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A b s t r a c t - - I n  a recent paper, Jin, Levermore and McLaughlin analyze the semiclassical behavior 
of solutions to the defocusing, completely integrable nonlinear SchrSdinger equation. We complete 
their analysis, by providing the long time behavior of the semiclassical solutions. © 1999 Elsevier 
Science Ltd. All rights reserved. 
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In their well-known papers Lax and Levermore [1] analyze the solutions of the zero dispersion 
limit of KdV, under fairly general initial data,  either belonging in the Schwartz class, or of shock 
type. In the third of the series, they also give the long-time asymptotics for such solutions. 

Following Lax and Levermore, an analogous discussion of the semiclassical defocusing NLS 
equation is given in [2]. Whi tham equations are introduced and weak limits of the squared 

density, the momentum,  and the energy of solutions are expressed in terms of the Riemann 
invariants of the Whi tham system. Although long-time formulae are not given in [2], they would 
be of some value 1. The s ta tement  and proof of such formulae is the aim of this note. 

THEOREM. Let u(x,t;  h) solve 

h 2 
ihut(x, t; h) + -~uxx(x ,  t; h) + (1 - lu(x, t; h)] 2) u(x, t; h) = O, 

with the far  - f ield boundary condition 

u ( x , t ) ~ e x p k - - h - -  ) , for some S~ • S, 
% /  

and the initial condition 

(1) 

1They could be used, for example, in evaluating the k - e turbulence model for the Navier-Stokes equations [3]. 
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Figure 1. T h e  initial d a t a  r~=(x). Note their  critical values )~min and Amax, and the  
indicated defining relations for the  turn ing  points  x q- (A). 

where A(x)  - I and the x-derivative Sz belong in the Schwartz class. Let us also assume, for 
simplicity, that the initial data are 'single well' in the sense of [2] (see Figure 1). In other words, 
the r defined below has only one maximum = Amax (respectively, r+ has only one minimum 
= Amin) and - 1  < Amax < Amin < 1. Then, the weak limit ~(x, t)  = limh--.o [u(x,t;h)[ 2 exists 
and in the 'Whi tham'  region x / t  E (-1,Amax) U (Amin, 1), we have, as t ~ 0% 

f i ( x , t ) ~ ' , l - 4 ¢ ( t )  1 -  where 

f~+(~)  [A-  1/2(r+(s)  + r _ ( s ) )  I 

sx + A(x), r±(x) = - y  

and x± are defined by r_(x±(A))  = A, x_ < x+. 

(2) 

Outside the Whi tham region, ~ ~ 1. 

PROOF. The existence of the weak limit is proved in [2]. The long-time behavior can be derived 
following [1] in two ways. One can use the semiclassical formulae to derive long-time asymptotics 
for the Riemann invariants of the Whitham equations. We prefer to follow an alternative way 
(also suggested in [1]) of beginning with the multisoliton formula for fixed h and then taking 
h ~ 0 .  

For fixed h, the long-time behavior of ]ut 2 is as follows [4, pp. 168-176]. In the solitonless 
regions [x/t[ > 1 and Am~x < x / t  < Amin, we have ]ul 2 = 1 - O ( t - 1 / 2 ) ,  as t --* co. In the 
Whi tham region, the solution is a multisoliton solution: 

N(h) 
lu(x,t; hi[ 2 ~ i - ~ s(x - ~ t  - x=,~=), 

n = l  

1 - 7/2 

s(x, 7) = cosh2((1 _ ~2)l /2(x/2h) ) , 

where 

(3) 

with exponentially small error. The eigenvalues of the associated Lax operator ~/n accumulate in 
the set ( - 1 ,  Amax) U (Amin, 1). The xns are some phase constants of no importance. 
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T h e  w i d t h  of  each sol i ton s(x, zl) is O(h/(1 - zl2)1/2). By Weyl ' s  Law for t he  d i s t r i b u t i o n  of 

e igenvalues  in ( - 1 ,  Amax) t3 (Amin, 1) as h --* 0, 

~h 
~ + 1  - v~ ¢(#~), (4) 

where  ~n E (~?n,~n+l). 
Peaks  of  sol i tons  are  loca ted  a t  ~nt. As t --~ oc, t hey  are  s e p a r a t e d  by  7rht/¢(~n), so for large  t,  

t h e y  are  well s epa ra t ed .  T h e  wave number  77 of the  sol i ton t h a t  peaks  a t  x at  t ime  t is ~ == x / t ,  
if t is large and  e i ther  - 1  < x / t  < Amax or A,,in < x / t  < 1. So the  dens i ty  of  the  sol i tons  is 

¢(x / t )  (5) 
7rht 

T h e  a rea  be tween  a sol i ton and  the  line u = 1 is 

4 h ( 1 - n  2) 1/2~4h 1 -  -/ , (6) 

so the  a s y m p t o t i c  a rea  dens i ty  is the  p roduc t  of (5) and  (6): 

T h e  a s y m p t o t i c  a rea  dens i ty  is 1 - p. Hence,  the  a s y m p t o t i c  formula  for t he  weak  l imi t  t5 follows 

readily.  
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