
JOURNAL OFMATHEMATICAL ANALYSIS AND APPLICATIONS 66,232-236(1978) 

On Two Theorems by Hartman and Wintner. 

An Application of the Waiewski Retract Method 

GUNNAR ARONSSON 

Department of Mathematics, University of Uppsala, S-75238 Uppsala, Sweden 

Submitted b-v J. P. LoSalle 

1. INTRODUCTION 

In [3,4] Hartman and Wintner proved the existence of monotone decreasing, 
nonnegative, and nontrivial solutions of certain ordinary differential systems 
in R”, 

zi = g(t, x), for t > 0. 

In [3] they considered a linear system and in [4] a more general nonlinear case. 
In this paper, we will show that these theorems of Hartman and Wintner 

are special cases of a much more general theorem (our Theorem 3), which we 
prove by an application of the Waiewski retract method. 

For background material and applications, we refer to [3, 41. The emphasis 
here is on the retract method. We are not looking for monotone solutions, but 
rather solutions which remain inside a given domain. The translation to the 
cases considered by Hartman and Wintner is, however, immediate. 

2. RESULTS 

LEMMA. Let A and B be sets in a topological space X. Let A v  B be contractible, 
but not A. Then A is not a retract of A u B. 

Proof. This is clear from the definitions of contraction and retraction. 

EXAMPLE. We give an example in R” (see Fig. 1). Put 

Q=Ix,r>O,~.xi<l 

1 i=l I 
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FIG. 1. n=3. 

Obviously, V is not contractible whereas I’ uL’ is. 
Hence I’ is not a retract of I/’ U z. 

In [3] Hartman and Wintner proved the following theorem (see also [2, 

P. 5061): 

THEOREM 1. Let A(t) be an n x II continuous matrix for t > 0 such that 
.4(t) >, 0. 

Then the daj&mmtial system 

“t = --A(t) x 

has at least one solution x(t) # 0 such that x(t) > 0 for t > 0 (and consequently 
it(t) < 0). 

Remark. Hartman and Wintner considered the interval 0 < t < CO, but the 
difference is unimportant. 

Proof. We shall use the Waiewski retraction method; see [5], [l], or [2, 

p. 2791. Introduce the n x n matrix 

1 . . . 1 
MEi i 

i 1 1 . . . 1 

and choose a sequence l li L 0. Consider the system 

.e = -(A(t) + +M) N (*) 

with the condition s(O) = x0, where x0 is a variable point on Z, (V, Z, 52 are as 
in the example.) Now, if f  E V and xF=, & < 1, it follows (since f f  < 0 there) 
that (t, f) is a strict egress point, for any t > 0, and relative to Q. Further, there 
are no other egress points on XJ, for any t > 0, so all egress points are strict. 

Now let xc, E .Z, and let x,(t) satisfy (*) and x,,(O) = x0 . I f  x,(t) does not stay 
in Q for t > 0, let T be the first instant, when q,(t) E I’. Clearly, 7 is well defined. 
Put S+(T) = +(x,,). Suppose now that x,,(t) leaves L? for any x0 E Z. If  we extend 
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$ as the identity on 1; then 4 is continuous on I’ u Z (see [2, p. 2801). Thus, 4 is 
a retraction of 1’ u Z onto I, which is impossible, according to the example. 
Hence x0(t) E -Q for t > 0, and for some .T,,~ E 2. 

Now the proof is completed by choosing a subsequence ~,,~,(t), which con- 
verges uniformly on every interval 0 < t < T < K,. The remaming arguments 

are obvious. 

Remark I. It is clear that if /l(t) > 0 for t 2 0, then we obtain a solution 
g(t) such that x(t) > 0 for t > 0. But under the assumption A(t) > 0, there 

need not exist a strictly positive solution. A counterexample is easily given. 

Remark 2. The retract argument could equally well be based on the obvious 
fact that the relative boundary of Z, i.e., 2 n I-, is not a retract of 2. but is a 

retract of I-. 
M’e shall next consider a nonlinear system. We retain the notations Q, Z, 1,’ 

and we put E = Q x [0, co) C Rn+l. 

THEOREM 2. Let 0’ C Rn+l be an open set containing E and let f  (t, x): CT + R” 
be continuous on U together with the partials 

gy (4 .2”), i,j = 1, 2 ,..., n. 

Assume that f  (t, 0) = 0 for t > 0. Assume that fi(t, x) > 0 as soon as x E b7 and 
xi = 0. Finally, assume that xy=, fi(t, x) > 0 if x E L’. 

Consider the system 

li = -f (t, x). (1) 

Then there is a solution x0(t) of (I), such that x,,(t) > 0 and x,,(t) i 0 for t 3 0. 
Further, zr=, x&t) < 1, with equality for t = 0. Observe that we have made no 

assumption concerning the sign off (t, x) for x E ~2. 

Proof of the Theorem. This is analogous to the proof of Theorem 1. The 

auxiliary systems are now 

2 = -[f(t, x) + EJVIX], 

The details are left to the reader. 

x(0) = xg E 2Y. 

THEOREM 3. Let UC R”+l be an open set containing E and let the mapping 
f(t, x): U - Rn be continuous. Assume that f  (t, 0) = 0 for t 3 0. Let fi(t, x) > 0 
if x E V, xi = 0, and t 3 0. Finally, assume that xy=, fi(t, x) > 0 if x E .Z’ and 

t z 0. 
Then there is a solution x*(t) of the system x = -f (t, x) such that x0(t) > 0 and 

ZL, (X&))i d 1, with equality for t = 0. 
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Proof. (1) Suppose we can construct a solution of Z? = -f (t, x), with 
required properties on 0 < t < N, for any natural number N. Then a standard 
application of Arzela’s theorem will give us a solution on 0 < t < co. Therefore, 
we may restrict our attention to 0 < t < N. 

(2) We thus consider [0, N] and put EN = g x [0, N]. Introduce a 

function 4(r) E C” such that #(r) = 0 for r < I, 0 < #(r) < 1 for 1 < r < 2, 
and I)(Y) = 1 for r > 2. 

Take a sequence rlr L 0 and consider 

f&Y 4 = #(II x IlhAf (4 4 

Since f (t, 0) = 0, it easily follows that fk(t, X) ---f f(t, X) uniformly on Ehr . 
Suppose that we can find a solution’x,(t) of k = -fk(t, x) for 0 < t < N, with 
the required properties, for k = 1, 2, 3 ,.... Then an easy application of Arzela’s 
theorem gives a solution of L+ = -f (t, x) for 0 < t < N. Therefore, we may 
assume that f (t, x) = 0 if I/ x I/ < 0, for some 0 > 0. 

(3) We shall now construct a solution of k = -f (t, x) over 0 < t < N. 

Besides the assumptions in the theorem, we assume that f (t, x) = 0, if // x /( ,< 0, 
for some 0 > 0. Take a function (b(~) E C’,“(P) such that 4(.x) 3 0, s$ Czs = 1 

and supp $ C {X 1 I/ x (I < 1). Form the convolution with respect to X, 

where S > 0 is a parameter. Clearly, it is well defined in a neighborhood of 
EN if 6 < 6, , for some 6, > 0. Suppose 0 < 6 < 6, < 0. Then g,(t, x) = 0 if 
I/ .r 1) ,( 0 - 6, . Further, g, has continuous partial derivatives with respect to X. 
Finally, 

&$s(t, 4 =f(t, x), uniformly for (t, X) E E, . 

Take a sequence 6, ‘X 0, and put hSgJf, X) = gs,(t, X) + &KY. Clearly, we can 
choose a sequence clr --f 0 such that hSk,c,c( t 1 satisfies the conditions of Theorem , L ) 
2,. if we let hsraEr be independent of t for t 3 N. (Here we use the fact that 

gsh-(t, X) = 0 for I/ .r 11 < 0 - S, , in an obvious manner.) 
Thus, by Theorem 2, there is a solution of R = -hSk,Ek(t, X) over 0 < t < N, 

with appropriate properties. Further, since lim,,, hsk,ck(t, X) = f(t, X) uni- 
formly on E, , we can apply Arzela’s theorem a last time to obtain the desired 
solution to f  = -f (t, x). In view of points (1) and (2) this completes the proof. 

Remark 1. In contrast to Theorems 1 and 2, it does not follow that x,,(t) # 0 
for t 3 0. In fact, one can easily construct an example, where each nonnegative 
solution becomes zero in finite time. By imposing some extra condition on 
f(t, x) near x = 0 one can make sure that x,(t) # 0 for all t > 0. 
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Remark 2. This theorem is a considerable generalization of theorem (*) in 

[4, p. 8611. Whereas they assumef(t, x) > 0 on E, we have restrictions on the 
sign of fi(t, x) onlv for x E iiQ, and this is a tvpical feature for the Waiewski 

retract method. 
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