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Abstract

The paper studies the rate of convergence of a weak Euler approximation for solutions to possibly
completely degenerate SDEs driven by Lévy processes, with Hölder-continuous coefficients. It investigates
the dependence of the rate on the regularity of coefficients and driving processes and its robustness to the
approximation of the increments of the driving process. A convergence rate is derived for some approximate
jump-adapted Euler scheme as well.
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1. Introduction

The paper studies the weak Euler approximation for solutions to possibly completely
degenerate SDEs driven by Lévy processes. As in [12], the main goal is to investigate the
dependence of the convergence rate on the regularity of coefficients and driving processes.
In addition, we consider the robustness of the results to the approximation of the law of the
increments of the driving noise in the whole scale of time discretization errors.

Let (Ω , F , P) be a complete probability space with a filtration F = {Ft }t∈[0,T ] of σ -algebras
satisfying the usual conditions and α ∈ (0, 2] be fixed. Consider the following model in Rd :

X t = X0 +

 t

0
a(Xs)ds +

 t

0
b(Xs)dWs +

 t

0
G(Xs−)d Zs, t ∈ [0, T ], (1.1)
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where a(x) = (ai (x))1≤i≤d , b(x) = (bi j (x))1≤i≤d,1≤ j≤n , G(x) = (Gi j (x))1≤i≤d,1≤ j≤m ,
x ∈ Rd are measurable and bounded, with a = 0 if α ∈ (0, 1) and b = 0 if α ∈ (0, 2).
The process Ws is a standard Wiener in Rn . The last term is driven by Z = {Z t }t∈[0,T ], an
m-dimensional Lévy process whose characteristic function is exp {tη(ξ)} with

η(ξ) =


Rm

0


ei(ξ,υ)

− 1 − iχα(υ)(ξ, υ)

π(dυ),

where χα(υ) = χ{|υ|≤1}1{α∈(1,2]}. Hence,

Z t =

 t

0


(1 − χα(υ))υp(ds, dυ) +

 t

0


χα(υ)υq(ds, dυ),

where p(dt, dυ) is a Poisson point measure on [0, ∞) × Rm
0 (Rm

0 = Rm
\ {0}) with

E[p(dt, dυ)] = π(dυ)dt , and q(dt, dυ) = p(dt, dυ) − π(dυ)dt is the centered Poisson
measure. It is assumed that Z t is a Lévy process of order α:

(|υ|
α

∧ 1)π(dυ) < ∞.

Let the time discretization {τi , i = 0, . . . , nT } of the interval [0, T ] with maximum step size
δ > 0 be a partition of [0, T ] such that 0 = τ0 < τ1 < · · · < τnT = T and maxi (τi − τi−1) ≤ δ.
The Euler approximation of X is an F-adapted stochastic process Y = {Yt }t∈[0,T ] defined by the
stochastic equation

Yt = X0 +

 t

0
a(Yτis

)ds +

 t

0
b(Yτis

)dWs +

 t

0
G(Yτis

)d Zs, t ∈ [0, T ], (1.2)

where τis = τi if s ∈ [τi , τi+1), i = 0, . . . , nT − 1. Contrary to those in (1.1), the coefficients in
(1.2) are piecewise constants in each time interval of [τi , τi+1).

The weak Euler approximation Y is said to converge with order κ > 0 if for each bounded
smooth function g with bounded derivatives, there exists a constant C , depending only on g, such
that

|Eg(YT ) − Eg(XT )| ≤ Cδκ ,

where δ > 0 is the maximum step size of the time discretization.
The weak Euler approximation of stochastic differential equations with smooth coefficients

and G = 0 has been consistently studied. For diffusion processes, Milstein was one of the first
to investigate the order of weak convergence and derived κ = 1 [13,14]. Talay considered
a class of the second order approximations for diffusion processes [18,19]. For Itô processes
with jump components (a finite number of jumps in a finite interval), it was shown in [9]
the first-order convergence in the case in which the coefficient functions possess fourth-order
continuous derivatives. Platen and Kloeden & Platen studied not only Euler but also higher order
approximations; see [5,15] and the references therein.

Protter & Talay [17] analyzed the weak Euler approximation for (1.1) with α = 2. They
proved that the order of convergence is κ = 1, provided that G, b, a and g have four bounded
derivatives and the Lévy measure of Z has finite moments of the order µ = 8. In this paper, we
show that κ = 1 can be achieved when µ = 4 and there still is some order of convergence for
µ ∈ (2, 4]. Moreover, we assume β-Lipschitz continuity of the coefficients and g and derive that
for α < β ≤ µ ≤ 2α the order of convergence κ =

β
α

− 1. In particular, when β = µ = 2α with
α ∈ (0, 2) (the diffusion part is absent), the convergence order is still κ = 1.
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As in [10,12], this paper employs the idea of Talay (see [18]) and uses the solution to the
backward Kolmogorov equation associated with X t , Itô’s formula, and one-step estimates. Since
one step estimates were derived in [12], the main difficulty is to solve the degenerate backward
Kolmogorov equation in Lipschitz classes (see Theorem 4 below). We obtain the solution of the
degenerate equation as a limit of solutions to regularized (nondegenerate) equations. Although
the solution to (1.1) is strong and probabilistic arguments are applied for the uniform Lipschitz
estimates of the approximating sequence, contrary to [17], we do not use derivatives of the
stochastic flows.

If (1.1) has a nondegenerate main part, some assumptions imposed can be relaxed (see
[12,10], Kubilius & Platen [8] and Platen & Bruti-Liberati [16]). More complex and higher order
schemes were studied and discussed, for example, by Cont and Tankov, Jourdain and Kohatsu-
Higa (see [1,4] and the references therein).

Motivated by the difficulty to approximate the increments of the driving processes, Jacod
et al. in [3], studied the approximated Euler scheme where the increments of Z are substituted
by i.i.d. random variables that are easier to simulate. There are two sources of errors in this case.
One comes from time discretization and the other one from substitution. We extend some of the
results in [3] to the whole rate scale and show that the errors add up. In particular, the driving
process Z can be replaced with a Levy process Z̃ having finite number of jumps in [0, T ] by
possibly cutting small jumps of Z and sometimes replacing them with a Wiener process or drift.
In addition, we consider a simple jump-adapted Euler scheme and show that presence of Z̃ -jump
moments in the partition {τi } influences the convergence rate. The approximation itself is simpler
and assumptions imposed are different than those introduced by Kohatsu-Higa and Tankov
in [6] (see the references therein as well) for a more sophisticated (higher order) jump-adapted
scheme.

The paper is organized as follows. In Section 2, some notation is introduced, the main results
stated and the proof of the main theorem is outlined. In Section 3, we present the essential
technical results about backward degenerate Kolmogorov equation, followed by the proof of the
main theorem in Section 4. The robustness of the approximation and jump-adapted Euler scheme
is considered as well. In the last section, we discuss the optimality of the imposed assumptions.

2. Notation and main result

Denote H = [0, T ] × Rd , N = {0, 1, 2, . . .}, Rd
0 = Rd

\ {0}. For x, y ∈ Rd , write

(x, y) =
d

i=1 xi yi . For (t, x) ∈ H , multi-index γ ∈ Nd with Dγ
=

∂ |γ |

∂x
γ1
1 ···∂x

γd
d

, and

i, j = 1, . . . , d , denote

∂t u(t, x) =
∂

∂t
u(t, x), Dku(t, x) =


Dγ u(t, x)


|γ |=k , k ∈ N,

∂i u(t, x) = uxi (t, x) =
∂

∂xi
u(t, x), ∂2

i j u(t, x) = uxi x j (t, x) =
∂2

∂xi x j
u(t, x),

∂x u(t, x) = ∇u(t, x) = ∇x u(t, x) = (∂1u(t, x), . . . , ∂du(t, x)) ,

∆u(t, x) =

d
i=1

uxi xi (t, x).

For a smooth function v on Rd and k ∈ N, denote
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v(k)(x; ξ1, . . . , ξ k) =

d
i1,...,ik=1

vxi1 ···xik
(x)ξ1

i1
· · · ξ k

ik
, x, ξ i

∈ Rd , i = 1, . . . , k.

In particular, v(1)(x; ξ) = (∇v(x), ξ), x, ξ ∈ Rd .
For β = [β]

−
+{β}

+ > 0, where [β]
−

∈ N and {β}
+

∈ (0, 1], let C̃β(H) denote the Lipschitz
space of measurable functions u on H such that the norm

|u|β =


|γ |≤[β]−

|Dγ
x u(t, x)|0 + sup

|γ |=[β]−,
t,x≠x̃

|Dγ
x u(t, x) − Dγ

x u(t, x̃)|

|x − x̃ |{β}+

is finite, where |v|0 = sup(t,x)∈H |v(t, x)|. We denote C̃β(Rd) the corresponding function space
on Rd .

C = C(·, . . . , ·) denotes constants depending only on quantities appearing in parentheses. In
a given context, the same letter is (generally) used to denote different constants depending on the
same set of arguments.

The main result of this paper is the following statement.

Theorem 1. Let α < β ≤ µ ≤ 2α, and assume ai , bi j
∈ C̃β(Rd), Gi j

∈ C̃β∨1(Rd), and
|υ|≤1

|υ|
αdπ +


|υ|≥1

|υ|
µπ(dυ) < ∞,

where π is the Lévy measure of the driving process Z. Then there is a constant C such that for
all g ∈ C̃β(Rd)

|Eg(YT ) − Eg(XT )| ≤ C |g|βδ
β
α
−1.

Applying Theorem 1 to the case α = 2 we have an obvious consequence in the jump–diffusion
case.

Corollary 1. Consider the jump–diffusion case (α = 2)

X t = X0 +

 t

0
a(Xs)ds +

 t

0
b(Xs)dWs +

 t

0
G(Xs−)d Zs, t ∈ [0, T ].

Let 2 < β ≤ µ ≤ 4. Assume a, bi j , Gi j
∈ C̃β(Rd) and

|υ|≤1
|υ|

2π(dυ) +


|υ|>1

|υ|
µπ(dυ) < ∞.

Then there is a constant C such that for all g ∈ C̃β(Rd)

|Eg(YT ) − Eg(XT )| ≤ C |g|βδ
β
2 −1.

An immediate extension of Theorem 1 (for the test function g ∈ C̃ν(Rd) with ν ∈ (0, β]) is
the following statement.

Corollary 2. Let α < β ≤ µ ≤ 2α, and assume ai , bi j
∈ C̃β(Rd), Gi j

∈ C̃β∨1(Rd), and
|υ|≤1

|υ|
αdπ +


|υ|≥1

|υ|
µπ(dυ) < ∞,
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where π is the Lévy measure of the driving process Z. Let ν ∈ (0, β]. Then there is a constant C
such that for all g ∈ C̃ν(Rd)

|Eg(YT ) − Eg(XT )| ≤ C |g|νδ
ν


1
α
−

1
β


.

Remark 1. In particular, if α ∈ [1, 2], µ = β = 2α and g is Lipschitz (ν = 1), then the
convergence rate κ =

1
2α

.

2.1. Approximate simple Euler scheme

Following [3], for σ ∈ (0, 1), δ > 0, we choose a time discretization {τi } and replace
the increments of the driving process Zτi+1 − Zτi in (1.2) by Fτi -conditionally independent
random variables ζi , i = 0, . . . , nT − 1. We assume that there is a function φ(σ) such that
limσ→0 φ(σ) = 0 and for i = 0, . . . , nT − 1,E[h(Zτi+1 − Zτi ) − h(ζi+1)|Fτi ]

 ≤ C |h|βφ(σ)(τi+1 − τi ), h ∈ C̃β(Rd) (2.1)

with some constant C , independent of σ, δ and h. Let ξt = 0 if 0 ≤ t < τ1, ξt = ζi if
ti ≤ t < ti+1, i = 1, . . . , nT − 1. We still assume that maxi (τi+1 − τi ) ≤ δ and approximate X t
by

Ỹt = X0 +

 t

0
a(Ỹτis

)ds +

 t

0
b(Ỹτis

)dWs +

 t

0
G(Ỹτis

)dξs, t ∈ [0, T ]. (2.2)

In this case Ỹt depends on δ and σ.

In the following example, we approximate the increments of Z t by the increments of a
Lévy process with finite number of jumps in [0, T ]. This approximation is constructed by
cutting small jumps of Z t . We replace the small jump part by appropriately chosen drift if
α < β ∈ (1, 2], α ∈ (0, 1]. If α < β ∈ (2, 3], α ∈ (1, 2], the small jump part is replaced
by a Wiener process. Given σ ∈ (0, 1), we denote Bσ the square root of the positive definite

m × m -matrix


|υ|≤σ
υiυ j dπ


1≤i, j≤m

. Let W̃t be a standard independent Wiener process

in Rm .

Example 1. For σ ∈ (0, 1) we approximate

Z t =

 t

0


(1 − χα(υ))υp(ds, dυ) +

 t

0


χα(υ)υq(ds, dυ), t ∈ [0, T ],

by

Z̃ t = Zσ
t + Rσ

t ,

with

Zσ
t =

 t

0


|υ|>σ

(1 − χα(υ))υp(ds, dυ) +

 t

0


|υ|>σ

χα(υ)υq(ds, dυ)

and

Rσ
t =


t


|υ|≤σ

υπ(dυ) if α < β ∈ (1, 2], α ∈ (0, 1],

Bσ W̃t if α < β ∈ (2, 4], α ∈ (1, 2],

0 otherwise.
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In this case (see Lemma 6 below) (2.1) holds with

φ(σ) =


|υ|≤σ

|υ|
β∧3dπ

and

ζi+1 = Z̃τi+1 − Z̃τi , i = 0, . . . , nT − 1. (2.3)

We show that time discretization and substitution errors add up.

Theorem 2. Let α < β ≤ µ ≤ 2α, and let ai , bi j
∈ C̃β(Rd), Gi j

∈ C̃β∨1(Rd), and
|υ|≤1

|υ|
αdπ +


|υ|≥1

|υ|
µπ(dυ) < ∞,

where π is the Lévy measure of the driving process Z. Assume that there is a function φ(σ) such
that limσ→0 φ(σ) = 0 and for i = 0, . . . , nT − 1,Eh(Zτi+1 − Zτi ) − Eh(ζi+1)

 ≤ C |h|βφ(σ)(τi+1 − τi ), h ∈ C̃β(Rd), (2.4)

for some constant C.
Then there is a constant C (independent of σ, δ) such that for all g ∈ C̃β(Rd)

|Eg(ỸT ) − Eg(XT )| ≤ C |g|β [δ
β
α
−1

+ φ(σ)].

The same way as Corollary 2 (see the proof below) we have the following statement.

Corollary 3. Let assumptions of Theorem 2 hold and ν ∈ (0, β]. Then there is a constant C
such that for all g ∈ C̃ν(Rd)

|Eg(ỸT ) − Eg(XT )| ≤ C |g|ν[δ
ν( 1

α
−

1
β
)
+ φ(σ)

ν
β ].

Remark 2. (i) Assume the assumptions of Theorem 2 hold. Since limσ→0 φ(σ) = 0, for each

δ > 0 there is σ = σ(δ) such that φ(σ(δ)) ≤ δ
β
α
−1 and therefore

|Eg(ỸT ) − Eg(XT )| ≤ C |g|βδ
β
α
−1.

In particular, if φ(σ) ≤ Cσµ with µ > 0 (it is the case in Example 1 for a small jump α′-stable-

like driving process Z with α′ < α), then we can choose σµ
= δ

β
α
−1 or σ = δ(

β
α
−1)µ−1

.

(ii) In order to study precisely the case of unbounded test functions (like one in [3]), one
would need to solve first the backward Kolmogorov equation in Hölder spaces with weights that

are defined by the powers of w(x) =

1 + |x |

2
1/2

, x ∈ Rd .

Applying Theorem 2 to the model of Example 1 we have

Proposition 1. Let α < β ≤ µ ≤ 2α, and let ai , bi j
∈ C̃β(Rd), Gi j

∈ C̃β∨1(Rd), and
|υ|≤1

|υ|
αdπ +


|υ|≥1

|υ|
µπ(dυ) < ∞,
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where π is the Lévy measure of the driving process Z. For the approximate Euler scheme
in Example 1, there is a constant C (independent of σ, δ) such that for all g ∈ C̃β(Rd)

|Eg(ỸT ) − Eg(XT )| ≤ C |g|β


δ

β
α
−1

+


|υ|≤σ

|υ|
β∧3dπ


.

2.2. Approximate jump-adapted Euler scheme

As in Example 1, for σ ∈ (0, 1) we approximate the increments of the driving process

Z t =

 t

0


(1 − χα(υ))υp(ds, dυ) +

 t

0


χα(υ)υq(ds, dυ), t ∈ [0, T ],

by the increments of

Z̃ t = Zσ
t + Rσ

t ,

with

Zσ
t =

 t

0


|υ|>σ

(1 − χα(υ))υp(ds, dυ) +

 t

0


|υ|>σ

χα(υ)υq(ds, dυ)

and

Rσ
t =


t


|υ|≤σ

υπ(dυ) if α < β ∈ (1, 2], α ∈ (0, 1],

Bσ W̃t if α < β ∈ (2, 4], α ∈ (1, 2],

0 otherwise,

where Bσ is the square root of the positive definite m × m-matrix


|υ|≤σ
υiυ j dπ


1≤i, j≤m

and

W̃t is a standard independent Wiener process in Rm .
Given σ ∈ (0, 1), δ > 0, consider the following Zσ -jump-adapted time discretization

(see [9]): τ0 = 0,

τi+1 = inf

t > τi : ∆Zσ

t ≠ 0

∧ (τi + δ) ∧ T . (2.5)

In this case, the time discretization {τi , i = 0, . . . , nT } of the interval [0, T ] is random, τi are
stopping times. We approximate X t by

Ŷt = X0 +

 t

0
a(Ŷτis

)ds +

 t

0
b(Ŷτis

)dWs +

 t

0
G(Ŷτis

)d Z̃s, t ∈ [0, T ]. (2.6)

The following error estimate holds.

Theorem 3. Let α < β ≤ µ ≤ 2α, and let ai , bi j
∈ C̃β(Rd), Gi j

∈ C̃β∨1(Rd), and
|υ|≤1

|υ|
αdπ +


|υ|≥1

|υ|
µπ(dυ) < ∞,

where π is the Lévy measure of the driving process Z.
Then there is a constant C (independent of σ, δ) such that for all g ∈ C̃β(Rd)

|Eg(ŶT ) − Eg(XT )| ≤ C |g|β


{(δ ∧ λ−1

σ )λ̃σ }
β
α
−1

+


|υ|≤σ

|υ|
β∧3dπ


,
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where λσ = π ({|υ| > σ }) and

λ̃σ = 1 + 1α∈(1,2)


σ<|υ|≤1

υdπ

 .
In particular, the following statement holds.

Corollary 4. Suppose the assumptions of Theorem 3 hold.

(i) If δ = T (only jump moments are chosen for the time discretization), then

|Eg(ŶT ) − Eg(XT )| ≤ C |g|β

 λ̃σ

λσ

 β
α
−1

+


|υ|≤σ

|υ|
β∧3dπ

 .

(ii) If supσ∈(0,1) |

σ<|υ|≤1 υdπ | < ∞ for α ∈ (1, 2), then

|Eg(ŶT ) − Eg(XT )| ≤ C |g|β


(δ ∧ λ−1

σ )
β
α
−1

+


|υ|≤σ

|υ|
β∧3dπ


,

where λσ = π ({|υ| > σ }) .

2.3. Outline of the proof of Theorem 1

To prove Theorem 1, as in [10,12], the solution to the backward Kolmogorov equation
associated with X t is used. First we introduce the operator of the Kolmogorov equation associated
with X t .

For u ∈ C̃β(H), β > α, denote

L zu(t, x) = (a(z), ∇x u(t, x)) +
1
2

d
i, j=1

(bi (z), b j (z))∂2
i j u(x)

+


Rm

0

[u(t, x + G(z)υ) − u(t, x) − χα(υ)(∇x u(t, x), G(z)υ)] π(dυ),

Lu(t, x) = Lx u(t, x) = L zu(t, x)|z=x ,

where bi (z) = (bi j (z))1≤ j≤m, i = 1, . . . , d.

Remark 3. Under assumptions of Theorem 1, there exists a unique strong solution to Eq. (1.1)
and the stochastic process

u(X t ) −

 t

0
Lu(Xs)ds, ∀u ∈ C̃β(Rd)

with β > α is a martingale. The operator L is the generator of X t defined in (1.1).

If v(t, x), (t, x) ∈ H satisfies the backward Kolmogorov equation

(∂t + L) v(t, x) = 0, 0 ≤ t ≤ T,

v(T, x) = g(x),

then by Itô’s formula

E[g(YT )] − E[g(XT )] = E[v(T, YT ) − v(0, Y0)] = E
 T

0
(∂t + LYτis

)v(s, Ys)ds


.
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The regularity of v determines the one-step estimate and the rate of convergence of the
approximation.

3. Backward Kolmogorov equation

In Lipschitz spaces C̃β(H), consider the backward Kolmogorov equation associated with X t :

(∂t + L) u(t, x) = f (t, x), (3.1)

u(T, x) = g(x).

Definition 1. Let f, g be measurable and bounded functions. We say that u ∈ C̃β(H) with
β > α is a solution to (3.1) if

u(t, x) = g(x) +

 T

t
[Lu(s, x) − f (s, x)] ds, ∀(t, x) ∈ H. (3.2)

First we show that L : C̃β(H) → C̃β−α(H) is continuous.

Lemma 1. Let α < β ≤ µ ≤ 2α,
|υ|≤1

|υ|
αdπ +


|υ|>1

|υ|
µdπ < ∞

and ai , bi j
∈ C̃β(Rd), Gi j

∈ C̃β∨1(Rd). Then for any v ∈ C̃β(Rd) we have Lv ∈ C̃β−α(Rd)

and there is a constant independent of v such that

|Lv|β−α ≤ C |v|β .

Proof. Let

Bv(x) =


[v(x + G (x) υ) − v(x) − χα(υ)(∇v(x), G(x)υ)] dπ.

Then

Lv = Bv + (a(x), ∇v(x)) +
1
2
(bi (x), b j (x))∂2

i jv(x).

By Proposition 13 in [12], Bv ∈ C̃β−α(Rd) if β − α ∉ N and |Bv|β−α ≤ C |v|β . In this case,
obviously, Lv ∈ C̃β−α(Rd) as well.

If α > 1, β = 1 + α, then

Bv(x) =


|υ|≤1

 1

0
[∇v(x + sG(x)υ) − ∇v(x)]G(x)υdsdπ

+


|υ|>1

[v(x + G(x)υ) − v(x)] dπ.

Since

∇(Bv(x)) =


|υ|≤1

 1

0
[∂2v(x + sG(x)υ) − ∂2v(x)]G(x)υdsdπ



R. Mikulevicius / Stochastic Processes and their Applications 122 (2012) 2730–2757 2739

+


|υ|≤1

 1

0
∂2v(x + sG(x)υ)∇G(x)υG(x)υdsdπ

+


|υ|>1

[∇v(x + G(x)υ) − ∇v(x)] dπ

+


|υ|>1

∇v(x + G(x)υ)∇G(x)υdπ,

it follows that supx |∇(Bv(x))| ≤ C |v|β . Therefore |Lv|β−α ≤ C |v|β as well. If α = 1 and
β = 2, then

|∇ Bv(x)| =


[∇v(x + G(x)υ) − ∇v(x)]dπ +


∇v(x + G(x)υ)G(x)υdπ,

sup
x

|∇ Bv(x)| ≤ C |v|β

and |Lv|β−α ≤ C |v|β . The case β = 4, α = 2 is considered in a similar way. �

The main result of this section is the following statement.

Theorem 4. Let α < β ≤ µ ≤ 2α, and
|υ|≤1

|υ|
απ(dυ) +


|υ|>1

|υ|
µπ(dυ) < ∞.

Assume ai , bi j
∈ C̃β(Rd), Gi j

∈ C̃β∨1(Rd). Then for each f ∈ C̃β(Rd), g ∈ C̃β(Rd), there
exists a unique solution u ∈ C̃β(H) to (3.1) and a constant C independent of f, g such that
|u|β ≤ C(| f |β + |g|β).

To prove Theorem 4, for ε ∈ (0, 1) we consider a nondegenerate equation
∂t + Lε


u(t, x) = f (t, x), (3.3)

u(T, x) = gε(x),

where Lεu = −εα (−∆)α/2 u + Lu and

gε(x) =


g(y)wε(x − y)dy =


g(x − y)wε(y)dy, x ∈ Rd

with wε(x) = ε−dw
 x

ε


, x ∈ Rd , w ∈ C∞

0 (Rd),


wdx = 1.

An obvious consequence of Corollary 9 in [12] is the following statement.

Lemma 2 (See Corollary 9 in [12]). Let α < β ≤ µ ≤ 2α,
|υ|≤1

|υ|
απ(dυ) +


|υ|>1

|υ|
µπ(dυ) < ∞,

and ai , bi j , g, f ∈ C̃β(Rd), Gi j
∈ C̃β∨1(Rd). Then for each ε ∈ (0, 1) there is β̄ > 2α and a

unique u = uε ∈ C̃ β̄(H) solving (3.3).

We separate in the operator Lε its “bounded jump” part L̄εv(x) = L̄ε
zv(x)|z=x with

L̄ε
zv(x) = −εα (−∆)α/2 u + (a(z), ∇xv(x)) +

1
2

d
i, j=1

(bi (z), b j (z))∂2
i jv(x)
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+


|υ|≤1

[v(x + G (z) υ) − v(x) − χα(υ)(∇v(x), G(z)υ)] dπ,

z, x ∈ Rd , v ∈ C∞

0 (Rd), so that

Lε
zv(x) = L̄ε

zv(x) +


|υ|>1

[v(x + G(z)y) − v(x)]dπ, x, z ∈ Rd .

Remark 4. If the assumptions of Lemma 2 hold and uε ∈ C̃ β̄(H) solves (3.3) with β̄ > 2α,
then uε satisfies the following equation as well:

∂t + L̄ε


u(t, x) = F(u, t, x), (3.4)

u(T, x) = gε(x),

where F(u, t, x) = Fz(u, t, x)|z=x with

Fz(u, t, x) = f (t, x) −


|υ|>1

[u(t, x + G(z)υ) − u(t, x)] dπ.

Using a probabilistic form of a maximum principle we will derive uniform (independent of ε)
C̃β -norm estimates of uε and passing to the limit as ε → 0 we will obtain u ∈ C̃β(H) solving
(3.1). First we prove some auxiliary statements.

Let

Z̃ t =

 t

0


|υ|≤1

[(1 − χα(υ))υp(dt, dυ) + χα(υ)υq(dt, dυ)]

=

 t

0


|v|≤1

vq(dt, dυ) + t


|υ|≤1
(1 − χα(υ))υdπ. (3.5)

For (s, x) ∈ H, h ∈ Rd , ξ ∈ Rd , the following stochastic processes in [s, T ] are used to derive
the uniform estimates:

dUt = εd Zα
t + a(Ut )dt + b(Ut )dWt + G(Ut−)d Z̃ t ,

d Ht = [a(Ut + Ht ) − a(Ut )]dt + [b(Ut + Ht ) − b(Ut )]dWt

+

G(Ut− + Ht−) − G(Ut−)


d Z̃ t , (3.6)

dV̄t = a(1)(Ut + Ht ; V̄t )dt + b(1)(Ut + Ht ; V̄t )dWt

+


|υ|≤1

G(1)(Ut− + Ht−; V̄t−)d Z̃ t ,

dVt = a(1)(Ut ; Vt )dt + b(1)(Ut ; Vt )dWt + G(1)(Ut−; Vt−)d Z̃ t ,

Us = x, Hs = h, Vs = ξ, V̄s = ξ,

where Zα is Rd -valued spherically symmetric α-stable process corresponding to (−∆)α/2 and
independent of Z . Recall for a function v on Rd we denote v(1)(x; ξ) = (∇v(x), ξ), x, ξ ∈ Rd

and, for example, componentwise,

dV j
t = (∇a j (Ut ), Vt )dt +

n
i=1

(∇b j i (Ut ), Vt )dW i
t +

m
i=1

(∇G j i (Ut−), Vt−)d Z̃ i
t ,

j = 1, . . . , d.
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Lemma 3. (a) If ai , bi
j , Gi j

∈ C̃1(Rd), then for each l ≥ 2 there is a constant C such that

E


sup

s≤t≤T
|Ht |

l


≤ C |h|

l .

(b) If ai , bi
j , Gi j

∈ C̃1+κ(Rd) with κ ∈ (0, 1], then for each l ≥ 2 there is a constant C such
that

E


sup

s≤t≤T
|Vs |

l
+ sup

s≤t≤T
|V̄s |

l


≤ C |ξ |

l ,

E


sup

s≤t≤T
|Vt − V̄t |

l


≤ C |ξ |

l
|h|

lκ .

Proof. (a) Since (3.5) holds, we have by the Hölder inequality and martingale moment estimates
(see [11,17])

E sup
s≤r≤t

|Hr |
l
≤ C


|h|

l
+ E

 t

s
|Hr |

2dr

l/2


+ E
 t

s
|Hr |

ldr



≤ C


|h|

l
+ E

 t

s
sup

s≤r ′≤r
|Hr ′ |

ldr


, s ≤ t ≤ T

and inequality follows by the Gronwall lemma.
(b) Similarly, for each l ≥ 2, there is a constant C so that

E


sup

s≤t≤T
|Vs |

l
+ sup

s≤t≤T
|V̄s |

l


≤ C |ξ |

l .

Then

E sup
s≤r≤t

|Vr − V̄r |
l
≤ C


E

 t

s
|Hr |

2κ
|V̄r |

2dr

l/2


+ E
 t

s
|Hr |

κl
|V̄r |

ldr

+ E

 t

s
|V̄r − Vr |

2dr

l/2


+ E
 t

s
|V̄r − Vr |

ldr



≤ C


E
 t

s
|Hr |

κl
|V̄r |

ldr + E
 t

s
|V̄r − Vr |

ldr


, s ≤ t ≤ T .

By the Gronwall lemma,

E sup
s≤r≤T

|Vr − V̄r |
l
≤ CE

 T

s
|Hr |

κl
|V̄r |

ldr

≤ C
 T

s
[E(|Hr |

2κl)]1/2
[E(|V̄r |

2l)1/2
]dr

≤ C |ξ |
l
|h|

κl . �
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3.1. Proof of Theorem 4

1. Existence. By Lemma 2, for each ε ∈ (0, 1) there is a unique solution uε ∈ C̃ β̄(H) to (3.3)
for some β̄ > 2α. By Remark 4, (3.4) holds as well. Let (s, x) ∈ H and Ut solves (3.6). By Itô’s
formula,

Egε(UT ) − uε(s, x) = E
 T

s
F(uε, r, Ur )dr

and

|uε(s, ·)|0 ≤ |g|0 +

 T

s
| f (r, ·)|0 + C |uε(r, ·)|0dr.

By the Gronwall lemma, there is a constant not depending on uε and ε such that

sup
0≤t≤T

|uε(t, ·)|0 ≤ C


|g|0 +

 T

0
| f (r, ·)|0dr


.

As suggested in [7], we estimate multilinear forms associated to the derivatives of u. Let
k = [β]

−, (t, x) ∈ H, ξ1, . . . , ξ k
∈ Rd and

u(k)
ε (t, x; ξ1, . . . , ξ k) =

d
i1,...,ik=1

∂ku(t, x)

∂xik · · · xi1

ξ1
i1

· · · ξ k
ik

if k ≥ 1,

u(0)
ε (t, x) = uε(t, x).

For z ∈ Rd , (t, x) ∈ H, ξ1
∈ Rd , . . . , ξ k

∈ Rd , let

Pzu(k)
ε (t, x; ξ1, . . . , ξ k)

= −εα(−∆x )
α/2u(k)

ε (t, x, ξ1, . . . , ξ k)

+


|υ|≤1


u(k)

ε (x + G(z)υ; ξ1
+ G(1)(z; ξ1)υ, . . . , ξ k

+ G(1)
ε (z; ξ k)υ) − u(k)

ε (x; ξ1, . . . , ξ k) − χα(υ)


(∇x u(k)

ε (x; ξ1, . . . , ξ
k), G(z)υ)

−

k
l=1

(∇ξ l u(k)
ε (x; ξ1, . . . , ξ

k), G(1)(z; ξ l)υ)


dπ

+ (a(z), ∇x u(k)
ε (x; ξ1, . . . , ξ k)) +

k
l=1

(∇ξ l u(k)(x; ξ1, . . . , ξ k), a(1)(z; ξ l))

+
1
2


i, j


(bi (z), b j (z))∂2

i j u
(k)
ε (x; ξ1, . . . , ξ k)

+

k
l=1

[(bi,(1)(z; ξ l), b j (z))∂ξ l
i x j

u(k)
ε (x; , ξ1, . . . , ξ k)

+ (bi (z), b j,(1)(z; ξ l))∂xi ξ
l
j
u(k)(x; , ξ1, . . . , ξ k)]


.
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Differentiating both sides of (3.4) and multiplying by ξ1
i1

· · · ξ k
ik

we see that u(k)
ε (t, x; ξ1,

. . . , ξ k) satisfies the equation

∂t u
(k)
ε (t, x, ξ1, . . . , ξ k) + P εu(k)

ε (t, x, ξ1, . . . , ξ k) = A(uε, t, x, ξ1, . . . , ξ k), (3.7)

where

A(uε, t, x, ξ1, . . . , ξ k) = B(uε, t, x, ξ1, . . . , ξ k) + F (k)(uε, t, x; ξ1, . . . ξ k)

and B(uε, t, x, ξ1, . . . , ξ k) is a finite sum of the terms of the form

[∇x u(l)
ε (t, x + G(x)υ; ξ i1 , . . . , ξ il ) − ∇x u(l)(t, x + G(x)υ; ξ i1 , . . . , ξ il )]

× G(k−l)(x; ξ il+1 , . . . , ξ ik )υ

=

 1

0
∂2u(l)

x (t, x + sG(x)υ; ξ i1 , . . . , ξ il )G(x)υdsG(k−l)(x; ξ il+1 , . . . , ξ ik )υ

with l ≤ k − 2 and

u(l)(t, x + G(x)υ; ξ i1 , . . . , ξ il )G(l1)(x; ξ i1
1 , . . . , ξ

i1
k1 ) · · · G(lm )(x; ξ im

1 , . . . , ξ
jm
km )

with m ≥ 2, l ≤ k, l + l1 + · · · + lm = k and (ξ i1 , . . . , ξ il , . . . , ξ
im
km ) being a permutation

of ξ1, . . . , ξ k . In any case, there is a constant C independent of ε and uε so that for all
(t, x) ∈ [0, T ] × Rd , ξ i

∈ Rd ,

|A(uε, t, x, ξ1, . . . , ξ k)| ≤ C(|uε(t, ·)|k + | f (t, ·)|k)|ξ
1
| · · · |ξ k

|, (3.8)

|A(uε, t, ·, ξ1, . . . , ξ k)|β−k ≤ C(|uε(t, ·)|β + | f (t, ·)|β)|ξ1
| · · · |ξ k

|,

and

|A(uε, t, x, ξ̄1, . . . , ξ̄ k) − A(uε, t, x, ξ1, . . . , ξ k)|

≤ C(| f (t, ·)|k + |uε(t, ·)|k)
k

l=1

|ξ1
| · · · |ξ l−1

∥ξ̄ l
− ξ l

∥ξ̄ l+1
| · · · |ξ̄ k

|. (3.9)

On the other hand, for any (s, x) ∈ H with the processes defined in (3.6), it follows by Itô’s
formula,

E[u(k)
ε (T, UT , V 1

T , . . . , V k
T ) − u(k)

ε (s, x, ξ1, . . . , ξ k)]

= E[g(k)
ε (UT , V 1

T , . . . , V k
T ) − u(k)

ε (s, x, ξ1, . . . , ξ k)]

= E
 T

s
[∂t u

(k)
ε (t, Ut , V 1

t , . . . , V k
t ) + P ε

Ut
u(k)

ε (t, Ut , V 1
t , . . . , V k

t )]dt

= E
 T

s
[A(uε, t, Ut , V 1

t , . . . , V k
t )]dt

and

E[u(k)
ε (T, UT + HT , V̄ 1

T , . . . , V̄ k
T ) − u(k)

ε (T, UT , V 1
T , . . . , V k

T )]

− [u(k)
ε (s, x + h, ξ1, . . . , ξ k) − u(k)

ε (s, x, ξ1, . . . , ξ k)]

= E[g(k)(UT + HT , V̄ 1
T , . . . , V̄ k

T ) − g(k)(UT , V 1
T , . . . , V k

T )]

− [u(k)
ε (s, x + h, ξ1, . . . , ξ k) − u(k)

ε (s, x, ξ1, . . . , ξ k)]
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= E
 T

s


[∂t u

(k)
ε (t, Ut + Ht , V̄ 1

t , . . . , V̄ k
t ) + P ε

Ut +Ht
u(k)

ε (t, Ut + Ht , V̄ 1
t , . . . , V̄ k

t )]

− [∂t u
(k)
ε (t, Ut , V 1

t , . . . , V k
t ) + P ε

Ut
u(k)

ε (t, Ut , V 1
t , . . . , V k

t )]


dt

= E
 T

s
[A(uε, t, Ut + Ht , V̄ 1

t , . . . , V̄ k
t ) − A(uε, t, Ut , V 1

t , . . . , V k
t )]dt.

Since by (3.8)

|A(uε, t, Ut , V 1
t , . . . , V k

t )| ≤ C(|uε(t, ·)|k + | f (t, ·)|k)|V
1
t | · · · |V k

t |,

it follows by Lemma 3 and the Hölder inequality,

E|A(uε, t, Ut , V 1
t , . . . , V k

t )| ≤ C(|uε(t, ·)|k + | f (t, ·)|k)|ξ
1
| · · · |ξ k

|. (3.10)

Since

|A(uε, t, Ut + Ht , V̄ 1
t , . . . , V̄ k

t ) − A(uε, t, Ut , V 1
t , . . . , V k

t )|

≤ |A(uε, t, Ut + Ht , V̄ 1
t , . . . , V̄ k

t ) − A(uε, t, Ut , V̄ 1
t , . . . , V̄ k

t )|

+ |A(uε, t, Ut , V̄ 1
t , . . . , V̄ k

t ) − A(uε, t, Ut , V 1
t , . . . , V k

t )|

= A1 + A2,

it follows by the estimates (3.8), (3.9) and Lemma 3 that

EA1 ≤ C(E|Ht |
2(β−k))1/2 

| f (t, ·)|β + |u(t, ·)|β


≤ C |h|
β−k 

| f (t, ·)|β + |u(t, ·)|β


and for |h| ≤ 1

EA2 ≤ C(| f (t, ·)|k + |u(t, ·)|k)
k

l=1

E|V 1
t | · · · |V l−1

t ∥V̄ l
t − V l

t ∥V̄ l+1
t | · · · |V̄ k

t |

≤ C(| f (t, ·)|k + |u(t, ·)|k)


l

(E[|V̄ l
t − V l

t |
2
])1/2

|ξ1
| · · · |ξ l−1

∥ξ l+1
| · · · |ξ k

|

≤ C(| f (t, ·)|k + |u(t, ·)|k)|ξ
1
| · · · |ξ k

∥h|
β−k .

Similarly, we estimate

E|g(k)
ε (UT , V 1

T , . . . , V k
T )| ≤ C |g|k |ξ

1
| · · · |ξ k

|

and for |h| ≤ 1

E|g(k)
ε (UT + HT , V̄ 1

T , . . . , V̄ k
T ) − g(k)

ε (UT , V 1
T , . . . , V k

T )| ≤ C |g|β |h|
β−k

|ξ1
| · · · |ξ k

|.

So,

|u(k)
ε (s, x; ξ1, . . . , ξ k)|0 ≤ C |ξ1

| · · · |ξ k
|


|g|k +

 T

s
(|uε(t, ·)|k + | f (t, ·)|k)dt


,

0 ≤ s ≤ T,

and by the Gronwall lemma,

sup
0≤s≤T

|u(k)
ε (s, x; ξ1, . . . , ξ k)|0 ≤ C |ξ1

| · · · |ξ k
|


|g|k +

 T

0
| f (t, ·)|kdt


.
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Also, for |h| ≤ 1, x ∈ Rd , 0 ≤ s ≤ T,

|u(k)
ε (s, x + h, ξ1, . . . , ξ k) − u(k)

ε (s, x, ξ1, . . . , ξ k)|

≤ C |h|
β−k

|ξ1
| · · · |ξ k

|


|g|β +

 T

s
(| f (t, ·)|β + |u(t, ·)|β)dt


,

and by the Gronwall lemma,

sup
0≤s≤T

|u(k)(s, ·, ξ1, . . . , ξ k)|β−k ≤ C |ξ1
| · · · |ξ k

|


|g|β +

 T

0
| f (t, ·)|βdt


.

Therefore for each β ∈ (α, 2α],

sup
ε∈(0,1)

|uε|β ≤ C


|g|β +

 T

0
| f (t, ·)|βdt


. (3.11)

Since for each (s, x) ∈ H,

uε(s, x) = gε(x) +

 T

s
[Lεuε(t, x) − f (t, x)]dt, (3.12)

and there is a constant C > 0 so that for all (t, x) ∈ H, h ∈ Rd ,

|∂t uε(t, x + h) − ∂t uε(t, x)| ≤ |Lε
x+hu(t, x + h) − Lεuεu(t, x)|

+ | f (t, x + h) − f (t, x)|

≤ C |h|
β̃−α(|uε|β̃ + | f |β) (3.13)

for some β̃ ∈ (α, α + α ∧ 1). It follows from (3.11) and (3.13) that there is a sequence
εn → 0 and u ∈ C̃β(H) such that such uεn → u uniformly on compact sets of H . By (3.11),
Lεuε(t, x) → Lu(t, x) pointwise and passing to the limit in (3.12), we see that u ∈ C̃β(H) is a
solution to (3.1).

2. Uniqueness. Let u1, u2
∈ C̃β(H) be two solutions to (3.1). Then v = u1

−u2 satisfies (3.1)
with g = 0, f = 0. Let X s,x

t be the solution to (1.1) starting from x ∈ Rd at time moment s.
Then by Itô’s formula,

−v(s, x) = Ev(T, X s,x
T ) − v(s, x)

= E
 T

s


∂tv(r, X s,x

r ) + Lv(r, X s,x
r )


dr = 0

and uniqueness follows.

4. One-step estimate and proof of main results

First, we modify the mollified function estimates for the Lipschitz spaces. Let w ∈ C∞

0 (Rd),
be a nonnegative smooth function with support in {|x | ≤ 1} such that w(x) = w(|x |), x ∈ Rd ,
and


w(x)dx = 1. Due to the symmetry,

Rd
x iw(x)dx = 0, i = 1, . . . , d. (4.1)
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For x ∈ Rd and ε ∈ (0, 1), define wε(x) = ε−dw
 x

ε


and the convolution

f ε(x) =


f (y)wε(x − y)dy =


f (x − y)wε(y)dy, x ∈ Rd . (4.2)

Lemma 4. Let α < β ≤ 2α, f ∈ C̃β−α(Rd). Then

| f ε(x) − f (x)| ≤ Cεβ−α
| f |β−α, x ∈ Rd , (4.3)

and there is a constant C such that

|L f ε
| ≤ Cεβ−2α

| f |β−α. (4.4)

Proof. Indeed, if β − α ≤ 1, then

| f ε(x) − f (x)| ≤


| f (x − y) − f (x)|wε(y)dy

≤ C | f |β−αεβ−α.

If β − α ∈ (1, 2], then

| f ε(x) − f (x)| =

 f (x + y) − f (x) − (∇ f (x), y)wε(y)dy


≤

  1

0
|(∇ f (x + sy) − ∇ f (x), y)|dswε(y)dydy

≤ Cεβ−α
| f |β−α.

According to Lemma 17(iii) and Corollary 18 in [12], for each β, so that β − α < α,

|L f ε
| ≤ Cε(β−α)−α

| f |β−α = Cεβ−2α
| f |β−α.

Inequality (4.4) still holds for β − α = α or β = 2α by a straightforward estimate. �

We modify one-step estimate in [12] for Lipschitz spaces as well.

Lemma 5. Let α < β ≤ µ ≤ 2α,
|υ|≤1

|υ|
αdπ +


|υ|>1

|υ|
µdπ < ∞,

and ai , bi j
∈ C̃β(Rd), Gi j

∈ C̃β∨1(Rd). Then there exists a constant C such that for all
f ∈ C̃β−α(Rd),E  f (Ys) − f (Yτis

)|Fτis

 ≤ C | f |β−αδ
β
α
−1, ∀s ∈ [0, T ],

where is = i if τi ≤ s < τi+1.

Proof. Applying Itô’s formula, for s ∈ [0, T ],

E[ f ε(Ys) − f ε(Yτis
)|Fτis

] = E

 s

τis


LYτis

f ε(Yr )


dr
Fτis


.
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Hence, for ε ∈ (0, 1), by (4.3) and (4.4),

|E[ f (Ys) − f (Yτis
)|Fτis

]| ≤ |E[( f − f ε)(Ys) − ( f − f ε)(Yτis
)|Fτis

]|

+ |E[ f ε(Ys) − f ε(Yτis
)|Fτis

]|

≤ C F(ε, δ)| f |β−α,

with a constant C independent of ε, f and F(ε, δ) = εβ−α
+ εβ−2αδ. Minimizing F(ε, δ) in

ε ∈ (0, 1), we obtain

|E[ f (Ys) − f (Yτis
)|Fτis

]| ≤ Cδ
β
α
−1

| f |β . �

4.1. Proof of Theorem 1

Let u ∈ C̃β(H) be the unique solution to (3.1) with f = 0. By Itô’s formula,

E[u(0, X0)] = E[u(T, XT )] − E
 T

0


∂t u(s, Xs) + L Xs u(s, Xs)


ds


= E [g(XT )]

and

E[u(0, X0)] = E[u(0, Y0)]. (4.5)

By Lemma 1,

|L zu(s, ·)|β−α ≤ C |g|β , |∂t u(s, ·)|β−α ≤ C |g|β , s ∈ [0, T ], z ∈ Rd . (4.6)

Then, by Itô’s formula and (4.6), it follows that

E[g(YT )] − E[g(XT )] = E[u(T, YT )] − E[u(0, Y0)]

= E
 T

0

 
∂t u(s, Ys) − ∂t u(s, Yτis

)


+


LYτis

u(s, Ys) − LYτis
u(s, Yτis

)


ds


.

Hence, by (4.6) and Lemma 5, there exists a constant C independent of g such that

|Eg(YT ) − Eg(XT )| ≤ Cδ
β
α
−1

|g|β .

The statement of Theorem 1 follows.

4.1.1. Proof of Corollary 2
According to [2], there is a rapidly decreasing smooth function w ∈ S(Rd), the Schwartz

space, such that


w(x)dx = 1 and all moments are zero:
w(x)xγ dx = 0, γ ∈ Nd , γ ≠ 0,

where xγ
= xγ1

1 · · · xγd
d , x = (x1, . . . , xd) ∈ Rd . Let ε ∈ (0, 1), wε(x) = ε−dw(x/ε), x ∈ Rd ,

gε(x) =


g(x − y)wε(y)dy, x ∈ Rd .
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We will show that for β ∈ (0, 4], ν ≤ β,

sup
x

|gε(x) − g(x)| ≤ C |g|νε
ν, (4.7)

|gε|β ≤ Cεν−β
|g|ν .

(A standard mollifier could be taken if ν ≤ 2; see Lemma 4). Since for x ∈ Rd ,

gε(x) − g(x) =

 g(x − y) − g(x) −


1≤|γ |≤[ν]−

Dγ g(x)

γ !
yγ

wε(y)dy,

it follows that

sup
x

|gε(x) − g(x)| ≤ C |g|νε
ν .

If β is an integer, γ ∈ Nd , |γ | = β and γ = µ + µ′ with |µ| = [ν], µ′
≠ 0, then

Dγ gε(x) = ε−[γ ]


g(y)(Dγ w)ε(x − y)dy = ε[ν]−β


Dµg(y)(Dµ′

w)ε(x − y)dy

= ε[ν]−β


[Dµg(y) − Dµg(x)](Dµ′

w)ε(x − y)dydy

and

|Dγ gε(x)| ≤ Cεν−β
|g|ν, x ∈ Rd .

If β is not an integer, the second inequality in (4.7) follows by interpolation.
According to Theorem 1 and (4.7),

|Eg(YT ) − Eg(XT )| ≤ 2 sup
x

|gε(x) − g(x)| + |Egε(YT ) − Egε(XT )|

≤ C |g|ν F(ε, δ),

where F(ε, δ) = εν
+ εν−βδ

β
α
−1. Minimizing F in ε ∈ (0, 1), the statement of Corollary 2

follows.

4.2. Approximate simple Euler scheme

Consider the approximation of X t defined by the increments of Z̃ t = Zσ
t + Rσ

t , 0 ≤ t ≤ T ,
in Example 1. Obviously, Z̃ t depends on α, β and σ . Its generator is

L̃v(x) =

 t

0


|υ|>ε

[v(s, x + υ) − v(s, x) − χα(υ) (∇v(s, x), υ)]π(dυ) + Rα,βv(x),

where

Rα,βv(x) =




|υ|≤σ

(∇v(x), υ) dπ if α < β ∈ (1, 2], α ∈ (0, 1],

1
2


i, j

(Bσ ∗ Bσ )i j∂
2
i jv(x) if α < β ∈ (2, 4], α ∈ (1, 2],

0 otherwise.
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Lemma 6. Let α < β ≤ 2α and h ∈ C̃β(Rd). Then there is a constant C such that for every
FZσ

-stopping times 0 ≤ τ ≤ τ ′
≤ T we have

|E[h(Zτ ′ − Zτ ) − h(Z̃τ ′ − Z̃τ )|Fτ ]| ≤ Cφ(σ)|h|βE[τ ′
− τ |Fτ ],

with

φ(σ) =


|υ|≤σ

|υ|
β∧3dπ

(here FZσ
is the natural filtration of σ -algebras generated by Zσ ).

Proof. Let Z̄σ
= Z − Zσ . We show first that there is a constant C such that for any s < t, g ∈

C̃β(Rd),

|Eg(Z̄σ
t − Z̄σ

s ) − Eg(Rσ
t − Rσ

s )| ≤ Cφ(σ)|g|β |t − s|. (4.8)

By Itô’s formula

v(r, x) = E[g(Z̄σ
t − Z̄σ

r + x)], 0 ≤ r ≤ t, (4.9)

is the solution of the backward Kolmogorov equation

∂tv(r, x) +


|υ|≤σ

[v(r, x + υ) − v(r, x) − χα(υ) (∇v(r, x), υ)]π(dυ) = 0,

v(t, x) = g(x), 0 ≤ s ≤ t. (4.10)

Obviously, v ∈ C̃β([0, t] × Rd) and (see (4.9)) |v|β ≤ |g|β . By Itô’s formula and (4.10),

Eg(Rσ
t − Rσ

s ) − Eg(Z̄σ
t − Z̄σ

s ) = Ev(t, Rσ
t − Rσ

s ) − v(s, 0)

= E
 t

s
[Rα,βv(r, Rσ

r − Rσ
s )

− L̄v(r, Rσ
r − Rσ

s )]dr, (4.11)

where

L̄v(r, x) =


|υ|≤σ

[v(r, x + υ) − v(r, x) − χα(υ) (∇v(r, x), υ)]π(dυ), (r, x) ∈ H.

If α < β ∈ (1, 2], α ∈ (0, 1], then for all (r, x) ∈ H,Rα,βv(r, x) −


|υ|≤σ

[v(r, x + υ) − v(r, x)]π(dυ)


≤

 1

0


|υ|≤σ

|∇v(r, x + sυ) − ∇v(r, x)| |υ|dπds

≤ C |v|β


|υ|≤σ

|υ|
βdπ ≤ C |h|β


|υ|≤σ

|υ|
βdπ.

If α < β ∈ (2, 4], α ∈ (1, 2], then for all (r, x) ∈ H,Rα,βv(r, x) −


|υ|≤σ

[v(r, x + υ) − v(r, x) − (∇v(r, x), υ)]dπ


≤

 1

0


|υ|≤σ

|D2v(r, x + sυ) − D2v(r, x)| |υ|
2dπds
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≤ C |v|β


|υ|≤σ

|υ|
β∧3dπ ≤ C |h|β


|υ|≤σ

|υ|
β∧3dπ.

The estimate of the difference Rα,βv − L̄v in other cases is straightforward and (4.8) follows
by (4.11).

Since Zσ , Z̄σ and Rσ are independent and τ, τ ′ are FZσ
stopping times, we have by (4.8) that

|E[h(Zσ
τ ′ − Zσ

τ + Z̄σ
τ ′ − Z̄σ

τ ) − h(Zσ
τ ′ − Zσ

τ + Rσ
τ ′ − Rσ

τ )|Fτ ]|

≤ Cφ(σ)|h|βE[τ ′
− τ |Fτ ].

The statement follows. �

For the proof or Theorem 2 we will need the following estimate.

Lemma 7. Let

Vt = at + bWt + G Z t ,

where a ∈ Rd , b is a d × d-matrix and G is an m × m-matrix. We assume b = 0 if α ∈ (0, 2)

and a = 0 if α ∈ (0, 1) and

|a| + |b| + |G| ≤ K .

Let α < β ≤ µ ≤ 2α and h ∈ C̃β−α(Rd).
Then there is a constant C = C(α, β, K ) such that

|Eh(Vt ) − h(0)| ≤ Ct
β
α
−1

|h|β−α.

Proof. For f ∈ C̃β(Rd), applying Itô’s formula,

E f (Vt ) − f (0) = E
 t

0
K f (Vr )dr,

where for x ∈ Rd ,

K f (x) = (a, ∇ f (x)) +
1
2


i, j

b∗b∂2
i j f (x)

+


[ f (x + υ) − f (x) − χα(υ)(∇ f (x), υ)]π(dυ).

For h ∈ C̃β−α(Rd) we take w ∈ C∞

0 (Rd) to be a nonnegative smooth function with support in
{|x | ≤ 1} such that w(x) = w(|x |), x ∈ Rd , and


w(x)dx = 1. For x ∈ Rd and ε ∈ (0, 1),

define wε(x) = ε−dw
 x

ε


and the convolution

hε(x) =


f (y)wε(x − y)dy, x ∈ Rd .

Then by Lemma 4

|Eh(Vt ) − h(0)| ≤ 2εβ−α
|h|β−α +

E  t

0
Khε(Vr )dr


≤ C |h|β−α(εβ−α

+ εβ−2αt)

for each ε ∈ (0, 1). The statement follows by minimizing the inequality in ε. �
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4.2.1. Proof of Theorem 2
Let u ∈ C̃β(H) be the unique solution to the backward Kolmogorov equation

(∂t + L) u(t, x) = 0, (4.12)

u(T, x) = g(x).

Let for τi ≤ t ≤ τi+1

H i
t = a(Ỹτi )(t − τi ) + b(Ỹτi )(Wt − Wτi ) + G(Ỹτi )


Z t − Zτi


and denote ∆Ỹτi = Ỹτi+1 − Ỹτi . We approximate

u(T, ỸT ) − u(0, Y0) =


i

u(τi+1, Ỹτi+1) − u(τi , Ỹτi )

=


i

[u(τi+1, Ỹτi + ∆Ỹτi ) − u(τi+1, Ỹτi + H i
τi+1

)]

+


i

[u(τi+1, Ỹτi + H i
τi+1

) − u(τi , Ỹτi )]

= D1 +


i

D2i .

According to (2.4) (Lemma 6),

E|D1| ≤ Cφ(σ)|u|β ≤ Cφ(σ)|g|β .

Now, we estimate the second term. By Itô’s formula for each i,

E[D2i |Fτi ] = E[u(τi+1, Ỹτi + H i
τi+1

) − u(τi+1, Ỹτi )|Fτi ]

= E
 τi+1

τi

[∂t u(r, Ỹτi + H i
r ) + L Ỹτi

u(r, Ỹτi + H i
r )]dr |Fτi


= E

 τi+1

τi

[(∂t u(r, Ỹτi + H i
r ) − ∂t u(r, Ỹτi ))

+ (L Ỹτi
u(r, Ỹτi + H i

r ) − L Ỹτi
u(r, Ỹτi ))]dr

and by Theorem 4 and Lemmas 1 and 7,
i

ED2i

 ≤


i

|ED2i | ≤ Cδ
β
α
−1

|Lu|β−α

≤ Cδ
β
α
−1

|u|β ≤ Cδ
β
α
−1

|g|β

and the statement of Theorem 2 follows.

4.3. Approximate jump-adapted scheme

Consider the approximation of X t defined by the increments of Z̃ t = Zσ
t + Rσ

t , 0 ≤ t ≤ T , in
Example 1. For σ ∈ (0, 1), δ > 0, consider the following Zσ -jump-adapted time discretization:
τ0 = 0,

τi+1 = inf

t > τi : ∆Zσ

t ≠ 0

∧ (τi + δ) ∧ T .
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In this case, the time discretization {τi , i = 0, . . . , nT } of the interval [0, T ] is random, τi are
stopping times. We approximate X t by

Ŷt = X0 +

 t

0
a(Ŷτis

)ds +

 t

0
b(Ŷτis

)dWs +

 t

0
G(Ŷτis

)d Z̃s, t ∈ [0, T ].

In this case,

τi+1 − τi = ηi+1 ∧ δ ∧ (T − τi )

with

ηi+1 = inf(t > 0 : p ((τi , τi + t], {|υ| > σ }) ≥ 1)

and ηi+1 is Fτi -conditionally exponential with parameter λσ = π ({|υ| > σ }).

Lemma 8. Let δ′

i = δ ∧ (T − τi ), i ≥ 0, and λσ = π ({|υ| > σ }).

(i) There is a constant c > 0 such that for any i ≥ 0

c

δ′

i ∧ λ−1
σ


≤ E[τi+1 − τi |Fτi ] ≤ δ′

i ∧ λ−1
σ .

(ii) There is a constant C such that for any i ≥ 0,

E[(τi+1 − τi )
2
|Fτi ] ≤ CE[δ′2

i ∧ λ−2
σ |Fτi ]

≤ C(δ ∧ λ−1
σ )E[τi+1 − τi |Fτi ].

Proof. Since τi+1 − τi = ηi+1 ∧ δ ∧ (T − τi ) and

ηi+1 = inf(t > 0 : p ((τi , τi + t], {|υ| > σ }) ≥ 1)

is Fτi -conditionally exponential with parameter λσ , we find

E[τi+1 − τi |Fτi ] = E

ηi+1 ∧ δ′

i |Fτi


= λσ

 δ′
i

0
te−λσ t dt + δ′

i e
−λσ δ′

i

=
1 − e−λσ δ′

i

λσ

and (i) follows. Similarly,

E[(τi+1 − τi )
2
|Fτi ] = λσ E

 δ′
i

0
t2e−λσ t dt + δ′2

i e−λσ δ′
i |Fτi


dt

=
2

λ2
σ

[−λσ δ′

i e
−λσ δ′

i + 1 − e−λσ δ′
i ]

and (ii) follows using (i). �

An immediate consequence of Lemma 8 is the following statement.

Corollary 5. (i) There are constants c, C > 0 such that

cE


i

(τi+1 − τi ) ≤


i

E[(δ ∧ λ−1
σ ) ∧ (T − τi )]

≤ CE


i

(τi+1 − τi ) = CT .
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(ii) There is C > 0 such that
i

E[(τi+1 − τi )
2
] ≤ CT (δ ∧ λ−1

σ ).

Proof. We derive (i) by summing inequalities in Lemma 8(i). According to Lemma 8(ii) and (i),
i

E[(τi+1 − τi )
2
] ≤ C


i

E[(T − τi )
2
∧ δ2

∧ λ−2
σ ]

≤ C(T ∧ δ ∧ λ−1
σ )


i

E[(T − τi ) ∧ δ ∧ λ−1
σ ]

≤ CT (δ ∧ λ−1
σ ).

The statement follows. �

For the proof of Theorem 3 we will need the following estimate as well.

Lemma 9. Let

Vt = at + bWt + G Z t ,

where a ∈ Rd , b is a d × d-matrix and G is an m × m-matrix. We assume b = 0 if α ∈ (0, 2)

and a = 0 if α ∈ (0, 1) and

|a| + |b| + |G| ≤ K .

Let α < β ≤ µ ≤ 2α and h ∈ C̃β−α(Rd).
Then there is a constant C = C(α, β, K ) such that for any i ≥ 0E  τi+1

τi

h(Vr ) − h(Vτi )|Fτi

 ≤ C |h|β−αλ̃
β
α
−1

σ


δ ∧ λ−1

σ

 β
α
−1

E[(τi+1 − τi )|Fτi ],

where λσ = π ({|υ| > σ }) ,

λ̃σ = 1 + 1α∈(1,2)


1≥|υ|>σ

υdπ

 .
Proof. For f ∈ C̃β(Rd), i ≥ 0, applying Itô’s formula,

E
 τi+1

τi

f (Vr ) − f (Vτi )|Fτi


dr

= E
 τi+1

τi

 s

τi

[K f (Vr )dr + Ms − Mτi ]ds|Fτi


dr,

where for x ∈ Rd ,

K f (x) = (a, ∇ f (x)) +
1
2


i, j

b∗b∂2
i j f (x)

+


[ f (x + υ) − f (x) − χα(υ)(∇ f (x), υ)]π(dυ)

and

Mt =

 t

0


[ f (Vr− + Gυ) − f (Vr−)]q(dr, dυ), t ∈ [0, T ].
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Note that τi+1

τi

(Ms − Mτi )d(s − τi ) = (Mτi+1 − Mτi )(τi+1 − τi ) −

 τi+1

τi

(s − τi )d Ms .

Since Zσ and Z̄σ
= Z − Zσ are independent and τi are FZσ

-stopping times, it follows by the
definition of τi that

E

(Mτi+1 − Mτi )(τi+1 − τi ) −

 τi+1

τi

(s − τi )d Ms |Fτi


= E


−(τi+1 − τi )(U

σ
τi+1

− Uσ
τi
) +

 τi+1

τi

(s − τi )dUσ
s |Fτi


= −E

 τi+1

τi

(Uσ
s − Uσ

τi
)ds|Fτi


,

where

Uσ
t =

 t

0


|υ|>σ

[ f (Vr− + Gυ) − f (Vr−)]dπdr

=

 t

0


|υ|>1

[ f (Vr− + Gυ) − f (Vr−)]dπdr

+

 t

0


1≥|υ|>σ

χα(υ)(∇ f (Vr ), υ)dπdr

+

 t

0


1≥|υ|>σ

[ f (Vr− + Gυ) − f (Vr−) − χα(υ)(∇ f (Vr ), υ)]dπdr.

HenceE  τi+1

τi

f (Vr ) − f (Vτi )|Fτi


dr


≤ C


1 + 1α∈(1,2)


1≥|υ|>ε

υdπ

 | f |βE[(τi+1 − τi )
2
|Fτi ]. (4.13)

For h ∈ C̃β−α(Rd) we take w ∈ C∞

0 (Rd) to be a nonnegative smooth function with support
in {|x | ≤ 1} such that w(x) = w(|x |), x ∈ Rd , and


w(x)dx = 1. For x ∈ Rd and ε ∈ (0, 1),

define wε(x) = ε−dw
 x

ε


and the convolution

hε(x) =


f (y)wε(x − y)dy, x ∈ Rd .

Then by Lemma 4 and (4.13),E  τi+1

τi

h(Vr ) − h(Vτ )|Fτi


dr


≤ 2εβ−α

|h|β−αE[(τi+1 − τi ) |Fτ ] +

E  τi+1

τi

(hε(Vr ) − hε(Vτ ))dr |Fτ


≤ 2εβ−α

|h|β−αE[τi+1 − τi |Fτi ] + Cεβ−2α

×


1 + 1α∈(1,2)


1≥|υ|>ε

υdπ


|h|β−αE[(τi+1 − τi )

2
|Fτi ].
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Minimizing the inequality in ε we find by Lemma 8(ii) thatE  τi+1

τi

h(Vr ) − h(Vτ )|Fτi


dr


≤ C |h|β−αλ̃

β
α
−1

σ E[τi+1 − τi |Fτi ]
2−

β
α E[(τi+1 − τi )

2
|Fτi ]

β
α
−1

≤ C |h|β−αλ̃
β
α
−1

σ (δ ∧ λ−1
σ )

β
α
−1E[τi+1 − τi |Fτi ]. �

4.3.1. Proof of Theorem 3
Let u ∈ C̃β(H) be the unique solution to the backward Kolmogorov equation (see Theorem 4)

(∂t + L) u(t, x) = 0, (4.14)

u(T, x) = g(x).

Let for τi ≤ t ≤ τi+1

H i
t = a(Ŷτi )(t − τi ) + b(Ŷτi )(Wt − Wτi ) + G(Ŷτi )


Z t − Zτi


and denote ∆Ŷτi = Ŷτi+1 − Ŷτi . We approximate

u(T, ŶT ) − u(0, X0) =


i

u(τi+1, Ŷτi+1) − u(τi , Ŷτi )

=


i

[u(τi+1, Ŷτi + ∆Ŷτi ) − u(τi+1, Ŷτi + H i
τi+1

)]

+


i

[u(τi+1, Ŷτi + H i
τi+1

) − u(τi , Ŷτi )]

= D1 +


i

D2i .

According to Lemma 6,

E|D1| ≤ Cφ(σ)|u|β ≤ Cφ(σ)|g|β .

Now, we estimate the second term. By Itô’s formula for each i ,

E[D2i |Fτi ] = E[u(τi+1, Ŷτi + H i
τi+1

) − u(τi+1, Ŷτi )|Fτi ]

= E
 τi+1

τi

[∂t u(r, Ŷτi + H i
r ) + L Ŷτi

u(r, Ŷτi + H i
r )]dr |Fτi


= E

 τi+1

τi

[(∂t u(r, Ŷτi + H i
r ) − ∂t u(r, Ŷτi ))

+ (L Ŷτi
u(r, Ŷτi + H i

r ) − L Ŷτi
u(r, Ŷτi ))]dr

and by Theorem 4 and Lemmas 1, 9 and Corollary 5,
i

ED2i

 ≤


i

|ED2i | ≤ C λ̃
β
α
−1

σ


δ ∧ λ−1

σ

 β
α
−1

(|∂t u|β−α + |Lu|β−α)

≤ C λ̃
β
α
−1

σ


δ ∧ λ−1

σ

 β
α
−1

|u|β ≤ C λ̃
β
α
−1

σ


δ ∧ λ−1

σ

 β
α
−1

|g|β

and the statement of Theorem 3 follows.
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5. Conclusion

The paper studies a simple weak Euler approximation of solutions to possibly completely
degenerate stochastic differential equations driven by Lévy processes. The dependence of the
rate of convergence on the regularity of coefficients and driving processes is investigated under
the assumption of β-Lipschitz continuity of the coefficients. It is assumed that the SDE is driven
by Levy processes of order α ∈ (0, 2] and that the tail of the Lévy measure of the driving
process has a µ-order finite moment (µ ∈ (α, 2α]). The resulting rate depends on β, α and µ.
Following [3], the robustness of the results to the approximation of the law of the increments of
the driving noise is studied as well. It is shown that time discretization and substitution errors
add up. In addition, a jump-adapted approximate Euler scheme is considered as well. The derived
error estimate shows that sometimes the inclusion of jump moments into time discretization {τi }

could improve the convergence rate. In order to estimate the rate of convergence, the existence of
a unique solution to the corresponding backward degenerate Kolmogorov equation in Lipschitz
space is first proved.

On the other hand, there is a discrepancy in the model (1.1) between α = 2 and α ∈ (0, 2).
One would like to consider the equation

X t = X0 +

 t

0
a(Xs)ds +

 t

0
b(Xs)dW α

s +

 t

0
G(Xs−)d Zs, t ∈ [0, T ],

with a possibly degenerate b and a spherically symmetric α-stable W α (in (1.1), b = 0 for
α ∈ (0, 2)).

Since (1.1) could be degenerate, a solution corresponding to a given α ∈ (0, 2] can be looked
at as a solution corresponding to ᾱ ∈ (α, 2] as well. Therefore the rate for a fixed α cannot be
“universally optimal”: there is always a large subclass for which the rate claimed for α could be
better and achieved under weaker assumptions. For example, if β = µ = 2α with α ∈ (0, 2)

(the diffusion part is absent), the convergence order is κ = 1 (µ = 4 and G ∈ C̃4 is not needed).
Even “strictly at α”, the assumption about the tail moment µ ∈ (α, 2α] is not optimal. It could
be weakened for a subclass with the driving processes Z such that the compensator of the jump
measure of X t has a nice density with respect to a reference measure. For example, let us consider
the following one dimensional model

X t = X0 +

 t

0
a(Xs)ds +

 t

0
b(Xs)dWs +

 t

0
G(Xs−)d Zs, t ∈ [0, T ], (5.1)

where Z is a symmetric λ-stable with λ ∈ (0, 1) and G ≥ 0. Assume a, b, Gλ, g ∈ C̃4(R).
Although µ < 1 in this case and the equation is possibly degenerate, a plausible convergence
rate is still κ = 1 (or κ = ν/4 if g ∈ C̃ν(R), ν ∈ (0, 4]), because the integral part of the generator
of (5.1),

Iv(x) =


[v(x + G(x)y) − v(x)]

dy

|y|1+λ
= G(x)λ


[v(x + y) − v(x)]

dy

|y|1+λ
,

is differentiable without assuming much about the tail moments of the Lévy measure.
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