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a b s t r a c t

A new class of tests of extreme-value dependence for bivariate copulas is proposed. It is
based on the process comparing the empirical copula with a natural nonparametric rank-
based estimator of the unknown copula under extreme-value dependence. A multiplier
technique is used to compute approximate p-values for several candidate test statistics.
Extensive Monte Carlo experiments were carried out to compare the resulting procedures
with the tests of extreme-value dependence recently studied in Ben Ghorbal et al. (2009)
[1] and Kojadinovic and Yan (2010) [19]. The finite-sample performance study of the tests
is complemented by local power calculations.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Extreme-value copulas appear in extreme-value theory as the limits of copulas of componentwise maxima in random
samples [8,15,16]. This makes them natural tools formodeling the dependence between extreme observations in fields such
as finance [23], insurance [7] or hydrology [27]. Their use, however, is not restricted to the statistical modeling of extremes
as such copulas may prove to be appropriate dependence models for any data set exhibiting positive dependence.
Any extreme-value copula can be represented in terms of its Pickands dependence function [25,5,17,16]. For a bivariate

copula C , this representation becomes a characterization and takes the form

C(u, v) = exp
[
log(uv)A

{
log(v)
log(uv)

}]
, u, v ∈ (0, 1), (1)

where A : [0, 1] → [1/2, 1], the Pickands dependence function, is convex and satisfies max(t, 1 − t) ≤ A(t) ≤ 1 for all
t ∈ [0, 1].
Let (X1, Y1), . . . , (Xn, Yn) be a random sample from an unknown bivariate cumulative distribution function (c.d.f.)H with

unknown continuous margins F and G, and unknown copula C . In order to reduce the number of candidate copula families
that could be used as models for C , one natural step is to test whether C belongs to the class of extreme-value copulas.
Ghoudi, Khoudraji and Rivest were the first to propose a test of bivariate extreme-value dependence [15]. Their test, based
on the bivariate probability integral transformation, was thoroughly revisited in [1]. A second test, based on the character-
ization of extreme-value copulas as max-stable copulas, was recently proposed in [19].
The aim of this work is to derive a third class of tests of extreme-value dependence for bivariate copulas, and to compare

its finite-sample performance and local limiting power with those of its two competitors mentioned above.
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The proposed class of tests is based on the process comparing the empirical copula with another natural nonparametric
estimator of the unknown copula derived under the hypothesis of extreme-value dependence. The latter estimator is
constructed from a rank-based version of the Capéraà–Fougères–Genest estimator [3] of the Pickands dependence function
recently studied in [14]. As the empirical process on which the proposed class of tests is based has an unwieldy limiting
distribution, a multiplier approach inspired by that suggested in [26] is used to compute approximate p-values for several
candidate test statistics.
The paper is organized as follows. Section 2 is devoted to an in-depth description of the proposed tests: the empirical

process on which the tests are based is thoroughly studied and the computation of asymptotically valid approximate p-
values for the test statistics is explained in detail. Section 3 partially reports the results of a large scale Monte Carlo study
comparing the finite-sample performance of various versions of the tests with those of the tests of extreme-value depen-
dence proposed in [1,19]. These experiments are complemented by asymptotic local power calculations in Section 4. The last
section contains methodological recommendations and concluding remarks. All the proofs are relegated to the Appendices.
The following notational conventions are used in the paper. For any x, y ∈ R, min(x, y) and max(x, y) are denoted by

x∧ y and x∨ y, respectively. Furthermore, `∞(S) represents the space of bounded real-valued functions on the set S, while
C([a, b]) represents the space of continuous real-valued functions on the real closed interval [a, b]; both are equipped with
the uniform metric. The arrow; denotes weak convergence while the set of bivariate extreme-value copulas, i.e., copulas
characterized by (1), is denoted by EV .
Note finally that all the tests studied in this work are implemented in the R package copula [20] available on the

Comprehensive R Archive Network.

2. Description of the test

The empirical process at the root of the proposednewclass of tests of extreme-value dependence involves the comparison
of the empirical copula with a natural nonparametric estimator of the unknown copula derived under the hypothesisH0 :
C ∈ EV . The latter estimator is obtained by replacing the unknown Pickands dependence function in characterization (1)
by a consistent rank-based estimator of it recently studied in [14].

2.1. Nonparametric estimation of C

A natural nonparametric estimator of the underlying copula C(u, v) = H{F−1(u),G−1(v)} is the empirical copula [4]. It
is usually defined as

Cn(u, v) =
1
n

n∑
i=1

1(Ui,n ≤ u, Vi,n ≤ v), u, v ∈ [0, 1],

where (U1,n, V1,n), . . . , (Un,n, Vn,n) are pseudo-observations from C computed from the data by (Ui,n, Vi,n) = (Fn(Xi),Gn(Yi))
for all i ∈ {1, . . . , n}with Fn and Gn being the rescaled empirical counterparts of F and G respectively defined by

Fn(x) =
1
n+ 1

n∑
i=1

1(Xi ≤ x) and Gn(y) =
1
n+ 1

n∑
i=1

1(Yi ≤ y), x, y ∈ R.

Under the assumption that C has continuous partial derivatives on (0, 1)2, it is well known [9,6,31] that the weak limit of
the empirical copula process

√
n(Cn − C) is

C(u, v) = α(u, v)− C [1](u, v)α(u, 1)− C [2](u, v)α(1, v), u, v ∈ [0, 1], (2)

where C [j] denotes the partial derivative of C with respect to the jth argument and α is a C-Brownian bridge, i.e., a tight
centered Gaussian process on [0, 1]2 with covariance function E[α(u, v)α(u′, v′)] = C(u ∧ u′, v ∧ v′) − C(u, v)C(u′, v′),
u, v, u′, v′ ∈ [0, 1].

2.2. Nonparametric estimation of A

Genest and Segers [14] have recently studied two rank-based estimators of the Pickands dependence functionA appearing
in representation (1). These two estimators are the rank-based versions of the two best-known nonparametric estimators
of A, namely the Pickands estimator [25] and the Capéraà–Fougères–Genest estimator [3]. The latter estimator was found
to behave better in finite samples in several studies [14,12]. The results of the Monte Carlo experiments carried out in
this work and partially reported in Section 3 concur with this conclusion. For this reason, we present the derivation of
the proposed tests only when based on the Capéraà–Fougères–Genest estimator. The analogue expressions based on the
Pickands estimator can be recoveredmutatis mutandis.
Assume that C is an extreme-value copula and, as in the previous subsection, let (U1,n, V1,n), . . . , (Un,n, Vn,n) be the

pseudo-observations from C computed from the original data. Furthermore, let

Si,n = − log(Ui,n) and Ti,n = − log(Vi,n),
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for every i ∈ {1, . . . , n}, and let

ξi,n(0) = Si,n, ξi,n(1) = Ti,n, and ξi,n(t) =
(
Si,n
1− t

)
∧

(
Ti,n
t

)
,

for every i ∈ {1, . . . , n} and any t ∈ (0, 1). The rank-based version of the Capéraà–Fougères–Genest estimator is then
defined by

An(t) = exp

{
−γ −

1
n

n∑
i=1

log ξi,n(t)

}
, t ∈ [0, 1],

where γ = −
∫
∞

0 log(x)e
−xdx ≈ 0.577 is Euler’s constant. The previous estimator can be expressed in terms of the empirical

copula as

An(t) = exp
[
−γ +

∫ 1

0

{
Cn(x1−t , xt)− 1(x > e−1)

} dx
x log x

]
, t ∈ [0, 1].

The limiting behavior of An follows from [14, Theorem 3.2]. Provided that the true Pickands dependence function A is
twice continuously differentiable on (0, 1) (which we will assume in the rest of the paper), we have that

√
n{An(t)− A(t)} ; A(t) = A(t)

∫ 1

0
C(x1−t , xt)

dx
x log x

, (3)

in C([0, 1]), where C is defined in (2).
To ensure that the endpoint constraints An(0) = An(1) = 1 are satisfied, the previous estimator can be corrected as

suggested in [3]. This yields the corrected version

An,c(t) = exp {log An(t)− (1− t) log An(0)− t log An(1)} , t ∈ [0, 1],

which generally behaves better in small samples than the uncorrected one. For this reason, in the rest of the paper, we
shall always work with the above corrected version. Note however that An and An,c become indistinguishable as n tends to
infinity [14, Section 2.4].

2.3. Test process and test statistics

In view of the previous subsection and of representation (1), it seems sensible to define a nonparametric estimator of the
unknown copula under extreme-value dependence as

CAn,c (u, v) = exp
[
log(uv)An,c

{
log(v)
log(uv)

}]
, u, v ∈ (0, 1).

A natural way of testing extreme-value dependence then consists of comparing the empirical copula Cn, which is a
nonparametric estimator of C whether H0 : C ∈ EV is true or not, with CAn,c . More formally, this amounts to basing
tests of extreme-value dependence on the empirical process

Dn =
√
n(Cn − CAn,c ),

i.e.,

Dn(u, v) =
√
n
(
Cn(u, v)− exp

[
log(uv)An,c

{
log(v)
log(uv)

}])
, u, v ∈ (0, 1). (4)

The following result, proved in Appendix A, describes the asymptotic behavior of the test process (4) underH0.

Proposition 1. Let a, b ∈ (0, 1), a < b, and suppose that A is twice continuously differentiable on (0, 1). Then, under H0,
Dn ; D in `∞([a, b]2), where

D(u, v) = C(u, v)− exp
[
log(uv)A

{
log(v)
log(uv)

}]
log(uv)A

{
log(v)
log(uv)

}
. (5)

The reals a and b in the previous proposition can be chosen arbitrarily close to 0 and 1, respectively. We will explain in
Section 3 how they were chosen in practice.
As candidate test statistics, we restricted our attention to the two Cramér–von Mises functionals

Sn =
∫
[a,b]2

Dn(u, v)2dudv and Tn =
∫
[a,b]2

Dn(u, v)2dCn(u, v).

Kolmogorov–Smirnov statistics were not considered because, from our experience, Cramér–von Mises statistics generally
lead to more powerful tests.
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2.4. Multiplier central limit theorems

The use of the weak limit of the test process Dn established in Proposition 1 to compute asymptotic p-values for the
statistics Sn and Tn appears unwieldy. We therefore resort to a multiplier approach to obtain approximate p-value for Sn and
Tn in the spirit of that used in [26,21]. The idea is to use multipliers to generate a large number of approximate independent
realizations of the weak limit D of the test process, derive the corresponding approximate independent realizations of Sn
and Tn, and finally compute approximate p-values using the resulting empirical c.d.f.s.
Before stating the key result that provides an asymptotic justification to the adopted approach, let us first introduce

additional notation. Let N be a large integer and let Z (k)i , i = 1, . . . , n, k = 1, . . . ,N , be i.i.d. random variables with mean 0
and variance 1 independent of the data (X1, Y1), . . . , (Xn, Yn). For any k ∈ {1, . . . ,N}, let

α(k)n (u, v) =
1
√
n

n∑
i=1

Z (k)i
{
1(Ui,n ≤ u, Vi,n ≤ v)− Cn(u, v)

}
=
1
√
n

n∑
i=1

(Z (k)i − Z̄
(k))1(Ui,n ≤ u, Vi,n ≤ v), u, v ∈ [0, 1], (6)

where Z̄ (k) = n−1
∑n
i=1 Z

(k)
i .

In order to obtain approximate independent copies of the processDdefined in (5), it is necessary to estimate the unknown
partial derivatives ofC that appear in the expression ofC, and therefore in that ofA; see (2) and (3), respectively. A firstway to
proceed consists of using the generic estimators proposed in [26, page 380] (see also [19, Proposition 2]). For (u, v) ∈ (0, 1)2,
these are respectively defined by

C [1]n (u, v) =
Cn(u+ n−1/2, v)− Cn(u− n−1/2, v)

2n−1/2
,

and

C [2]n (u, v) =
Cn(u, v + n−1/2)− Cn(u, v − n−1/2)

2n−1/2
.

Under extreme-value dependence, starting from characterization (1), alternative natural nonparametric estimators were
proposed in [21]. For any (u, v) ∈ (0, 1)2, let tuv = log(v)/ log(uv). The partial derivatives C [1] and C [2] can then be esti-
mated, for (u, v) ∈ (0, 1)2, by

C [1]An,c (u, v) = {Ân,c(tuv)− tuvA
′

n,c(tuv)}(uv)
An,c (tuv)−(1−tuv),

and

C [2]An,c (u, v) = {Ân,c(tuv)+ (1− tuv)A
′

n,c(tuv)}(uv)
An,c (tuv)−tuv ,

where Ân,c = (An,c ∧ 1) ∨ I ∨ (1− I), I is the identity function, and

A′n,c(t) =
An,c{(t + n−1/2) ∧ 1} − An,c{(t − n−1/2) ∨ 0}

2n−1/2
, t ∈ (0, 1).

Now, for any k ∈ {1, . . . ,N} and (u, v) ∈ (0, 1)2, let

C(k)n (u, v) = α
(k)
n (u, v)− C

[1]
n (u, v)α

(k)
n (u, 1)− C

[2]
n (u, v)α

(k)
n (1, v), (7)

let

C(k)An,c (u, v) = α
(k)
n (u, v)− C

[1]
An,c (u, v)α

(k)
n (u, 1)− C

[2]
An,c (u, v)α

(k)
n (1, v), (8)

let

A(k)n (t) = An,c(t)
∫ 1

0
C(k)An,c (x

1−t , xt)
dx
x log x

, (9)

and let

D(k)n (u, v) = C(k)n (u, v)− exp
[
log(uv)An,c

{
log(v)
log(uv)

}]
log(uv)A(k)n

{
log(v)
log(uv)

}
. (10)

The following result, proved in Appendix B, is at the root of the proposed new class of tests of extreme-value dependence.
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Proposition 2. Let a, b ∈ (0, 1), a < b, and suppose that A is twice continuously differentiable on (0, 1). Then, under H0,(
Dn,D(1)n , . . . ,D

(N)
n

)
;
(
D,D(1), . . . ,D(N)

)
in `∞([a, b]2)⊗(N+1), where D(1), . . . ,D(N) are independent copies of the process D defined in (5).

As shall be discussed in Section 2.6, alternative definitions of the process D(k)n can be considered depending on whether
C(k)n or C(k)An,c are used in (9) and (10). The definitions adopted above led to the tests with the best finite-sample behavior.
More details will be given in Section 3.
Next, for any k ∈ {1, . . . ,N}, let

S(k)n =
∫
[a,b]2

D(k)n (u, v)
2dudv.

From the previous proposition and the continuous mapping theorem, we immediately have that, underH0,(
Sn, S(1)n , . . . , S

(N)
n

)
;
(
S, S(1), . . . , S(N)

)
in [0,∞)⊗(N+1), where S is the weak limit of Sn, and S(1), . . . , S(N) are independent copies of S. This suggests computing an
approximate p-value for Sn as

1
N

N∑
k=1

1
(
S(k)n ≥ Sn

)
.

Similarly, for any k ∈ {1, . . . ,N}, let

T (k)n =
∫
[a,b]2

D(k)n (u, v)
2dCn(u, v).

An approximate p-value for Tn is then computed by N−1
∑N
k=1 1

(
T (k)n ≥ Tn

)
.

In order to carry out the tests, it is necessary to compute the integral appearing in the expression of A(k)n given in (9). As
shown in [21], for any k ∈ {1, . . . ,N} and any t ∈ (0, 1), we have∫ 1

0
C(k)An,c (x

1−t , xt)
dx
x log x

= −
1
√
n

n∑
i=1

(Z (k)i − Z̄
(k)) log

(
Si,n
1− t

∧
Ti,n
t

)
−
1
√
n
{Ân,c(t)− tA′n,c(t)}

n∑
i=1

Z (k)i

∫ 1

0
xÂn,c (t)−(1−t)

{
1(Ui,n ≤ x1−t)−

bx1−t(n+ 1)c
n

}
dx
x log x

−
1
√
n
{Ân,c(t)+ (1− t)A′n,c(t)}

n∑
i=1

Z (k)i

∫ 1

0
xÂn,c (t)−t

{
1(Vi,n ≤ xt)−

bxt(n+ 1)c
n

}
dx
x log x

,

where, for any y ≥ 0, byc denotes the integer part of y. Note that the two integrals appearing in the right-hand side of the
previous expression are not indefinite as the integrands are zero when x gets close to 0 or 1. They are computed numerically
in our implementation.

2.5. Consistency of the tests

The work of Garralda-Guillem [10] implies that extreme-value copulas are left-tail decreasing (LTD) in both arguments;
see e.g. [24, Section 5.2.2]. These dependence conditions are actually satisfied by the most popular bivariate copulas with
positive dependence such as the Clayton, Frank, normal, t and Plackett. If C has a continuous density and is LTD in both
arguments but is not necessarily an extreme-value copula, it was shown in [12, Proposition 2] that

√
n(An,c − AC ) ; AC in

C([0, 1]), where

AC (t) = exp
[
−γ +

∫ 1

0

{
C(x1−t , xt)− 1(x > e−1)

} dx
x log x

]
, t ∈ [0, 1], (11)

and

AC (t) = AC (t)
∫ 1

0
C(x1−t , xt)

dx
x log x

, t ∈ [0, 1].

The function AC actually turns out to be well defined for any copula C and reduces to the Pickands dependence function A
when C is an extreme-value copula.
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To study the consistency of the proposed tests, assume that C has a continuous density and is LTD in both arguments
without being an extreme-value copula. Also, let

CAC (u, v) = exp
[
log(uv)AC

{
log(v)
log(uv)

}]
, u, v ∈ (0, 1).

Then, the test process Dn can be decomposed as
√
n(Cn − CAn,c ) =

√
n(Cn − C)−

√
n(CAn,c − CAC )+

√
n(C − CAC ).

Proceeding as in the proof of Proposition 1, it can be verified that
√
n(Cn − C)−

√
n(CAn,c − CAC ) converges weakly to

C(u, v)− exp
[
log(uv)AC

{
log(v)
log(uv)

}]
log(uv)AC

{
log(v)
log(uv)

}
in `∞([a, b]2). If C 6= CAC , then sup(u,v)∈(0,1)2

√
n|C(u, v) − CAC (u, v)| tends to infinity, which implies that any sensible

statistic derived from the process
√
n(Cn − CAn,c )will tend to infinity.

Interestingly enough, conclusions about the consistency of the studied tests can then be drawn when the function AC is
convex, as stated in the following result proved in Appendix C.

Proposition 3. Assume that C has a continuous density and is LTD in both arguments without being an extreme-value copula. If
the function AC is convex, then C 6= CAC .

As can be seen from [12, Figure 3], the function AC appears convex for the most frequently used bivariate copulas with
positive dependence such as the Clayton, Frank, normal and Plackett. This suggests that the proposed class of tests will be
consistent under a wide range of alternatives. An analytical proof of the convexity of AC for non-extreme-value copulas that
have a continuous density and that are LTD in both arguments is however still missing.

2.6. Alternative versions of the tests

Alternative versions of the tests can be obtained by replacing C(k)An,c by C(k)n , or vice versa, in (9) and (10), respectively.

Among the four possible definitions for D(k)n , only two led to tests that were not too liberal for small sample size. The best
rejection rateswere obtained using the definition adopted in Section 2.4. Slightly less powerful but faster testswere obtained
by defining A(k)n as

A(k)n (t) = An,c(t)
∫ 1

0
C(k)n (x

1−t , xt)
dx
x log x

(12)

instead of (9). Although all four possible versions are expected to be asymptotically equivalent, we were not able to prove
an analogue of Proposition 2 in this last case.
Unlike the version of the test described in Section 2.4, the version based on the above definition of A(k)n does not require

the use of numerical integration to compute the integral appearing in its expression, and is therefore substantially faster.
To see this, let

S+i,n = − log
{
(Ui,n + n−1/2) ∧

n
n+ 1

}
, S−i,n = − log

{
(Ui,n − n−1/2) ∨

1
n+ 1

}
,

and

T+i,n = − log
{
(Vi,n + n−1/2) ∧

n
n+ 1

}
, T−i,n = − log

{
(Vi,n − n−1/2) ∨

1
n+ 1

}
,

for every i ∈ {1, . . . , n}. Then, as shown in [21], for any k ∈ {1, . . . ,N} and any t ∈ (0, 1),∫ 1

0
C(k)n (x

1−t , xt)
dx
x log x

=
1
√
n

n∑
i=1

(Z (k)i − Z̄
(k))

[
− log

(
Si,n
1− t

∧
Ti,n
t

)

−
1
2
√
n

n∑
j=1

{
− log

(
S−j,n
1− t

∧
Tj,n
t
∧
Si,n
1− t

)
+ log

(
S+j,n
1− t

∧
Tj,n
t
∧
Si,n
1− t

)

− log

(
Sj,n
1− t

∧
T−j,n
t
∧
Ti,n
t

)
+ log

(
Sj,n
1− t

∧
T+j,n
t
∧
Ti,n
t

)}]
.
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3. Finite-sample performance

The finite-sample performance of the tests described in the previous sectionwas investigated in a large scaleMonte Carlo
experiment. As explained in Section 2.6, four versions of the test based on Sn and four versions of the test based on Tn were
considered. The reals a and b appearing in the expressions of the statistics Sn and S

(k)
n were set to 1/m and 1 − 1/m, with

m = 30. The resulting integrals were computed numerically using a grid ofm2 uniformly spaced points on [1/m, 1−1/m]2.
Larger values of m were considered but this did not seem to improve the results. The statistics Tn and T

(k)
n were computed

by setting a and b to 0 and 1, respectively, that is, as

Tn =
1
n

n∑
i=1

Dn(Ui,n, Vi,n)2 and T (k)n =
1
n

n∑
i=1

D(k)n (Ui,n, Vi,n)
2,

respectively.
The rejection rates of the eight testsmentioned abovewere comparedwith those of the test of extreme-value dependence

described in [1] based on a variance estimator denoted σ̂ 2n , and with those of the test proposed in [19] based on a statistic
denoted T3,4,5,n.
To investigate the level of the tests, only the Gumbel–Hougaard (GH) copula and an asymmetric version of it were used.

Indeed, one of the most surprising findings of the recent study of bivariate extreme-value copulas carried out in [12] is that
the most frequently used such copulas, viz. the Gumbel–Hougaard, Galambos, Hüsler–Reiss and Student extreme-value,
show striking similarities for a given degree of dependence. It therefore does not seem necessary to work with different
extreme-value families. More variety in this class is obtained by using asymmetric extreme-value copulas constructed using
Khoudraji’s device [18,11,22]. The asymmetric version of the Gumbel–Hougaard copula used in our study is denoted by aGH
and is defined by

aGHθ,λ,κ(u, v) = u1−λv1−κGHθ (uλ, vκ), u, v ∈ [0, 1], λ, κ ∈ (0, 1], λ 6= κ,

where GHθ is the c.d.f. of the Gumbel–Hougaard copula with parameter θ . Note that aGHθ,λ,κ is nothing else but the
asymmetric logistic model introduced in [29,30]. In the experiments, θ was set to 4, while λ and κ were set to 0.4 and 0.95,
respectively, so that data generated from this copula display strong asymmetries. For the Gumbel–Hougaard (GH) copula,
three values of θ were considered, corresponding respectively to a Kendall’s τ of 0.25, 0.5 and 0.75.
To study the power of the tests, five non-extreme-value copulas were used: the Clayton (Cl), Frank (F), normal (N), t

with 4 degrees of freedom (t-4) and Plackett (P). As previously, three levels of dependence, i.e., τ ∈ {0.25, 0.5, 0.75}, were
considered.
Sample of sizes n = 100, 200, 400 and 800 were generated. All the tests were carried out at the 5% significance level and

empirical rejection rates were computed from 1000 random samples per scenario.
A first finding of our extensive Monte Carlo study is that, among the four possible ways of defining the processes D(k)n ,

only those described in Sections 2.4 and 2.6 gave tests that were not too liberal for n = 100 and 200.
A second rather accidental finding is that the use of Ĉn defined by

Ĉn(u, v) =
1
n+ 1

{
n∑
i=1

1(Ui,n ≤ u, Vi,n ≤ v)+
1
2

}
, u, v ∈ [0, 1],

instead of Cn in the expressions of the statistics Sn and Tn (the expressions of S
(k)
n and T (k)n remaining unchanged)

gave consistently less conservative and more powerful tests. Clearly, Ĉn and Cn are asymptotically equivalent since
sup(u,v)∈[0,1]2 |Ĉn(u, v)−Cn(u, v)| ≤ 1/n. The results to be presented in the forthcoming tables are therefore those obtained
when Cn is replaced by Ĉn in the expressions of Sn and Tn, i.e., in the expression of Dn given in (4). The statistics resulting
from this asymptotically negligible modification will be denoted by Ŝn and T̂n, respectively.
A third finding is that the tests based on the statistics T̂n and Tn were more powerful than those based on Ŝn and Sn in all

the scenarios under consideration.
The rejection rates of the two best versions of the test based on T̂n are given in Tables 1–3. They differ according to

whether approximate p-values were computed using the alternative expressions given in Section 2.6 or those of Section 2.4.
We will refer to these two versions as T̂ Cn and T̂

A
n , respectively.

As can be seen from Table 1, the test T̂ Cn appears to be too conservative for small sample size. Its empirical levels seem
to improve overall as n increases, though the improvement seems to be slow when τ = 0.75. The empirical levels of T̂ An ,
although not perfect, are globally more satisfactory for small sample size.
In terms of power, the test T̂ An outperforms that based on T̂

C
n . As can be seen from Table 2 and Table 3, the difference

between their rejection rates is substantial for n = 100 but decreases rather rapidly as n increases. For n = 800, the two
tests are virtually equivalent as could have been expected.
When compared to the tests based on T3,4,5,n and σ̂ 2n , the test T̂

A
n is the most powerful when the data arise from the

Frank or the Plackett copula and τ ∈ {0.5, 0.75}. For τ = 0.25, it is outperformed by the test based on T3,4,5,n. For data sets
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Table 1
Rejection rate (in %) of the null hypothesis as observed in 1000 random samples of size n = 100, 200, 400 and 800 from the Gumbel–Hougaard copula
(GH) and its asymmetric version (aGH) with θ = 4 and (λ, κ) = (0.4, 0.95).

Copula τ T3,4,5,n T̂ Cn T̂ An σ̂ 2n T3,4,5,n T̂ Cn T̂ An σ̂ 2n

n = 100 n = 200
GH 0.25 3.8 2.3 3.3 4.5 4.7 3.4 3.8 5.3

0.50 6.0 3.8 4.7 4.5 4.0 3.6 3.9 4.3
0.75 2.3 1.9 3.7 4.7 3.1 2.8

3.2
5.2

aGH 5.3 4.8 5.4 7.3 6.1 5.1 5.3 5.7

n = 400 n = 800
GH 0.25 4.9 4.9 4.3 5.1 4.8 5.0 4.5 6.0

0.50 3.9 3.5 3.4 4.5 4.4 4.7 4.2 5.8
0.75 2.5 2.3 2.4 5.5 3.3 4.1 3.7 5.2

aGH 6.3 6.3 5.5 5.8 5.1 6.0 5.1 4.1

Table 2
Rejection rate (in %) of the null hypothesis as observed in 1000 random samples of size n = 100 and 200 from the Clayton (C), Frank (F), normal (N), t with
4 degrees of freedom (t-4), and Plackett copula (P).

Copula τ T3,4,5,n T̂ Cn T̂ An σ̂ 2n T3,4,5,n T̂ Cn T̂ An σ̂ 2n

n = 100 n = 200
C 0.25 70.3 70.8 76.8 81.1 93.2 96.1 97.0 98.4

0.50 98.3 99.1 99.5 99.8 100.0 100.0 100.0 100.0
0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

F 0.25 40.3 25.7 32.5 22.5 64.6 51.4 58.3 36.3
0.50 67.1 57.4 67.5 32.0 95.2 93.9 95.7 58.7
0.75 83.0 84.9 91.6 33.9 99.3 99.8 99.9 58.9

N 0.25 20.5 15.6 19.4 20.7 37.4 31.7 36.5 35.8
0.50 28.7 29.4 36.7 36.3 49.9 57.2 61.8 60.8
0.75 24.1 27.5 39.8 45.2 44.6 57.1 66.5 76.0

P 0.25 33.4 18.6 26.5 21.5 59.5 44.6 51.5 36.1
0.50 49.9 44.4 54.3 32.7 82.2 81.0 84.7 57.8
0.75 53.3 51.7 64.5 34.3 78.9 86.8 90.9 59.7

t-4 0.25 12.7 15.0 17.9 16.9 17.9 23.0 23.9 26.8
0.50 19.7 25.1 29.0 31.2 35.2 47.3 50.1 57.5
0.75 19.5 22.9 33.3 38.7 32.9 44.4 50.6 65.6

Table 3
Rejection rate (in %) of the null hypothesis as observed in 1000 random samples of size n = 400 and 800 from the Clayton (C), Frank (F), normal (N), t with
4 degrees of freedom (t-4), and Plackett copula (P).

Copula τ T3,4,5,n T̂ Cn T̂ An σ̂ 2n T3,4,5,n T̂ Cn T̂ An σ̂ 2n

n = 400 n = 800
C 0.25 99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0

0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

F 0.25 91.4 88.1 90.5 67.1 99.7 99.7 99.7 92.0
0.50 100.0 100.0 100.0 86.0 100.0 100.0 100.0 99.3
0.75 100.0 100.0 100.0 87.1 100.0 100.0 100.0 98.8

N 0.25 62.3 61.9 64.8 66.0 90.2 91.6 92.5 90.5
0.50 80.2 86.6 88.3 89.5 99.0 99.8 99.8 99.3
0.75 76.8 88.2 90.8 95.7 98.4 99.6 99.6 99.9

P 0.25 86.5 80.2 83.1 62.3 99.3 99.1 99.2 88.1
0.50 97.4 98.5 98.9 85.5 100.0 100.0 100.0 99.3
0.75 98.5 99.8 99.9 88.0 100.0 100.0 100.0 99.5

t-4 0.25 27.9 38.6 39.2 44.5 52.8 67.2 67.7 74.3
0.50 58.9 74.1 74.3 85.6 85.8 96.2 96.1 98.6
0.75 61.3 79.6 81.8 94.2 91.4 99.0 99.1 99.9

generated from the normal copula, T̂ An is overall slightly less powerful than the test based on σ̂
2
n , both tests outperforming

the test based on T3,4,5,n. The test based on σ̂ 2n has an edge over its competitors when data arise from the t copula with 4
degrees of freedom. As could have been expected, the difference between the four tests becomes very small when n reaches
800.
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4. Local power comparisons

The tests whose finite-sample performance was investigated in the previous section can also be compared in terms of
their ability to detect small departures from extreme-value dependence. To that effect, we consider in this section sequences
of distributions defined by

Hδn(x, y) = Qδn{F(x),G(y)}, x, y ∈ R,

where

Qδn(u, v) = (1− δn)C(u, v)+ δnD(u, v), (13)

δn = δ/
√
n for some δ ≥ 0, and C and D are absolutely continuous copulas such that C ∈ EV and D 6∈ EV . Furthermore, let

qδ be the density associated with Qδ and let q̇δ = ∂qδ/∂δ. Also, notice that Q0 = C and H0 = H . To ensure that the processes√
n(Cn − C) and

√
n(An,c − A) have a non-degenerate joint limiting distribution under the sequence (Hδn)n≥1, it is further

assumed that the condition given in [32, Equation (3.10.10)] with h = δq̇0/q0 holds, i.e., that

lim
n→∞

∫
(0,1)2

[
√
n
{√
qδn(u, v)−

√
q0(u, v)

}
−

δq̇0(u, v)
2
√
q0(u, v)

]2
dudv = 0. (14)

The above criterion entails that the sequence (Hδn)n≥1 is contiguous with respect to H . A similar setting was for instance
considered in [13] and [2] for studying the local power of independence and goodness-of-fit tests, respectively.
The following result, proved in Appendix D, will enable us to identify the asymptotic distribution of the test process Dn

defined in (4) under the sequence (Hδn)n≥1.

Proposition 4. Let C be an extreme-value copula whose Pickands dependence function A is twice continuously differentiable on
(0, 1), and let D be an absolutely continuous copula. Then, under (Hδn)n≥1,(√

n {Cn(u, v)− C(u, v)}√
n
{
An,c(t)− A(t)

} )
;

(
C(u, v)+ δ{D(u, v)− C(u, v)}

A(t)+ δA(t){log AD(t)− log A(t)}

)
in `∞([0, 1]2)× C([0, 1]), where C (resp. A) is the weak limit of

√
n(Cn − C) (resp.

√
n(An,c − A)) under H, and AD is defined

as in (11).

Note that by proceeding as in [12, Appendix C], the previous result can be extended to the situation where C and D are
absolutely continuous copulas such that C has a continuous density and is LTD in both arguments.
Let a, b ∈ (0, 1), a < b. Under the conditions of the previous proposition and by proceeding as in the proof of

Proposition 1, we immediately obtain that, under (Hδn)n≥1, the test process Dn converges weakly to

Dδ(u, v) = C(u, v)+ δ{D(u, v)− C(u, v)} − exp
[
log(uv)A

{
log(v)
log(uv)

}]
log(uv)

×

(
A
{
log(v)
log(uv)

}
+ δA

{
log(v)
log(uv)

}[
log AD

{
log(v)
log(uv)

}
− log A

{
log(v)
log(uv)

}])
in `∞([a, b]2).
Let qT (α) be the asymptotic critical value of level α of the test statistic Tn. The limiting local power function of the test

based on Tn is then defined as

βT (α, δ) = lim
n→∞

Pr
{
Tn ≥ qT (α) | Hδn

}
.

It appears unfortunately impossible to obtain an analytical expression for βT in the setting under consideration. We
therefore resort again to a multiplier approach similar to that presented in Section 2.6. Let m be a large integer and let
(X1, Y1), . . . , (Xm, Ym) be a random sample from c.d.f. C ∈ EV . Let N be a large integer and let Z (k)i , i = 1, . . . ,m,
k = 1, . . . ,N , be i.i.d. random variables with mean 0 and variance 1 independent of (X1, Y1), . . . , (Xm, Ym). For any
k ∈ {1, . . . ,N} and any (u, v) ∈ [a, b]2, let

D(k)δ,m(u, v) = C(k)m (u, v)+ δ{D(u, v)− C(u, v)} − exp
[
log(uv)A

{
log(v)
log(uv)

}]
log(uv)

×

(
A(k)m

{
log(v)
log(uv)

}
+ δA

{
log(v)
log(uv)

}[
log AD

{
log(v)
log(uv)

}
− log A

{
log(v)
log(uv)

}])
,

where C(k)m and A(k)m are defined as in (7) and (12), respectively. Furthermore, for any k ∈ {1, . . . ,N}, let

T (k)δ,m =
1
m

m∑
i=1

D(k)δ,m(Ui,m, Vi,m)
2.
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Fig. 1. Asymptotic local power functions of the tests based on σ̂ 2n (solid line), T3,4,5,n (dashed line) and Tn (dotted line) when C is the Gumbel–Hougaard
copula with τ = 0.25 and D is either the Clayton, Frank, normal or Plackett copula with τ = 0.25.

As in Section 2, the statistics T (1)δ,m, . . . , T
(N)
δ,m can be thought of as approximate independent realizations of T , where T is the

weak limit of Tn under (Hδn)n≥1. It is thus natural to estimate the asymptotic critical value of Tn of level α as the empirical
quantile of T (1)0,m, . . . , T

(N)
0,m of order 1 − α. We will denote it by q̂T (α) as we continue. The limiting local power function can

then be estimated as

β̂T (α, δ) =
1
N

N∑
k=1

1
{
T (k)δ,m ≥ q̂T (α)

}
.

The limiting local powers to be represented in the forthcoming graphs were estimated usingm = 2500 and N = 10 000.
A similar approach was used to compute the asymptotic local power function of the test of extreme-value dependence

proposed in [19] and based on the statistic T3,4,5,n. For the test based on σ̂ 2n , the limiting local power function was computed
using the expression given in [1, Proposition 3] in which µ′(0) was estimated by Monte Carlo integration from samples
of size 500000, and σ(0) was estimated using the large-sample variance estimator defined in [1, Section 4] from 2500
observations from C . The last step was performed using code generously provided by Johanna Nešlehová and now available
in the R package copula.
Asymptotic local power calculations were performed in the following settings: C was taken to be the Gumbel–Hougaard

copula with τ = 0.25, 0.5 or 0.75, and Dwas either the Clayton, Frank, normal or Plackett copula with τ = 0.25, 0.5 or 0.75.
For the sake of clarity, we only report the results when C and D have the same degree of dependence.
As can be seen from Figs. 1–3, the results are consistent with those obtained in the simulations. Local powers increase

in all settings as τ increases and, for a given τ , the greatest local powers are obtained when D is the Clayton copula. In the
latter case, the test based on σ̂ 2n slightly outperforms its competitors when τ = 0.25 and 0.5. When τ = 0.75, all three tests
are very close. The test based on σ̂ 2n is also more powerful then its competitors, overall, when D is the normal copula, the
difference in local power being more pronounced for higher dependence. When D is the Frank or the Plackett copula, the
test based on Tn is the most powerful and the test based on T3,4,5,n is second best.

5. Concluding remarks

Among the various tests of bivariate extreme-value dependence considered in this work, no single test was found to be
consistently better than the others. The test proposed in [1] based on σ̂ 2n appears to be better suited for elliptical alternatives,
while for the other alternatives considered in the experiments, the tests T̂ An and T3,4,5,n have the highest rejection rates.
Overall, the test T̂ An displays the best behavior. From a computational perspective, the test based on σ̂

2
n is the fastest; it is

followed by the tests based on T3,4,5,n, T̂ Cn and finally T̂
A
n .

Based on theMonte Carlo experiments and local power comparisons presented in this work, our recommendations are as
follows. We suggest the use of the test T̂ An in the case of small samples. When n reaches 400, a faster yet almost as powerful
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Fig. 2. Asymptotic local power functions of the tests based on σ̂ 2n (solid line), T3,4,5,n (dashed line) and Tn (dotted line) when C is the Gumbel–Hougaard
copula with τ = 0.5 and D is either the Clayton, Frank, normal or Plackett copula with τ = 0.5.

Fig. 3. Asymptotic local power functions of the tests based on σ̂ 2n (solid line), T3,4,5,n (dashed line) and Tn (dotted line) when C is the Gumbel–Hougaard
copula with τ = 0.75 and D is either the Clayton, Frank, normal or Plackett copula with τ = 0.75.

alternative is the test T̂ Cn based on the expressions given in Section 2.6. If one suspects that the dependencemight be elliptical
or in the case of very large samples, the test based on σ̂ 2n should be preferred.
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Appendix A. Proof of Proposition 1

Proof. Setting δ = 0 in (13), we have from Proposition 4 that( √
n(Cn − C)√
n(An,c − A)

)
;

(
C
A

)
in `∞([0, 1]2)⊗ C([0, 1]). Let ϑ be the map from C([0, 1]) to `∞([a, b]2) defined by

ϑ(B)(u, v) = exp
[
log(uv)B

{
log(v)
log(uv)

}]
, B ∈ C([0, 1]), (u, v) ∈ [a, b]2.

Now, let B ∈ C([0, 1]), let (tn)n≥1 be a sequence of reals converging to 0 and let (hn)n≥1 be a sequence of functions in
C([0, 1]) converging to h ∈ C([0, 1]). Then, as n tends to infinity and uniformly in (u, v) ∈ [a, b]2,

1
tn
{ϑ(B+ tnhn)(u, v)− ϑ(B)(u, v)}

= exp
[
log(uv)B

{
log(v)
log(uv)

}]
1
tn

(
exp

[
log(uv)tnhn

{
log(v)
log(uv)

}]
− 1

)
→ exp

[
log(uv)B

{
log(v)
log(uv)

}]
log(uv)h

{
log(v)
log(uv)

}
= ϑ ′B(h)(u, v).

It is easy to verify that the map ϑ ′B is continuous with respect to the topologies of uniform convergence on C([0, 1]) and
`∞([a, b]2), and linear. It follows that ϑ is Hadamard-differentiable tangentially toC([0, 1]); see e.g. [32, Chapter 3.9]. From
the functional version of Slutsky’s theorem, we then have that(√

n {Cn(u, v)− C(u, v)}√
n{ϑ(An,c)− ϑ(A)}

)
;

(
C(u, v)
ϑ ′A(A)

)
in `∞([a, b]2)⊗2. The continuous mapping theorem then implies that

√
n{Cn(u, v)− C(u, v)} −

√
n
(
exp

[
log(uv)An,c

{
log(v)
log(uv)

}]
− exp

[
log(uv)A

{
log(v)
log(uv)

}])
converges in `∞([a, b]2) to (5). UnderH0, representation (1) immediately implies that this is also the weak limit of the test
process Dn defined in (4). �

Appendix B. Proof of Proposition 2

Proof. Let (Ui, Vi) = (F(Xi),G(Yi)) for all i ∈ {1, . . . , n}, let C̄n be the empirical c.d.f. computed from the unobservable
random sample (U1, V1), . . . , (Un, Vn), and let αn =

√
n(C̄n − C). Furthermore, following [14], let

E = {(u, v) ∈ [0, 1]2 : 0 < u ∧ v < 1} = (0, 1]2 \ {(1, 1)},

let ω ∈ (0, 1/2), let qω(t) = tω(1− t)ω , t ∈ [0, 1], and let

Gn,ω(u, v) =


αn(u, v)
qω(u ∧ v)

if (u, v) ∈ E,

0 if u = 0 or v = 0 or (u, v) = (1, 1).
(B.1)

From [14, Theorem G.1], we known that the process Gn,ω converges weakly in `∞([0, 1]2) to a centered Gaussian process
Gω with continuous sample paths.
Now, for any k ∈ {1, . . . ,N} and any u, v ∈ [0, 1], define

G(k)
n,ω(u, v) =


1
√
n

n∑
i=1

(Z (k)i − Z̄
(k))

1(Ui,n ≤ u, Vi,n ≤ v)
qω(u ∧ v)

=
α
(k)
n (u, v)
qω(u ∧ v)

if (u, v) ∈ E,

0 if (u, v) ∈ [0, 1]2 \ E,

where α(k)n is defined in (6). From Lemma 2 of [21], we have that(
Gn,ω,G(1)

n,ω, . . . ,G
(N)
n,ω

)
;
(
Gω,G(1)

ω , . . . ,G
(N)
ω

)
in `∞([0, 1]2)⊗(N+1), where G(1)

ω , . . . ,G
(N)
n are independent copies of Gω .
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Next, let ψω be the map from `∞([0, 1]2) to `∞([0, 1]2) defined by

ψω(B)(u, v) = qω(u ∧ v)B(u, v), B ∈ `∞([0, 1]2), (u, v) ∈ [0, 1]2. (B.2)

It is easy to verify that ψω is continuous with respect to the topology of uniform convergence on `∞([0, 1]2), and that ψω
transforms Gn,ω into αn, and G(k)

n,ω into α
(k)
n for all k ∈ {1, . . . ,N}. From the continuous mapping theorem, we then obtain

that (
αn(u, v),Gn,ω(u, v), α(1)n (u, v),G

(1)
n,ω(u, v), . . . , α

(N)
n (u, v),G(N)

n,ω(u, v)
)

converges weakly to(
qω(u ∧ v)Gω(u, v),Gω(u, v), qω(u ∧ v)G(1)

ω (u, v),G
(1)
ω (u, v), . . . , qω(u ∧ v)G

(N)
ω (u, v),G(N)

ω (u, v)
)

in `∞([0, 1]2)⊗2(N+1). From [26, Lemma A.1], we also know that(
αn, α

(1)
n , . . . , α

(N)
n

)
;
(
α, α(1), . . . , α(N)

)
in `∞([0, 1]2)⊗(N+1), where α(1), . . . , α(N) are independent copies of the C-Brownian bridge α. As we continue, we shall
therefore denote qω(u ∧ v)Gω(u, v) by α(u, v), and qω(u ∧ v)G(k)

ω (u, v) by α
(k)(u, v).

Now, for any (u, v) ∈ [0, 1]2, let

Cn(u, v) = αn(u, v)− C [1](u, v)αn(u, 1)− C [2](u, v)αn(1, v).

From the continuous mapping theorem and Proposition 2 in [19] stating that

sup
(u,v)∈[a,b]2

∣∣C [1]n (u, v)− C [1](u, v)∣∣ Pr→ 0 and sup
(u,v)∈[a,b]2

∣∣C [2]n (u, v)− C [2](u, v)∣∣ Pr→ 0,
we then obtain that(

Cn,Gn,ω,C(1)n ,G
(1)
n,ω, . . . ,C

(N)
n ,G(N)

n,ω

)
;

(
C,Gω,C(1),G(1)

ω , . . . ,C
(N),G(N)

ω

)
in `∞([a, b]2)⊗2(N+1), where C(k)n is defined in (7), C is defined by (2), and C(1), . . . ,C(N) are independent copies of C.
From [28, page 371] (see also [31, Proposition 1]), for any (u, v) ∈ [0, 1]2, we have that
√
n{Cn(u, v)− C(u, v)} = Cn(u, v)+ Rn(u, v), (B.3)

where sup(u,v)∈[0,1]2 |Rn(u, v)|
Pr
→ 0. Hence,(√

n(Cn − C),Gn,ω,C(1)n ,G
(1)
n,ω, . . . ,C

(N)
n ,G(N)

n,ω

)
;

(
C,Gω,C(1),G(1)

ω , . . . ,C
(N),G(N)

ω

)
in `∞([a, b]2)⊗2(N+1).
Next, let (ξn)n≥1 be the sequence of deterministic maps from `∞([0, 1]2) to C([0, 1]) defined, for any B ∈ `∞([0, 1]2),

by

ξn(B)(t) = −
∫ kn

ln
B(e−s(1−t), e−st)K1(s, t)

ds
s
+

∫ kn

ln
B(e−s(1−t), 1)K2(s, t)

ds
s
+

∫ kn

ln
B(1, e−st)K3(s, t)

ds
s
, (B.4)

where ln = 1/(n + 1), kn = 2 log(n + 1), K1(s, t) = qω(e−s(1−t) ∧ e−st), K2(s, t) = qω(e−s(1−t))C [1](e−s(1−t), e−st) and
K3(s, t) = qω(e−st)C [2](e−s(1−t), e−st) for all s ∈ (0,∞) and t ∈ [0, 1]. As shown in [14, proof of Theorem 3.2], the sequence
of maps (ξn)n≥1 can be used in the framework of the extended continuous mapping theorem; see e.g. [33, Theorem 18.11].
From [14, proof of Theorem 3.2], we also have that the process

√
n{log An(t)− log A(t)} =

∫ 1

0

√
n{Cn(x1−t , xt)− C(x1−t , xt)}

dx
x log x

, t ∈ [0, 1],

is asymptotically equivalent to the process ξn(Gn,ω)(t), t ∈ [0, 1]. Now, let c = log(b)/ log(ab) and d = log(a)/ log(ab).
Similarly, from the proof of Theorem 2 of [21], we have that, for any k ∈ {1, . . . ,N}, the process∫ 1

0
C(k)An,c (x

1−t , xt)
dx
x log x

, t ∈ [c, d],
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where C(k)An,c is defined in (8), is asymptotically equivalent to the process ζ∞(G
(k)
n,ω)(t), t ∈ [c, d], where ζ∞ is defined as

in (B.4) with ln = 0 and kn = ∞. Furthermore, using (2) and after a change of variable, it can be verified that

ξ∞(Gω)(t) =
∫ 1

0
C(x1−t , xt)

dx
x log x

and ζ∞(G(k)
ω )(t) =

∫ 1

0
C(k)(x1−t , xt)

dx
x log x

.

From the extended continuous mapping theorem, we then obtain that(
√
n{Cn(u, v)− C(u, v)},

√
n{log An(t)− log A(t)},

C(1)n (u, v),
∫ 1

0
C(1)An,c (x

1−t , xt)
dx
x log x

, . . . ,C(N)n ,

∫ 1

0
C(N)An,c (x

1−t , xt)
dx
x log x

)
converges weakly to(

C(u, v),
∫ 1

0
C(x1−t , xt)

dx
x log x

,C(1)(u, v),
∫ 1

0
C(1)(x1−t , xt)

dx
x log x

, . . . ,C(N),
∫ 1

0
C(N)(x1−t , xt)

dx
x log x

)
in {`∞([a, b]2)⊗ C([c, d])}⊗(N+1).
Using the functional version of Slutsky’s theorem, the fact that An converges uniformly in probability to A, and the fact

that An,c and An are asymptotically indistinguishable, it follows that(√
n(Cn − C),

√
n(An,c − A),C(1)n ,A

(1)
n , . . . ,C

(N)
n ,A(N)n

)
;
(
C,A,C(1),A(1), . . . ,A(N),C(N)

)
in {`∞([a, b]2)⊗ C([c, d])}⊗(N+1), where A(k)n is defined in (9), A is defined in (3) and, for any k ∈ {1, . . . ,N},

A(k)(t) = A(t)
∫ 1

0
C(k)(x1−t , xt)

dx
x log x

, t ∈ [c, d].

The desired result finally follows from the functional version of Slutsky’s theorem based on the map ϑ used in the proof of
Proposition 1, the continuous mapping theorem and the fact that An,c converges uniformly in probability to A. �

Appendix C. Proof of Proposition 3

Proof. From [12, Proposition 3], we know that AC (t) ≥ max(t, 1 − t) for all t ∈ [0, 1]. Furthermore, C being LTD in both
arguments, it is positive quadrant dependent, which, according again to [12, Proposition 3], implies that AC (t) ≤ 1 for all
t ∈ [0, 1]. If AC is additionally convex, then CAC is an extreme-value copula, which implies that C 6= CAC since C is not an
extreme-value copula. �

Appendix D. Proof of Proposition 4

Proof. As previously, let (Ui, Vi) = (F(Xi),G(Yi)) for all i ∈ {1, . . . , n}, and let

Λn =

n∑
i=1

log
qδn(Ui, Vi)
q0(Ui, Vi)

.

Let c (resp. d) be the p.d.f. associated with C (resp. D). According to [32, Lemma 3.10.11], under condition (14),∫
[0,1]2

d(u, v)− c(u, v)
c(u, v)

dC(u, v) = 0,
∫
[0,1]2

{d(u, v)− c(u, v)}2

{c(u, v)}2
dC(u, v) <∞

and the log-likelihood ratioΛn can be expressed as

Λn =
1
√
n

n∑
i=1

δ
d(Ui, Vi)− c(Ui, Vi)

c(Ui, Vi)
−
1
2

∫
[0,1]2

δ2
{d(u, v)− c(u, v)}2

c(u, v)
dudv + Rn,

where Rn converges to 0 in probability both under C and under (Qδn)n≥1.
Now, using the notation defined in Appendix B, rewrite (B.1) as

Gn,ω(u, v) =


1
√
n

n∑
i=1

1(Ui ≤ u, Vi ≤ v)− C(u, v)
qω(u ∧ v)

if (u, v) ∈ E,

0 if u = 0 or v = 0 or (u, v) = (1, 1).
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Then, for any finite collection of points (u1, v1), . . . , (uk, vk) in [0, 1]2, we have, from themultivariate central limit theorem,
that, under C ,(

Gn,ω(u1, v1), . . . ,Gn,ω(uk, vk),Λn
)

;

(
Gω(u1, v1), . . . ,Gω(uk, vk),Λ

)
,

in R⊗(k+1), where Λ is the weak limit of Λn. Tightness follows from the weak convergence of Gn,ω in `∞([0, 1]2). Hence,
(Gn,ω,Λn) ; (Gω,Λ) in `∞([0, 1]2)⊗ R.
The continuous mapping theorem with the map ψω defined in (B.2) then implies that(

αn(u, v),Gn,ω(u, v),Λn
)

;

(
qω(u ∧ v)Gω(u, v),Gω(u, v),Λ

)
in `∞([0, 1]2)⊗2 ⊗ R. As previously, the C-Brownian bridge qω(u ∧ v)Gω(u, v)will be denoted by α(u, v) in what follows.
Proceeding as in Appendix B, from the continuous mapping theorem and Stute’s representation given in (B.3), we obtain
that (√

n(Cn − C),Gn,ω,Λn
)

;

(
C,Gω,Λ

)
in `∞([0, 1]2)⊗2 ⊗ R, where C is defined by (2).
Next, by proceeding as in [14, proof of Theorem 3.2], and as already explained in Appendix B, under H , the process

√
n{log An(t)− log A(t)} =

∫ 1

0

√
n{Cn(x1−t , xt)− C(x1−t , xt)}

dx
x log x

is asymptotically equivalent to the process ξn(Gn,ω)(t), where the sequence ofmaps (ξn)n≥1 is defined in (B.4). The extended
continuous mapping theorem then implies that, under H ,(√

n{Cn(u, v)− C(u, v)},
√
n{log An(t)− log A(t)},Λn

)
;

(
C(u, v),

∫ 1

0
C(x1−t , xt)

dx
x log x

,Λ

)
in `∞([0, 1]2)⊗ C([0, 1])⊗ R.
All is now set for an application of Le Cam’s third lemma [32, Theorem3.10.7, Example 3.10.8 and page 407].We therefore

obtain that, under (Hδn)n≥1,(√
n {Cn(u, v)− C(u, v)}√
n{log An(t)− log A(t)}

)
;

 C(u, v)+ cov{C(u, v),Λ}∫ 1

0
C(x1−t , xt)

dx
x log x

+ cov
{∫ 1

0
C(x1−t , xt)

dx
x log x

,Λ

}
in `∞([0, 1]2)⊗ C([0, 1]).
From Example 3.10.8 and Theorem 3.10.12 in [32] applied to the process αn, we know that

cov{α(u, v),Λ} =
∫
[0,1]2
{1(s ≤ u, t ≤ v)− C(u, v)}δ

d(s, t)− c(s, t)
c(s, t)

dC(s, t)

= δ{D(u, v)− C(u, v)}.

Hence,

cov{C(u, v),Λ} = cov{α(u, v),Λ} − C [1](u, v)cov{α(u, 1),Λ} − C [2](u, v)cov{α(1, v),Λ}
= cov{α(u, v),Λ} = δ{D(u, v)− C(u, v)}.

We then obtain that

cov
{∫ 1

0
C(x1−t , xt)

dx
x log x

,Λ

}
=

∫ 1

0
cov

{
C(x1−t , xt),Λ

} dx
x log x

= δ

∫ 1

0
{D(x1−t , xt)− C(x1−t , xt)}

dx
x log x

= δ{log AD(t)− log A(t)},

where the last equality comes from (11). The desired result finally follows from the functional version of Slutsky’s theorem
and the fact that An,c and An are asymptotically indistinguishable. �
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