

# Remark on Polický's paper on circular units of a compositum of quadratic number fields 

Akira Endô<br>Department of Mathematics, Kumamoto University, Kumamoto 860-8555, Japan

## A R T I CLE I N F O

## Article history:

Received 4 October 2010
Revised 25 December 2010
Accepted 15 March 2011
Available online 19 May 2011
Communicated by David Goss

## MSC:

11R20
11R27
Keywords:
Compositum of quadratic number fields Circular units


#### Abstract

Remark on Polický's paper on circular units of a compositum of quadratic number fields is given.


© 2011 Elsevier Inc. All rights reserved.

Let $k$ be a compositum of a finite number of quadratic number fields and $K$ the genus field of $k$ in the narrow sense, and assume that $i \in K$ and $\sqrt{2} \notin K$. Polický [1] defined a group $C$ of circular units of $k$ and computed a lower bound for the divisibility of the index of $C$ in the full unit group $E$ of $k$ by a power of 2 .

In this short note we show that in Proposition 2.6 of Polický [1], which gives a necessary and sufficient condition for that $\epsilon$ or $2 \epsilon$ is a square in $K$ for $\epsilon \in C$, the condition (C1) implies the conditions (C2) and (C3).

Denoting $G=\operatorname{Gal}(K / Q), Q$ the field of rational numbers, for $\epsilon \in C$ and $\sigma \in G$ we have

$$
\epsilon^{1-\sigma}=\Delta(\sigma, \epsilon)(\delta(\sigma, \epsilon) \varphi(\sigma, \epsilon) \psi(\sigma, \epsilon))^{2}
$$

[^0]where $\Delta(\sigma, \epsilon), \delta(\sigma, \epsilon) \in\{1, i\}, \varphi(\sigma, \epsilon) \in\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}, \zeta_{3}=e^{2 \pi i / 3}, \Delta(\sigma, \epsilon), \varphi(\sigma, \epsilon) \in k$ and $\psi(\sigma, \epsilon)$ belongs to a non-torsion subgroup of $C$. The condition (C1) says that $\Delta(\sigma, \epsilon)^{2}=\Delta(\sigma, \epsilon)=1$ for all $\sigma \in G$.

Under the condition (C1) we have

$$
\epsilon^{1-\sigma}=(\delta(\sigma, \epsilon) \varphi(\sigma, \epsilon) \psi(\sigma, \epsilon))^{2}
$$

for all $\sigma \in G$. Since $\epsilon^{2(1-\sigma)}=\epsilon^{(1-\sigma)^{2}}$, it follows that

$$
\begin{aligned}
\varphi(\sigma, \epsilon)^{4} \psi(\sigma, \epsilon)^{4} & =\delta(\sigma, \epsilon)^{2(1-\sigma)} \varphi(\sigma, \epsilon)^{2(1-\sigma)} \psi(\sigma, \epsilon)^{2(1-\sigma)} \\
& =\varphi(\sigma, \epsilon)^{2(1-\sigma)} \Delta(\sigma, \psi(\sigma, \epsilon))^{2}(\delta(\sigma, \psi(\sigma, \epsilon)) \varphi(\sigma, \psi(\sigma, \epsilon)) \psi(\sigma, \psi(\sigma, \epsilon)))^{4} \\
& =\Delta(\sigma, \psi(\sigma, \epsilon))^{2} \varphi(\sigma, \epsilon)^{2(1-\sigma)} \varphi(\sigma, \psi(\sigma, \epsilon))^{4} \psi(\sigma, \psi(\sigma, \epsilon))^{4}
\end{aligned}
$$

which implies

$$
\Delta(\sigma, \psi(\sigma, \epsilon))^{2}=1
$$

because $\Delta(\sigma, \psi(\sigma, \epsilon))^{2}$ is a forth power of an element of $K$ and $\sqrt[4]{-1} \notin K$; thus the condition (C2) holds. Similarly, for all $\sigma, \tau \in G$, it also follows from the identity $\epsilon^{(1-\sigma)(1-\tau)}=\epsilon^{(1-\tau)(1-\sigma)}$ that

$$
\begin{aligned}
& \frac{\delta(\sigma, \epsilon)^{2(1-\tau)} \varphi(\sigma, \epsilon)^{2(1-\tau)} \psi(\sigma, \epsilon)^{2(1-\tau)}}{\delta(\tau, \epsilon)^{2(1-\sigma)} \varphi(\tau, \epsilon)^{2(1-\sigma)} \psi(\tau, \epsilon)^{2(1-\sigma)}} \\
& \quad=\frac{\varphi(\sigma, \epsilon)^{2(1-\tau)} \Delta(\tau, \psi(\sigma, \epsilon))^{2}(\delta(\tau, \psi(\sigma, \epsilon)) \varphi(\tau, \psi(\sigma, \epsilon)) \psi(\tau, \psi(\sigma, \epsilon)))^{4}}{\varphi(\tau, \epsilon)^{2(1-\sigma)} \Delta(\sigma, \psi(\tau, \epsilon))^{2}(\delta(\sigma, \psi(\tau, \epsilon)) \varphi(\sigma, \psi(\tau, \epsilon)) \psi(\sigma, \psi(\tau, \epsilon)))^{4}} \\
& \quad=\frac{\Delta(\tau, \psi(\sigma, \epsilon))^{2} \varphi(\sigma, \epsilon)^{2(1-\tau)} \varphi(\tau, \psi(\sigma, \epsilon))^{4} \psi(\tau, \psi(\sigma, \epsilon))^{4}}{\Delta(\sigma, \psi(\tau, \epsilon))^{2} \varphi(\tau, \epsilon)^{2(1-\sigma)} \varphi(\sigma, \psi(\tau, \epsilon))^{4} \psi(\sigma, \psi(\tau, \epsilon))^{4}} \\
& \quad=1,
\end{aligned}
$$

which implies

$$
\Delta(\tau, \psi(\sigma, \epsilon))^{2}=\Delta(\sigma, \psi(\tau, \epsilon))^{2}
$$

namely the condition (C3) holds.
Let $D$ be a subgroup of $C$ consisting of $\epsilon \in C$ which satisfies $\Delta(\sigma, \epsilon)^{2}=1$ for all $\sigma \in G$. Let $[k: Q]=2^{l}$. The Lemma 3.5 of [1] is rewritten as follows:

$$
(C: D)=2^{a},
$$

where $a \leqslant l$ if $i \in k$, and $a=0$ if $i \notin k$.
Let $D^{\prime}$ be a subgroup of $D$ consisting of $\epsilon \in D$ which satisfies $\delta(\sigma, \epsilon)^{1-\tau} \delta(\tau, \psi(\sigma, \epsilon))^{2}=$ $\delta(\tau, \epsilon)^{1-\sigma} \delta(\sigma, \psi(\tau, \epsilon))^{2}$ for all $\sigma, \tau \in G$. Lemma 3.9 of [1] asserts that

$$
\left(D: D^{\prime}\right)=2^{b}
$$

where $b \leqslant\binom{ l}{2}$ if $i \in k$, and $b \leqslant\binom{ l+1}{2}$ if $i \notin k$.
Further, let $D^{\prime \prime}$ be a subgroup of $D^{\prime}$ consisting of $\epsilon \in D^{\prime}$ which satisfies $\delta(\sigma, \epsilon)^{1+\sigma} \delta(\sigma, \psi(\sigma$, $\epsilon))^{2}=1$ for all $\sigma \in G$. We see $[k(i): Q]=2^{m}$ with $m=l$ if $i \in k$, and $m=l+1$ if $i \notin k$. If $\tau_{1} \in G$ denotes
the complex conjugation, then $\delta\left(\tau_{1}, \epsilon\right)^{1+\tau_{1}}=1, \psi\left(\tau_{1}, \epsilon\right)=1$ and so $\delta\left(\tau_{1}, \epsilon\right)^{1+\tau_{1}} \delta\left(\tau_{1}, \psi\left(\tau_{1}, \epsilon\right)\right)^{2}=1$ for all $\epsilon \in D^{\prime}$. Accordingly, Lemma 3.13 of [1] is rewritten as follows:

$$
\left(D^{\prime}: D^{\prime \prime}\right)=2^{c}
$$

where $c \leqslant l-1$ if $i \in k$, and $c \leqslant l$ if $i \notin k$.
Let $D^{\prime \prime \prime}$ be a subgroup of $D^{\prime \prime}$ consisting of $\epsilon \in D^{\prime \prime}$ such that $\epsilon$ or $2 \epsilon$ is a square in $k$. Let $[K: Q]=2^{n}$. Then Lemma 4.1 of [1] asserts that

$$
\left(D^{\prime \prime}: D^{\prime \prime \prime}\right)=2^{d}
$$

where $d \leqslant n-l$.
Therefore we have

$$
\left(C: D^{\prime \prime \prime}\right)=(C: D)\left(D: D^{\prime}\right)\left(D^{\prime}: D^{\prime \prime}\right)\left(D^{\prime \prime}: D^{\prime \prime \prime}\right)=2^{a+b+c+d}
$$

where

$$
a+b+c+d \leqslant \begin{cases}\frac{l^{2}+l}{2}+n-1 & \text { if } i \in k \\ \frac{l^{2}+l}{2}+n & \text { if } \notin k\end{cases}
$$

Since $2^{2^{l-1}-2} \mid\left(E: D^{\prime \prime \prime}\right)$ if $k$ is imaginary, $2^{2^{l}-2} \mid\left(E: D^{\prime \prime \prime}\right)$ if $k$ is real, and $(E: C)=\frac{\left(E: D^{\prime \prime \prime}\right)}{\left(C: D^{\prime \prime \prime}\right)}$, Theorem 4.2 of [1] can be rewritten as follows:

Theorem. If $i \in k$, then

$$
\left.2^{2^{l-1}-\frac{l^{2}+l}{2}-n-1} \right\rvert\,(E: C)
$$

if $k$ is imaginary and $i \notin k$, then

$$
\left.2^{2^{l-1}-\frac{l^{2}+l}{2}-n-2} \right\rvert\,(E: C),
$$

and if $k$ is real, then

$$
\left.2^{2^{l}-\frac{l^{2}+l}{2}-n-2} \right\rvert\,(E: C)
$$

## References

[1] Z. Polický, On the index of circular units in the full group of units of a compositum of quadratic fields, J. Number Theory 128 (2008) 1074-1090.


[^0]:    E-mail address: endou@sci.kumamoto-u.ac.jp.

