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1. INTRODUCTION

In [3, 4] Hartman and Wintner proved the existence of monotone decreasing,
nonnegative, and nontrivial solutions of certain ordinary differential systems
in R»,

x = g(t, x), fort = 0.

In [3] they considered a linear system and in [4] a more general nonlinear case.

In this paper, we will show that these theorems of Hartman and Wintner
are special cases of a much more general theorem (our Theorem 3), which we
prove by an application of the Wazewski retract method.

For background material and applications, we refer to [3, 4]. The emphasis
here is on the retract method. We are not looking for monotone solutions, but
rather solutions which remain inside a given domain. The translation to the
cases considered by Hartman and Wintner is, however, immediate.

2. REsuULTs

LemMa. Let A and B be sets in a topological space X. Let AL B be contractible,
but not A. Then A is not a retract of AV B.

Proof. This is clear from the definitions of contraction and retraction.

ExampLE, We give an example in R (see Fig. 1). Put
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Obviously, V' is not contractible whereas I UZ is.
Hence I is not a retract of U X\
In [3] Hartman and Wintner proved the following theorem (see also [2,

p- 306)):

Tueorem 1. Let A(t) be an n X n continuous matrix for t = 0 such that
A() = 0.
Then the differential system
x=—A@)x

has at least one solution x(t) # O such that x(t) = 0 for t = 0 (and consequently
(1) < 0).

Remark. Hartman and Wintner considered the interval 0 < ¢t <C o0, but the
difference is unimportant.

Proof. We shall use the Wazewski retraction method; see 5], [1], or [2,
p- 279]. Introduce the » X n matrix

i cos 1
w-lp
and choose a sequence ¢, ™ 0. Consider the system

% = —(A(t) + e.M) x (*)

with the condition ¥(0) = x, , where x, is a variable point on 2. (V, 2, {2 are as
in the example.) Now, if & ¥ and Y., %; < 1, it follows (since % < O there)
that (¢, ¥) is a strict egress point, for any ¢ > 0, and relative to Q. Further, there
are no other egress points on 082, for any t > 0, so all egress points are strict.

Now let xg€ 2, and let x4(t) satisfy (*) and x4(0) = % . If x4(#) does not stay
in 2 for ¢t > 0, let = be the first instant, when x(¢) € V. Clearly, = is well defined.
Put x(t) = ¢(x;). Suppose now that x4(#) leaves 2 for any x, € 2. If we extend
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¢ as the identity on I, then ¢ is continuous on I" U X (see [2, p. 280]). Thus, ¢ is
a retraction of J”U X onto T, which is impossible, according to the example.
Hence xy(1) € 2 for ¢ > 0, and for some xy € 2.

Now the proof is completed by choosing a subsequence xg  (#), which con-
verges uniformly on every interval 0 < ¢ << T < o¢. The remaining arguments
are obvious.

Remark 1. It is clear that if A(¢) > 0 for £ 2> 0, then we obtain a solution
x(t) such that x(¢) > 0 for ¢ > 0. But under the assumption A(t} = 0, there
need not exist a strictly positive solution. A counterexample is easily given.

Remark 2. 'The retract argument could equally well be based on the obvious
fact that the relative boundary of X, i.e., £ N 17, is not a retract of Z, but is a
retract of 1",

We shall next consider a nonlinear system. We retain the notations , 2, 1”
and we put E = Q x [0, o0) C R,

THEOREM 2. Let U C R™7 be an open set containing E and let f(¢, x): U — R®
be continuous on U together with the partials

sz (), =12

Assume that f(t,0) = 0 for £ = 0. Assume that f(t, x) > O as soon as x € V" and
x; = 0. Finally, assume that Zz=lf,(t, x) =0ifxel.
Consider the system

&= —f(t, x). (1)

Then there is a solution x,(t) of (1), such that xy(t) > 0 and x,(t) # 0 for t >
Further, 3, %o.{t) < 1, with equality for t = 0. Observe that we have made no
assumption concerning the sign of f(t, x) for x € 2.

Proof of the Theorem. This is analogous to the proof of Theorem 1. The

auxiliary systems are now
= —[f(, x) + Mx], 2(0) = x5 2.

The details are left to the reader.

TaeoreM 3. Let U C R*! be an open set containing E and let the mapping
f(t, x): U—> R™ be continuous. Assume that f(¢,0) = O for t > 0. Let f(t,x) =0
if xeV, x;, =0, and t = 0. Finally, assume that i fdt,x) =0if xe T and
t=0.

Then there is a solution x,(t) of the system % = —f (¢, x) such that x(t) > 0 and
iy (xo(2)): < 1, with equality for t = 0.
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Proof. (1) Suppose we can construct a solution of & = —f(¢, x), with
required properties on 0 < ¢ < N, for any natural number N. Then a standard
application of Arzela’s theorem will give us a solution on 0 < ¢ < c0. Therefore,
we may restrict our attention to 0 << ¢ << N.

(2) We thus consider [0, N] and put Ey =2 x [0, N]. Introduce a
function $(r) € C= such that )(r) =0 for r <1, 0 <o(r) <1 for I <7 <2,
and Y(r) = 1 forr = 2.

Take a sequence 7, ™ 0 and consider

Jults %) = (Il 2 ll[ri) f (2, %).

Since f(t,0) =0, it easily follows that fi(t, x) — f(¢, x) uniformly on Ey.
Suppose that we can find a solution x,(f) of £ = —fi(¢t, x) for 0 < ¢ < N, with
the required properties, for £ = 1, 2, 3,.... Then an easy application of Arzela’s

theorem gives a solution of & = —f (2, x) for 0 <t <C N. Therefore, we may
assume that f(¢, x) =0 if || x| < O, for some @ > 0.
(3) We shall now construct a solution of & = —f(z, x) over 0 < ¢ < N.

Besides the assumptions in the theorem, we assume that f(¢, x) = 0, if || x || < 6,
for some © > 0. Take a function ¢(x) € C;°(R™) such that ¢(x) >0, [¢ dx =1
and suppé C{x | || x|l <C 1}. Form the convolution with respect to x,

gt ) = 13" | f(t,x —2)8(38)

where 8 > 0 is a parameter. Clearly, it is well defined in a neighborhood of
Ey if 8 < 3, , for some 8, > 0. Suppose 0 << 8 < 85 < 0. Then gyt x) =0 if
Il x]] < @ — §, . Further, g; has continuous partial derivatives with respect to x.
Finally,

;ir})oga(t, x) = f(t, %), uniformly for (¢, x) € Ey .

Take a sequence 8; ™ 0, and put ki, (t, x) = g5 (t, x) + eMx. Clearly, we can
choose a sequence ¢, — 0 such that k,__ (¢, x) satisfies the conditions of Theorem
2, if we let h;_ ., Dbe independent of 7 for > N. (Here we use the fact that
&, (t, x) =0 for [ x|l < @ — §;, in an obvious manner.)

Thus, by Theorem 2, there is a solution of & = _h%ﬂ-(t’ x)over 0 <t <N,
with appropriate properties. Further, since lim;._, &, (#, ) = f(¢, x) uni-
formly on E, , we can apply Arzela’s theorem a last time to obtain the desired
solution to % = —f(¢, x). In view of points (1) and (2) this completes the proof.

Remark 1. In contrast to Theorems 1 and 2, it does not follow that x4(2) = 0
for t > 0. In fact, one can easily construct an example, where each nonnegative
solution becomes zero in finite time. By imposing some extra condition on
JS{(t, x) near x = 0 one can make sure that x,(t) = 0 for all > 0.
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Remark 2. 'This theorem is a considerable generalization of theorem (*) in
[4, p. 861]. Whereas they assume f(£, x) > 0 on E, we have restrictions on the
sign of f(t, x) only for x 802, and this is a tvpical feature for the Wazewski
retract method.
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