002], xi = [ρiε(i)] (i = 1, . . . , n− 1)with relations (A.5)–(A.8), where χijk and ρjk are the one-dimensional
and two-dimensional representations of the algebra ANn = k[GNn] given by (5.20) and (5.21), respectively, and ε(i) is
equal to 0 or 1 according to whether i is even or odd, respectively. Furthermore, we have x0 = [χ000] + [χ100] = 1 +
a, xn = [χ010]+[χ110] = [χ010]+[χ010][χ100] = b(1+a), and xn+i = [ρn+i,ε(n+i)] = [ρn−i,ε(n+i)] = [ρn−i,ε(n−i)] = xn−i.
From the results argued so far, we see that there is a ring homomorphism f : R −→ Rep(ANn) such that

f (a) = [χ100], f (b) = [χ010], f (c) = [χ002], f (xi) = [ρiε(i)] (i = 1, 2, . . . , n− 1).

The map f is bijective. The inverse map g : Rep(ANn) −→ R is the Z-linear map defined by

g([χijk]) = aibjc
k
2 (i, j = 0, 1, k = 0, 2, . . . , 2N − 2),

g([ρjk]) = c
k−ε(j)
2 xj (k = 0, 1, . . . , 2N − 1, j = 1, 2, . . . , n− 1, j ≡ k (mod 2)).

We conclude that f : R −→ Rep(ANn) is a ring isomorphism.
The ∗-structure in Rep(ANn) is also determined by Parts (vi) and (vii) of Lemma A.2.

(2) In the same manner as above, it can be verified that there is a ring isomorphism f : R −→ Rep(ANn) such that
f (a) = [χ100], f (b) = [χ010], f (xi) = [ρiε(i)] (i = 1, . . . , n − 1) preserving ∗-structures. Here, what we should take
account of is the following fact. If we set b = [χ010], then [χ002] = b2, and since n is odd, it follows from Parts (i) and
(iv) of Lemma A.2 that

bxi = [χ010][ρiε(i)] = [ρn+i,1+ε(i)] = [ρn−i,1+ε(i)] =
{
[χ002 ⊗ ρn−i,0] = b2xn−i (i is odd),
[χ000 ⊗ ρn−i,1] = xn−i (i is even).

This is equivalent to bxi = xn−i for all even integers i. �

Remark A.4. In the casewhen (λ, n) = (+, even) or (λ, n) = (−, odd), as an algebra A+λNn is isomorphic to the group algebra
k[G′Nn], where

G′Nn = 〈h, t, w | t
2
= h2N = 1, wn = 1, tw = w−1t, ht = th, hw = wh〉.
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In a similar manner as in the proofs of Lemma A.2 and Proposition A.3, one can determine the structure of Rep(A++Nn ) in the
case when n is even, and the structure of Rep(A+−Nn ) in the case when n is odd. As a result, we see that in the case when n is
even the representation ring Rep(A++Nn ) is not commutative (see Lemma A.7 in Appendix A.3), whereas the representation
ring Rep(k[G′Nn]) is commutative since k[G

′

Nn] is cocommutative. Therefore, two representation rings of A
++

Nn and k[G
′

Nn] are
not isomorphic. On the contrary, in the casewhen n is odd, we see that Rep(A+−Nn )⊗Z k and Rep(k[G

′

Nn])⊗Z k are isomorphic
as algebras with ∗-structure over k.

A.3. Self-duality of A+λNn

Based on Proposition A.1, we identify A+λNn with k[G] such as

h = x211 − x
2
12,

t = xN12 + x
N
22 = x

N−1
11 x22 + x

N
12,

w = x2N−111 x22 − x2N−121 x12 = x2N−111 χ22 − x2N−212 χ221.

Thenw−1 = x22x2N−111 − x12x2N−121 = x2N−211 χ222 − x
2N−1
12 χ21.

Suppose that α, β ∈ k satisfy (αβ)N = 1 and (αβ−1)n = λ, and consider the braiding σαβ of A+λNn defined in
Theorem 5.7. We set ξ := αβ and η := αβ−1. By induction one can determine the values of σαβ on the elements of the basis
{hiwktp | 0 ≤ i ≤ 2N − 1, 0 ≤ k ≤ n− 1, p = 0, 1} of A+λNn as follows. For i, j, k, l ≥ 0,

σαβ(hiwk, hjwl) = ξ 2ijη−2kl, (A.13)

σαβ(hiwk, hjwlt) = (−1)i+kξ 2ijη−k(2l−1), (A.14)

σαβ(hiwkt, hjwl) = (−1)j+lξ 2ijη(2k−1)l, (A.15)

σαβ(hiwkt, hjwlt) = (−1)i+j+k+lξ 2ij+
N2−1
2 η2kl−k−lα. (A.16)

From here to the end of the paper, we suppose that k is a field whose characteristic does not divide 2nN , and that it
contains a primitive 4nN-th root of unity.

Theorem A.5. Let α, β be elements in k satisfying (αβ)N = 1 and (αβ−1)n = λ. Suppose that λ = −1 or (λ, n) = (1, odd).
Then the braiding σαβ of A+λNn is non-degenerate if and only if

(i) αβ is a primitive N-th root of unity, and
(ii) αβ−1 is a primitive n-th root of λ.

Proof. To show the ‘‘if’’ part, we show the contraposition.
Suppose that αβ is not a primitive N-th root of unity. Then N ≥ 3 is required since, if N = 1, then αβ = (αβ)N = 1. Let

ξ be a primitive N-th root of unity. Then αβ is represented by αβ = ξm for some divisor m (6= 1) of N . Hence, by setting
m′ := N/m (< N), we have σαβ(h2m

′

, hjwl) = (αβ)4m
′j
= 1 = σαβ(1, hjwl), σαβ(h2m

′

, hjwlt) = (−1)2m
′

(αβ)4m
′j
= 1 =

σαβ(1, hjwlt). Thus σαβ(1 − h2m
′

, a) = 0 for all a ∈ A+λNn . Since 1 < 2m
′ < 2N , we see that 1 − h2m

′

6= 0. Therefore, σαβ
degenerates as a bilinear form on A+λNn .
Next, suppose that αβ−1 is not a primitive n-th root of λ. Then there is an r ∈ N such that 1 ≤ r < n and

(αβ−1)r = λ. So, (αβ−1)n−r = 1. By (A.13) and (A.14), we have σαβ(wn−r , hjwl) = (αβ−1)−2(n−r)l = 1, σαβ(wn−r , hjwlt) =
(−1)n−r(αβ−1)−(n−r)(2l−1) = (−1)n−r . Thus, if n − r is even, then σαβ(1 − wn−r , a) = 0 for all a ∈ A+λNn . It follows from
0 < n− r ≤ n−1 that 1−wn−r 6= 0, and hence σαβ degenerates. If n− r is odd, then σαβ(hN−wn−r , a) = 0 for all a ∈ A+λNn .
Since hN − wn−r 6= 0, the braiding σαβ also degenerates as a bilinear form.
We will show the ‘‘only if’’ part. Let us consider the linear map F : A+λNn −→ (A+λNn )

∗ defined by

F(a) =
2N−1∑
j=0

n−1∑
l=0

σαβ(a, hjwl)(hjwl)∗ +
2N−1∑
j=0

n−1∑
l=0

σαβ(a, hjwlt)(hjwlt)∗ (a ∈ A+λNn ).

Here, {(hjwltp)∗ | 0 ≤ j ≤ 2N − 1, 0 ≤ l ≤ n, p = 0, 1 } stands for the dual basis of the basis { hjwltp | 0 ≤ j ≤ 2N − 1, 0 ≤
l ≤ n, p = 0, 1} of A+λNn . Setting ξ = αβ, η = αβ

−1, we have
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F(hiwk) =
2N−1∑
j=0

n−1∑
l=0

ξ 2ijη−2kl
(
(hjwl)∗ + (−1)i+kηk(hjwlt)∗

)
,

F(hiwkt) =
2N−1∑
j=0

n−1∑
l=0

(−1)j+lξ 2ijη2kl−l
(
(hjwl)∗ + (−1)i+kξ

N2−1
2 η−kα(hjwlt)∗

)
.

In what follows, let ξ be a primitive N-th root of unity, and η be a primitive n-th root of λ.
Since N is odd, for j, j′ ∈ Zwe have

2N−1∑
i=0

ξ 2i(j−j
′)
=

{
2N if j ≡ j′ (mod N),
0 otherwise,

2N−1∑
i=0

(−1)iξ 2i(j−j
′)
= 0.

Furthermore, since η2(l−l
′)
= 1 if and only if l− l′ ≡ 0 (mod n) under the condition λ = −1 or (λ, n) = (1, odd), it follows

that, for l′ ∈ Z,

n−1∑
k=0

η2k(l−l
′)
=

{
0 otherwise,
n if l ≡ l′ (mod n). (A.17)

Therefore,
2N−1∑
i=0

n−1∑
k=0

η2kl
′

ξ−2ij
′

F(hiwk) = 2nN
(
(hj
′

wl
′

)∗ + (hj
′
+Nwl

′

)∗
)
,

2N−1∑
i=0

n−1∑
k=0

η−2kl
′

ξ−2ij
′

F(hiwkt) = 2nN(−1)j
′
+l′η−l

′(
(hj
′

wl
′

)∗ − (hj
′
+Nwl

′

)∗
)
.

From these equations, we have

(hj
′

wl
′

)∗ =
1
4nN

(
2N−1∑
i=0

n−1∑
k=0

η2kl
′

ξ−2ij
′

F(hiwk)+ (−1)j
′
+l′ηl

′
2N−1∑
i=0

n−1∑
k=0

η−2kl
′

ξ−2ij
′

F(hiwkt)

)
,

(hj
′
+Nwl

′

)∗ =
1
4nN

(
2N−1∑
i=0

n−1∑
k=0

η2kl
′

ξ−2ij
′

F(hiwk)− (−1)j
′
+l′ηl

′
2N−1∑
i=0

n−1∑
k=0

η−2kl
′

ξ−2ij
′

F(hiwkt)

)
.

In a similar manner, it can be proved that (hj
′

wl
′

t)∗ and (hj
′
+Nwl

′

t)∗ are linear combinations of {F(hiwk), F(hiwkt) | 0 ≤
i ≤ 2N−1, 0 ≤ k ≤ n−1}. Thus F is surjective, and hence F is an isomorphism. This implies that σαβ is non-degenerate. �

Corollary A.6. Suppose that λ = −1, or (λ, n) = (1, odd). Then the Hopf algebra A+λNn is self-dual.

Proof. In general, for a finite-dimensional Hopf algebra A, any braiding σ : A ⊗ A −→ k gives rise to the Hopf pairing
〈 , 〉 : Acop⊗ A −→ k defined by 〈x, y〉 = σ(x, y) for x, y ∈ A, and this pairing induces a Hopf algebra map F : A −→ (Acop)∗
defined by (F(a))(b) = σ(a, b) for a, b ∈ A. Applying this fact to the Hopf algebra A+λNn and the braiding σαβ , we have a
Hopf algebra map F : A+λNn −→ ((A+λNn )

cop)∗. Furthermore, an algebra isomorphism φ : A+λNn −→ A+λNn can be defined by
φ(xij) = xji (i, j = 1, 2), and we see that it becomes a Hopf algebra isomorphism form A+λNn to (A

+λ
Nn )

cop [12]. So, if σαβ is
non-degenerate, then the composition tφ ◦ F : A+λNn −→ (A+λNn )

∗ gives a Hopf algebra isomorphism.
To complete the proof, by Theorem A.5, it suffices to show that there are α, β such that αβ is a primitive N-th root of

unity, and αβ−1 is a primitive n-th root of λ. Letω ∈ k be a primitive 4nN-th root of unity. In the casewhen λ = −1, we take
α = ωN+2n, β = ω2n−N . Then αβ−1 = ω2N is a primitive n-th root of−1, and αβ = ω4n is a primitive N-th root of unity. In
the case when λ = 1 and n is odd, we take α = ω2N+2n, β = ω2n−2N . Then αβ−1 = ω4N and αβ = ω4n are primitive n-th
and primitive N-th roots of unity, respectively. �

To show that A++Nn is not self-dual for any even integer n, we compare the groups of group-like elements of A
++

Nn and
(A++Nn )

∗. The structure of G(AνλNn) for all N ≥ 1, n ≥ 2 and λ, ν = ±1 has already been determined by Suzuki [12]. In the case
when N is odd, and ν = +, the group G(AνλNn) is given as follows.

G(A+λNn ) ∼=
{
C2 × C2N (n is even, or (n, λ) = (odd, 1)),
C4N (n is odd, and λ = −1). (A.18)

On the contrary, we have:

Lemma A.7. The structure of G((A+λNn )
∗) is given as follows.
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G((A++Nn )
∗) ∼=

{
SA8N (n is even),
C2 × C2N (n is odd), G((A+−Nn )

∗) ∼=

{
C2 × C2 × CN (n is even),
C4N (n is odd),

where SA8N is the finite group of order 8N defined by SA8N = 〈 b, c | b2 = c4N = 1, cb = bc2N+1 〉.

Proof. Let ω be a primitive 4nN-th root of unity.

(1) If n is even, then G((A++Nn )
∗) = {χijk | i, j = 0, 1, k = 0, 1, . . . , 2N − 1}, where χijk : A++Nn −→ k is the

algebra map defined by χijk(t) = (−1)i, χijk(w) = (−1)j, χijk(h) = ω2nk. Since the product of G((A++Nn )
∗) is given

by χijkχi′j′k′ = χi+i′+(j+k)k′,j+j′,k+k′ for all integers i, i′, j, j′, k, k′, and a := χ100, b := χ010, c := χ001 satisfy the equations
a2 = b2 = 1, c2N = a, cb = bc2N+1, we have G((A++Nn )

∗) = 〈 b, c | b2 = c4N = 1, cb = bc2N+1 〉 = SA8N .
If n is odd, then G((A++Nn )

∗) = { χik | i = 0, 1, k = 0, 1, . . . , 2N − 1 }, where χik : A++Nn −→ k is the algebra map defined
by χik(t) = (−1)i, χik(w) = (−1)k, χik(h) = ω2nk. Since the product of G((A++Nn )

∗) is given by χikχi′k′ = χi+i′,k+k′ for all
integers i, i′, k, k′, we see that G((A++Nn )

∗) ∼= C2 × C2N .
(2) If n is even, then we see that G((A+−Nn )

∗) = { χijk | i, j = 0, 1, k = 0, 2, . . . , 2N − 2 }, where χijk is the algebra map
defined in the same way as in the proof of Part (1). Since the product of G((A+−Nn )

∗) is given by χijkχi′j′k′ = χi+i′,j+j′,k+k′ ,
and a := χ100, b := χ010, c := χ002 satisfy the equations a2 = b2 = 1, cN = 1, we see that G((A+−Nn )

∗) = C2 × C2 × CN .
If n is odd, then G((A+−Nn )

∗) = {χik | i = 0, 1, k = 0, 2, . . . , 2N − 2}, where χik : A+−Nn −→ k is the algebra map
such that χik(t) = (−1)i, χik(w) = 1, χik(h) = ω2nk. The product of G((A+−Nn )

∗) is given by χikχi′k′ = χi+i′+kk′,k+k′ , and
a := χ10 and b := χ01 satisfy the equations a2 = 1, b2N = a. Hence G((A+−Nn )

∗) = C4N . �

If a semisimple Hopf algebra A possesses a quasitriangular structure, the representation ring needs to be commutative.
In the case when N ≥ 1 is odd, and n is even, by Lemma A.7 the representation ring of the dual Hopf algebra (A++Nn )

∗ is not
commutative, and therefore there is no quasitriangular structure of (A++Nn )

∗. By (A.18) and Lemma A.7 we have:

Proposition A.8. If n is even, then the Hopf algebra A++Nn is not self-dual.

Proof. The group G(A++Nn ) ∼= C2 × C2N is commutative by (A.18); meanwhile, G((A
++

Nn )
∗) ∼= SA8N is not by Lemma A.7. This

implies that G(A++Nn ) � G((A
++

Nn )
∗), and A++Nn � (A

++

Nn )
∗. �

Corollary A.9. If n is even, then all braidings of A++Nn degenerate.

Proof. Assume that there is a non-degenerate braiding of A++Nn . Then there is a Hopf algebra isomorphism F : A
++

Nn −→

((A++Nn )
cop)∗. Let us consider the Hopf algebra isomorphism φ : A++Nn −→ (A++Nn )

cop defined by φ(xij) = xji (i, j = 1, 2). Then
the composition tφ ◦ F : A++Nn −→ (A++Nn )

∗ is also a Hopf algebra isomorphism. This contradicts Proposition A.8. �
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