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Materials testing involve complex reference methods and several soil tests have been used

for indexing material functional attributes for civil engineering applications. However,

conventional laboratory methods are expensive, slow and often imprecise. The potential of

soil diffuse reflectance near infrared (NIR) spectroscopy for the rapid estimation of selected

key engineering soil properties was investigated. Two samples sets representing different

soils from across the Lake Victoria basin of Kenya were used for the study: A model cali-

bration set (n ¼ 136) was obtained using a conditioned Latin hypercube sampling, and a

validation set (n ¼ 120) using a spatially stratified random sampling strategy. Spectral

measurements were obtained for air-dried (<2 mm) soil sub-samples using a Fourier-

transform diffuse reflectance near infrared (NIR) spectrometer. Soil laboratory reference

data were also obtained for liquid limit (LL), plastic limit (PL), plasticity index (PI), linear

shrinkage (LS), coefficient of linear extensibility (COLE), volumetric shrinkage (VS), clay

activity number (Ac), total clay content, air-dried moisture content, and cation exchange

capacity (CEC). Soil reference data were calibrated to smoothed first derivative NIR spectra

using partial least squares (PLS) regression. At the calibration stage, coefficient of deter-

mination for full cross-validation (R2) of �0.70 was obtained for CEC, mc, LL, PI, LS, COLE

and VS. Further independent validation gave R2 � 0.70 and RPD (ratio of reference data SD

and root mean square error of prediction) 1.7e2.2 for LL, PI, mc and CEC. The results

suggested that NIRePLS has potential for the rapid estimation of several key soil
red; LVB, Lake Victoria Basin; CEC, cation exchange capacity; tClay, total clay content; LL,
ex; LS, linear shrinkage; COLE, coefficient of linear extensibility; VS, volumetric shrinkage;
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engineering properties. Further work should focus on extending calibration libraries using

more diverse soil types and testing alternative infrared diffuse reflectance based methods.

ª 2014 The Authors. Published by Elsevier Ltd. on behalf of IAgre. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Different materials testing systems (e.g., double-oedometer,

triaxial, shear, Proctor, and California Bearing Ratio test)

have been devised in an effort to produce empirical standard

evidence to evaluate the ability of any given soil to perform.

However, these tests use complicated equipment, require

highly skilled operators and use also large amounts of sample

materials. Several soil tests have been used to provide rapid

indicators of soil functional capacity for preliminary

geotechnical site investigations. These include soil particle

size analysis, Atterberg or consistency limits, linear

shrinkage and derived parameters. Others include gravi-

metric moisture content (mc) and cation exchange capacity

(CEC) (Bell, 2000, chap. 3; Bell, Culshaw, & Northmore, 2003;

Bowles, 1992, chap. 1; Fratta, Aquettant, & Roussel-Smith,

2007, chap. 3). However, conventional laboratory methods

are expensive, slow and often imprecise. The methods also

involve single soil tests and physical destruction of the soil

system and require the use of (environmentally harmful)

chemical extractants. Analysis of soil using diffuse reflec-

tance infrared technology is an alternative well known for its

rapidity, simplicity, precision and cost-effectiveness (Viscarra

Rossel & McBratney, 1998).

Diffuse reflectance near infrared spectroscopy (NIR) has

extensively been applied for analyses in very diverse fields

including, agriculture, geology, medicine, and soil science

(Shepherd & Walsh, 2007). In soil science, numerous studies

(Stenberg, Viscarra-Rossel, Mouazen, &Wetterlind, 2010) have

demonstrated that the NIR spectral range combined with a

multivariate calibration method could be used as a non-

destructive rapid analytical technique to simultaneously es-

timate several soil compositional constituents and soil quality

attributes with acceptable accuracy in a very short time. NIR is

additionally adaptable for field-based and ‘on-the-go field use

(Stenberg et al., 2010) important for rapid preliminary

geotechnical investigations.

There already is some evidence of the utility of NIR in

predicting soil engineering properties (Kariuki, Van der Meer,

& Siderius, 2003; Kariuki, Van der Meer, & Verhoef, 2003).

However, no studies were available on the potential of NIR

combined with partial least squares (PLS) regression for rapid

estimation of consistency (Atterberg) limits (liquid limit-LL,

plastic limit-PL, plasticity index-PI), linear shrinkage (LS),

and associated coefficient of linear extensibility (COLE) and

volumetric shrinkage (VS). Kariuki, Van derMeer, and Siderius

(2003) achieved satisfactory classification of soils into broad

swell-potential categories by relating spectral absorption

features (feature position, asymmetry and depth) in the

shortwave infrared (SWIR: 1300e2500 nm) with threshold

values of shrink-swell indicator soil properties (including CEC,

PI and COLE tests). Kariuki, Van der Meer, and Verhoef (2003)
found strong relationship of SWIR spectral absorption fea-

tures (asymmetry at 1400 and 2200 nm) with soil activity (ratio

CEC:% clay), a commonly applied engineering index for esti-

mation of CEC, suggesting great potential of NIR for estimation

of CEC. However, geographic transferability continues to

challenge the widespread use and application of soil infrared

spectroscopic studies (Reeves, 2010; Stenberg et al., 2010), a

result of application of less rigorous validation strategies

(Brown, Bricklemyer, & Miller, 2005).

Few studies using NIRePLS for soil analyses have used

completely independent validation data although Dardenne,

Sinnaeve, and Baeten (2000) found that the veracity of

chemometric-based models could only be established using

totally independent test sets, preferably collected after model

calibration. Nanni and Demattè (2006) interchanged surface

and subsurface samples data sets as calibration and valida-

tion sets for estimation of several soil properties, a strategy

that Brown et al. (2005) refer to as pseudo-independent vali-

dation. Sorensen and Dalsgaard (2005) used samples sets from

the relatively more homogeneous surface horizon and a

restricted clay range (<26%) for independent prediction of

total clay content. Independent validation data sets drawn

from the target population are required to establish true pre-

dictive ability and robustness of a spectral test and evaluate its

fitness for purpose. This study therefore aimed to assess

performance of NIRePLS for rapid estimation of several soil

properties that are commonly used in materials stability

indices for civil engineering applications using an indepen-

dent validation data set drawn from the same geographical

area. A key question was whether the prediction accuracy

would be sufficient for engineering applications and

standards.
2. Materials and methods

2.1. Sample collection

Two sets of soil samples were collected from an area that fall

within Lake Victoria Basin (LVB) in the western part of the

Republic of Kenya covering approximately 46,400 km2 and

bound by latitudes 0�704800N, 0�2403600S and longitudes 34�510E,
35�4301200E and the 1400 m above sea level contour (Fig. 1).

Sampling sites for the calibration set (n ¼ 136) (Fig. 1) were

established following a simplified version of the conditioned

Latin hypercube sampling (Minasny & McBratney, 2006).

The validation set (n ¼ 120) was obtained from two

different and spatially separated sentinel sites (10 � 10 km

blocks, see UNEP (2012) for sentinel site sampling design),

Homa Bay (HB) and Lower Nyando (LNY) within LVB of Kenya

(see inset in Fig. 1), one year after collection of the calibration

set. Selection of the sites and sample collection in the field
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Fig. 1 e Distribution of calibration set sampling sites within Lake Victoria basin of Kenya (also indicating two sentinel sites

used for obtaining validation samples).
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followed the land degradation surveillance framework pro-

tocol (Walsh & Vagen, 2006). Figure 2 illustrates layout and

distribution of sampling plots in HB. In the field, samples were

collected at three depths (0.0e0.2, 0.2e0.5, 0.5e1.0 m) using a

Dutch soil auger. Prior to analyses, bulk soil samples were air-

dried at 40 �C for two weeks followed by gently crushing to

pass a 2-mm sieve. Sub-samples were then used for various

analyses.
2.2. Spectral measurements

Spectral measurements were conducted using a Fourier-

transform diffuse reflectance spectrometer (Multi-Purpose

Analyser (MPA), Bruker Optics, Germany) customised for NIR

(12,500e3600 cm�1). Measurements were made using resolu-

tion of 8 cm�1, taking an average of 32 scans. Reflectance

spectra were transformed to absorbance spectra and recorded

using the Optics Users Software (OPUS) (Bruker Optics, Ger-

many) (Shepherd, 2010). Principal component analysis (PCA)

of the NIR spectra for the combined HB and LNY sample set

(n¼ 417)was used to select representative 120 (w25%) samples

that were used to provide reference data and spectral vari-

ables for validation.
2.3. Development of soil reference data

Soil physical and chemical analyses were conducted using

standard laboratory methods as reported by Shepherd and

Walsh (2002) for development of calibration and validation

models. Air-dried soil moisture content (mc %) was deter-

mined by gravimetric method. Total clay content (tClay, %)
was determined by hydrometer method following Gee and

Bauder (1986). Soil effective CEC (cmol (þ) kg�1) was obtained

as the numeric sum of exchangeable Ca, Mg, Na, and K.

Determination of Atterberg limits LL and PL (%) and LS (%)

followed British Standards Institution (BSI: 1377, 1975, chap.

2). The PI (%) was computed as the numerical difference be-

tween LL and PL. Clay activity number (Ac, unit) was obtained

as the ratio of PI to tClay. The COLE (unit) and VS (%) were

computed using LS data as reported by Igwe (2003).

Repeatability and intra-laboratory reproducibility tests

were conducted for Atterberg limits and linear shrinkage.

Repeatability was assessed using the coefficient of variability

(CV), expressed in percentage [% CV ¼ (SD/mean) � 100],

where SD is the standard deviation of the measurements.
2.4. Soil properties

Soil depths (0.0e0.2, 0.2e0.5, 0.5e1.0 m) were combined for

both calibration and validation samples sets. This presented a

wide range in soil property data (Table 1). For both samples

sets PL and Ac were highly skewed and natural log (ln)

transformation was applied to reduce skewness. Soil mc and

CEC had slight skewness and square-root transformation was

applied. Rawdata distribution for tClay, LL, PI, LS, COLE andVS

approximated a Gaussian distribution and so no trans-

formation was used.

Soil property data for the validation sample setwerewithin

the range of the calibration set for all soil properties except for

CEC and tClay (Table 1), satisfying a key requirement for a

successful NIR PLS analysis (Stenberg et al., 2010). Data range

for CEC was 3.41e67.0 and 4.79e76.4 (cmol(þ) kg�1) in the
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Fig. 2 e Sentinel site indicating distribution of clusters and sampling plots for validation set (plots marked in red were

priority locations).
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calibration and validation sets respectively. The tClay indi-

cated 9.0e61.0 and 7.0e81.0 (%) in the calibration and valida-

tion sets respectively.

PCA scores plot of NIR spectra for combined calibration

(n¼ 136) and validation (n¼ 417) samples (Fig. 3) indicated that

the majority of validation samples (marked with ‘v’) were

within range of calibration samples (marked with ‘c’), affirm-

ing that the two sets belonged to the same soil population.
Table 1 e Soil engineering properties for calibration samples s
parenthesis).

Property min 25% 50%

CEC 3.41 (4.8) 16.6 (16.8) 26.4 (30

tClay 9.0 (7.0) 25.0 (30.5) 41.0 (47

LL 21.8 (22.2) 40.5 (44.3) 52.7 (60

PL 10.8 (11.4) 17.1 (18.1) 21.2 (22

PI 5.5 (8.4) 21.8 (22.8) 30.1 (35

LS 2.9 (3.6) 9.9 (11.4) 12.1 (14

COLE 0.03 (0.04) 0.11 (0.13) 0.14 (0.1

VS 9.1 (11.5) 36.6 (43.9) 47.5 (58

Ac 0.4 (0.3) 0.7 (0.6) 0.8 (0.7

mc 0.7 (0.7) 4.4 (4.2) 6.5 (6.9
2.5. Calibration of soil properties

Prior to calibration development, transformed reference data

were mean-centred and then scaled (1/SD). Absorbance

spectra were transformed using SavitzkyeGolay first deriva-

tive and a smoothing factor. Only the <8000 and >4000 cm�1

spectral bands were used, to exclude excessive noise at the

shorter wavelengths. Spectral outliers were checked in the
et (corresponding data for validation set is shown in

75% max SD

.3) 36.6 (43.8) 67.0 (76.4) 14.0 (16.6)

.0) 51.0 (61.0) 61.0 (81.0) 14.8 (17.0)

.8) 66.0 (73.5) 90.7 (96.7) 18.7 (18.5)

.4) 25.8 (26.9) 39.3 (45.3) 6.9 (6.3)

.6) 41.1 (47.0) 62.8 (66.1) 14.0 (14.5)

.3) 14.3 (15.7) 21.2 (20.0) 4.2 (3.8)

7) 0.17 (0.19) 0.27 (0.25) 0.05 (0.05)

.9) 58.8 (67.3) 104.3 (95.3) 20.6 (19.4)

) 1.0 (0.9) 1.8 (1.9) 0.3 (0.3)

) 8.3 (9.1) 15.9 (13.4) 3.1 (3.3)
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Fig. 3 e PCA scores plot (PC1 vs PC2) for NIR spectra of combined calibration and validation samples sets (PCA was run in

Unscrambler using leverage correction for model validation. Validation samples (v) outside the span of calibration samples

(c) were visually identified as potential spectral outliers).

Table 2e Repeatability (% CV) for soil Atterberg limits and
linear shrinkage.

Test Ba Ca La Na Wa Ja Ea

LL% 2.8 4.4 3 1.7 14.3 1.5 4.4

PL% 20.5 15.3 16.2 6.2 22.6 3.3 9.2

PI% 23.8 21.3 22.3 9.9 4.7 3.9 6.2

LS% 3.4 15.8 4.1 5.3 4.6 2.9 14.8

COLE 3.9 17.7 4.7 5.9 4.6 3.3 16.4

VS% 1.4 5.9 1.7 1.8 1 1.3 5.2

a Codes: B, C, E, J, L, N, andW identify the seven different operators

used for the test; column data indicate repeatability for individual

operators, whereas row data indicate reproducibility across the

seven different operators; the test sample was a friable red clay

loam soil of moderate plasticity (LL ¼ 45.3, PL ¼ 29.8, PI ¼ 15.5).
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calibration set using Mahalanobis distance (Naes, Isaksson,

Fern, & Davies, 2002; Shepherd & Walsh, 2002). PCA scores

plot of derivative NIR spectra was used to compute Robust

Mahalanobis distances (H). Samples with H > 12 were

considered potential outliers. The transformed spectra were

calibrated to each of the soil property reference values by PLS

1. Calibrationsweremadewith leave-out-one cross-validation

(looCV). The Unscrambler software version 9.2 (Camo Soft-

ware ASA, Oslo, Norway) was used for data pretreatment and

calibration. The calibration procedure in The Unscrambler is

well described by other workers (Canasveras, Barron, Del

Campillo, Torrent, & Gomez, 2010; Stenberg, 2010). In The

Unscrambler, full model with a maximum 20 principal com-

ponents (PCs) was set; however, the optimal number of PCs to

be used for each property was determined using residual

variances (CAMO ASA, 1998). The predictive ability of the

models was evaluated by the coefficient of determination (R2),

the root mean square error of cross-validation (RMSECV) and

the RPD (ratio of SD of calibration reference values to

RMSECV). The RMSECV was calculated as follows:

RMSECV=RMSEP ¼
hX

ðy� xÞ2
.
n� 1

i1=2
(1)

where y is the predicted value by NIR-PLS technique, x is the

reference value, and n is the total number of samples.

The looCV calibrationmodels with R2 > 0.3 (Saeys, Xing, De

Baerdemaeker, & Ramon, 2005) were further validated using

similarly preprocessed reference and NIR spectral data for the

samples from independent sites. The predictive ability of the

models was evaluated by the coefficient of determination (R2),

the rootmean square error of prediction (RMSEP), and the RPD

(ratio of SD of validation reference values to RMSEP). RMSEP

was calculated using Eq. (1). The Unscrambler software was

used for the predictions. Calibration and independent
validation statistics (coefficient of determination, RMSECV,

RMSEP, and RPD) were given for back-transformed data.

A reference value outlier sample was defined as sample

whose difference between predicted andmeasured value for a

soil property was greater than 3 � RMSECV/RMSEP (Islam,

Singh, & McBratney, 2003). For the validation set, the num-

ber of samples detected as reference value outliers were 1 for

tClay, 2 for mc, LL, PI, PL, LS and VS, 3 for CEC and COLE.

Samples with spurious (negative) predictions (1 for LL, PI and

COLE; 2 for LS and VS) were also considered outliers. The

outlier samples were excluded from predictions and the

model statistics (R2 and RMSEP) recalculated. Prediction for PL

was optimised with removal also of non-plastic soils (total six

samples). One sample had inadequate soil material for me-

chanical tests (LL, PI, PL, LS COLE andVS). Five spectral outliers

were removed (RobustMahalanobis> 12) in the calibration set

but had no impact on looCV models.

http://dx.doi.org/10.1016/j.biosystemseng.2014.03.003
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Fig. 4 e Scatterplot comparison of measured and predicted values for different soil engineering properties. Cross-validated

models developed with partial least squares (PLS) regression were further tested using an independent sample set.

Validation statistics were as follows: (a) CEC (R2 [ 0.70, RMSEP [ 9.6, n [ 117); (b) mc (R2 [ 0.80, RMSEP [ 1.95, n [ 118); (c)

b i o s y s t em s e n g i n e e r i n g 1 2 1 ( 2 0 1 4 ) 1 7 7e1 8 5182
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3. Results and discussion

3.1. Soil properties

Atterberg limits and linear shrinkage gave variable measure-

ment precision (Table 2). LL indicated % CV 1.5e14.3, but was

better reproduced by six of the seven operators (% CV 1.5e4.4).

PL, PI and LS presented greater variability across the different

operators.

The quality of reference data is among the key factors

influencing performance of NIR models (Stenberg et al., 2010).

Low repeatability and reproducibility for both Atterberg limits

and LS (Table 2), suggested potential for low quality reference

data. Several workers (Genot et al., 2011; Shepherd, Vanlauwe,

Gachengo, & Palm, 2005) have shown that NIR measurements

are more repeatable than wet chemistry.
3.2. Calibration of soil properties

NIR PLS statistics for CEC was excellent (R2 0.80, RMSECV

5.9 cmol (þ) kg�1, RPD 2.4) and better than R2 0.75 reported by

Islam et al. (2003) using samples from different soil horizons.

This was attributed to strong association of CEC with spec-

trally active soil clay mineralogy (reflected by tClay), soil

organic carbon (SOC) and mc (Chang, Laird, Mausbach, &

Hurburgh, 2001; Stenberg et al., 2010). Estimation of tClay

was weak (R2 0.5, RMSECV 11.0%, RPD 1.4) although texture

exhibits a primary response to NIR spectra (Chang et al., 2001).

This was attributed to the negative effect on the path of light

and reflectance spectra occasioned by variation in soil particle

size, shape, and arrangement for different samples in the

calibration set (Stenberg et al., 2010). Estimation of LL (R2 0.83,

RMSECV 6.9%, RPD 2.7) andmc (R2 0.83, RMSECV 1.3%, RPD 2.4)

was excellent, attributed to high resonance of soil water with

characteristic intense water absorption bands in the NIR re-

gion (Mouazen, De Baerdemaeker, & Ramon, 2006). Prediction

ofmcwas similar to R2 0.85 and RPD 2.0 attained by Islam et al.

Weak (R2 0.5, RMSECV 4.1%) but reliable (RPD 1.7) performance

was observed for PL. Performance for PI (R2 0.7, RMSECV 7.6%,

RPD 1.9) was between that for LL and PL (PI ¼ LL � PL). Esti-

mation of LS and associated COLE and VS was reliable (R2 0.7,

RPD 1.8e2.0) and prediction errors 2.1%, 0.03, and 10.9%,

respectively. This was attributed to association of LS with soil

mc allowing secondary response (indirect co-variation) of LS

with NIR spectra (Stenberg et al.). NIR PLS could, however, not

predict Ac (R2 < 0.3, RPD 1.3). Poor prediction of PL and Ac was

attributed to poor quality reference data (Table 2) (Stenberg

et al.). Determination of Ac was, for example, susceptible to

error propagation in the determination of tClay, LL, and PL.

The NIR PLS looCV analyses suggested great potential for

rapid estimation of soil engineering properties CEC,mc, LL, PL,

PI, LS, COLE and VS (R2 0.53e0.83; RPD 1.8e2.7). However,

looCV could overestimate the predictive performance of a
LL (R2 [ 0.74, RMSEP [ 9.9, n [ 116); (d) PI (R2 [ 0.73, RMSEP [

(R2 [ 0.46, RMSEP [ 4.13, n [ 115); (g) COLE (R2 [ 0.46, RMSEP [

The target (1:1) regression line is shown for each plot. Error bars

the different quartiles.
model (Brown et al., 2005). Therefore, the looCV models were

further tested using spectra of an independent sample set.
3.3. Independent validation

Good independent validation (R2 0.7, RMSEP 9.6 cmol (þ) kg�1,

RPD 1.7) was observed for the CEC model (Fig. 4(a)). This re-

flected the robust relationship between CEC and spectrally

active soil components (mc, SOC, and clay mineralogy)

(Stenberg et al., 2010). These results were comparable with R2

0.64 and RPD 1.6 reported by Islam et al. (2003) using the less

rigorous separate test set validation strategy. Nanni and

Demattè (2006) reported R2 0.4e0.7 for CEC by interchanging

surface and subsurface samples sets data sets as calibration

and validation sets respectively.

The observed robust (R2 0.80, RMSEP 2.0%, RPD 2.0) model

for mc (Fig. 4(b)) was attributed to characteristic strong

moisture absorption features in the NIR spectral region

(Mouazen et al., 2006). Prediction of tClay was weak and un-

reliable (R2 0.5, RMSEP 16.0%, RPD 1.1). Variation in soil particle

size, shape, and arrangement in different soils samples results

in highly variable NIR PLS performance for individual textural

parameters (Bellon-Maurel & McBratney, 2011; Stenberg et al.,

2010). The results compared well with R2 0.5e0.8 reported for

tClay by Nanni and Demattè (2006).

NIR PLS models for LL (R2 0.74, RMSEP 9.9%, RPD 2.2) and PI

(R2 0.73, RMSEP 8.3%, RPD 1.9) (Fig. 4(c) and (d)) were robust,

reflecting stability of the models for reference values at

standardised moisture content. We presume that aqua-

photomics (waterelight interactions) recently introduced by

Stenberg (2010) in soil spectroscopic studies could be respon-

sible for calibration and stability of the otherwise spectrally

non-responsive mechanical properties. The models for PL, LS,

COLE and VS (Fig. 4(e), (f), (g), and (h) respectively) were

however less robust (R2 0.46, RPD 1.1e1.7), probably due to low

quality reference values associated with reference methods

(Table 2).

The model results showed that NIR could provide robust

models for rapid estimation of LL, PI, mc and CEC (R2 0.7e0.8;

RPD 1.7e2.2). The technique presented modest but reliable

independent estimation of PL, LS, COLE and VS (R2 0.5, RPD

1.1e1.7). Canasveras et al. (2010) found that for modest RPD

values between 1.5 and 1.69 for prediction of soil stability at-

tributes, the spectral based predictors are useful for screening

purposes such as discriminating between low, medium and

high stability classes. Comparing calibration and independent

validation statistics, the observed general lowering of model

performance is to be expected given inherent challenges with

geographic transferability of spectra-based chemometrics

models (Reeves, 2010; Stenberg et al., 2010).

3.3.1. NIR prediction error and fitness for purpose
Table 3 present a statistical description (mean, SD and data

range) of the observed soil property data analysed using
8.3, n [ 116); (e) PL (R2 [ 0.45, RMSEP [ 4.6, n [ 111); (f) LS

0.05, n [ 115); (h) VS (R2 [ 0.47, RMSEP [ 20.8, n [ 115).

illustrate the standard error (SE) of the predicted values for

http://dx.doi.org/10.1016/j.biosystemseng.2014.03.003
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Table 3 e Statistical description of the observed soil property data analysed using conventional methods of analyses and
their near infrared (NIR) partial least squares (PLS) independent predictions.

Property Observed Predicted

Mean � SD Data range Mean � SD Data range

CEC 30.6 � 16.6 4.8e76.4 26.1 � 11.7 4.2e54.7

mc 6.8 � 3.3 0.7e13.4 7.92 � 3.8 1.25e18.1

tClay 44.7 � 17.0 7.0e81.0 34.0 � 11.2 1.4e52.4

LL 56.0 � 22.2 22.2e96.7 57.7 � 17.6 20.5e97.2

PI 33.7 � 16.1 8.4e66.1 35.1 � 13.5 9.01e64.6

PL 21.8 � 8.0 11.4e45.3 22.3 � 5.1 6.0e36.7

LS 12.9 � 4.7 3.6e20.0 11.0 � 4.2 2.7e24.4

COLE 0.2 � 0.06 0.037e0.3 0.13 � 0.05 0.02e0.3

VS 53.8 � 22.7 11.5e95.3 43.3 � 21.4 1.2e110.5
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conventional methods and their independently validated NIR

PLS predictions. In most cases there was a good correspon-

dence between predicted and observed ranges. However,

some of the estimates were less accurate than those obtained

by routine laboratory methods.

Given the relative speed and cost of this approach and the

large local variation of soil properties, we suggest that the

ability to analyse large number of samples involving multiple

variables at finer sampling intervals using the spectroscopic

technique may in some circumstances outweigh the loss in

analytical precision. NIR is also known to be more reproduc-

ible (precise) than the reference methods and this could

convey a distinct advantage. However the key criterion for

judging acceptable prediction accuracy is fitness for purpose.

A classification of soils into broad limitation classes is

often adequate, for example, for rapid geotechnical site in-

vestigations, especially for earthen works and foundations for

small buildings construction (Bell, 2000, chap. 3; Hazelton &

Murphy, 2007, chap. 3; McKenzie, Coughlan, & Cresswell,

2002). However, the required accuracy for a civil construc-

tion project, for example, may be much more stringent than,

say, rating based on limitation thresholds. For applications

where high accuracy is required, NIRmay not alwaysmeet the

requirements but can still be proposed as a triage system to

help with sampling and analytical decisions. If NIR predicted

values are in a low or high range relative to a decision cut-off

value (e.g. an acceptable linear shrinkage value) then the ev-

idencemay be sufficient tomake a decision (e.g. there is a high

probability that the site is stable or unstable). However if

predictive values lie within a range that straddles the cut-off

limit, then samples may be recommended for conventional

analysis. A two-phase sampling approach can also be adop-

ted, whereby a subset of samples is selected to verify that the

NIR predictions are sufficiently accurate for the specific

application. The use of NIR in creating diagnostic screening

tests was illustrated by Shepherd and Walsh (2002).
4. Conclusions

The application of NIR together with PLS was tested for rapid

estimation of key soil engineering properties CEC, mc, tClay,

LL, PI, PL, LS, COLE, VS and Ac. From the results obtained,

NIRePLS demonstrated robust models (R2 0.7, RPD � 1.7) for

rapid estimation of LL, PI, mc and CEC for an independent
sample set. NIR PLSmodels for PL, LS, COLE and VS (R2 0.5, RPD

1.1e1.7) provided quality indices valuable for sorting soils into

stability classes for preliminary geotechnical investigations.

However, for the studied soils the technique showedminimal

potential for the characterisation of Ac. It can be concluded

that NIR combined with PLS has great potential for rapid

estimation of LL, PI, mc and CEC. This affirms the potential

role that reflectance spectroscopy could play to provide sim-

ple, rapid, and cost-effective tests for soil engineering prop-

erties, especially where large sample sizes and multiple

variables are to be analysed. Further work should focus on

extending calibration libraries using more diverse soil types

and also alternative infrared diffuse reflectance based

methods. Direct calibration of “fitness for use” classes for

engineering applications to spectral data should also be

considered.
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