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We present the domain-wall fermion operator which is reflection symmetric in the fifth dimension, with 
the approximate sign function S(H) of the effective 4-dimensional Dirac operator satisfying the bound 
|1 − S(λ)| ≤ 2dZ for λ2 ∈ [λ2

min, λ2
max], where dZ is the maximum deviation |1 − √

xR Z (x)|max of the 
Zolotarev optimal rational polynomial R Z (x) of 1/

√
x for x ∈ [1, λ2

max/λ
2
min], with degrees (n − 1, n) for 

Ns = 2n, and (n, n) for Ns = 2n + 1.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In lattice QCD with exact chiral symmetry [1–3], the overlap 
Dirac operator with bare quark mass mq in general can be written 
as

D(mq) = mq + (1 − rmq)

2r

[
1 + γ5

H√
H2

]
,

r = 1/[2m0(1 − dm0)], m0 ∈ (0,2), (1)

where H = cH w(1 + dγ5 H w)−1, and c and d are constants. Here 
H w = γ5 D w , and D w is the standard Wilson–Dirac operator minus 
the parameter m0 ∈ (0, 2).

The eigenmodes of (1) consist of complex conjugate pairs, and 
(for topologically non-trivial gauge field) real eigenmodes with def-
inite chiralities at mq and 1/r satisfying the chirality sum rule 
[4], n+ − n− + N+ − N− = 0, where n± (N±) denote the num-
ber of eigenmodes at mq (1/r) with ± chirality. Empirically, the 
real eigenmodes always satisfy either (n− = N+ = 0, n+ = N−) or 
(n+ = N− = 0, n− = N+). Thus, we have

det D(mq) =
{

(rmq)
n+ detH2− = (rmq)

−n+ detH2+, n+ ≥ 0,

(rmq)
n− detH2+ = (rmq)

−n− detH2−, n− ≥ 0,

where H2± = P±(D† D), and P± = (1 ± γ5)/2. It follows that the 
pseudofermion action for any number of flavors of overlap fermion 
can be expressed in terms of n± and H2± (Hermitian and positive-
definite), thus it is amenable to the hybrid Monte Carlo simulation 
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(HMC) [5]. However, this approach requires the computation of the 
change of n± at each step of the molecular dynamics in HMC, 
which is prohibitively expensive for large lattices [6,7]. Moreover, 
the discontinuity of the fermion determinant at the topological 
boundary highly suppresses the crossing rate between different 
topological sectors, and thus renders HMC failing to sample all 
topological sectors ergodically.

These difficulties can be circumvented by using domain-wall 
fermion (DWF) with finite Ns in the fifth dimension. Then HMC of 
lattice QCD with DWF on the 5-dimensional lattice can sample all 
topological sectors ergodically and also keep the chiral symmetry 
at a good precision. This has been demonstrated for 2-flavor QCD 
[8,9], and (1+1)-flavor QCD [10]. For DWF with finite Ns , it is vital 
to preserve the chiral symmetry maximally, or equivalently, the ap-
proximate sign function S(H) of the effective 4-dimensional Dirac 
operator satisfies the bound, |1 − S(λ)| ≤ dZ for λ2 ∈ [λ2

min, λ
2
max], 

where dZ is the maximum deviation |1 − √
xR Z (x)|max of the 

Zolotarev optimal rational approximation R Z (x) of 1/
√

x for x ∈
[1, λ2

max/λ
2
min], with degrees (n, n) for Ns = 2n + 1, and (n − 1, n)

for Ns = 2n. This can be attained by assigning a weight to each 
layer (along the fifth dimension) of the DWF, according to the for-
mula [11]

ωs = 1

λmin

√
1 − κ ′ 2sn2 (vs;κ ′), s = 1, · · · , Ns, (2)

where sn(vs; κ ′) is the Jacobian elliptic function with argument 
vs (see Eq. (13) of Ref. [11]) and modulus κ ′ = √

1 − 1/b, b =
λ2

max/λ
2
min . Here λ2

max and λ2
min are the upper bound and lower 

bound for the eigenvalues of H2. It should be emphasized that 
λmin and λmax have to be fixed properly for each set of simula-
tions, depending on the parameters β = 6/g2, quark masses, and 
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lattice size, such that the desired precision of chiral symmetry can 
be attained with the minimal cost of the simulation.

Nevertheless, (2) breaks the R5 (reflection) symmetry in the 
fifth dimension, which is essential for obtaining the exact pseud-
ofermion action for hybrid Monte Carlo simulation of one-flavor 
DWF [10], as well as other applications. In this paper, we ob-
tain the weights satisfying the R5 symmetry (ωs = ωNs−s+1, 
s = 1, · · · , Ns) such that the approximate sign function S(H) of 
the effective 4-dimensional Dirac operator satisfies the bound, 
|1 − S(λ)| ≤ 2dZ , which is twice of that of the optimal DWF with-
out R5 symmetry [11]. In other words, if one imposes the R5
symmetry, this is the optimal chiral symmetry one can have.

2. Optimal domain-wall fermion

In general, the 5-dimensional lattice operator of DWF can be 
written as [12]

[D(m)]xx′;ss′ = (ρs D w + 1)xx′δss′ + (σs D w − 1)xx′ Lss′ , (3)

where ρs = cωs + d, σs = cωs − d, and c, d are constants. The in-
dices x and x′ denote the sites on the 4-dimensional space–time 
lattice, and s and s′ the indices in the fifth dimension, while the 
lattice spacing a and the Dirac and color indices have been sup-
pressed. The operator L is independent of the gauge field, and it 
can be written as

L = P+L+ + P−L−, P± = (1 ± γ5)/2,

and

(L+)ss′ = (L−)s′s =
{ −mδNs,s′ , s = 1,

δs−1,s′ , 1 < s ≤ Ns,

where Ns is the number of sites in the fifth dimension, m ≡ rmq , 
mq is the bare quark mass, and r = 1/[2m0(1 −dm0)]. Including the 
action of the Pauli–Villars fields (with bare mass mP V = 1/r), the 
partition function of DWF in a gauge background can be integrated 
successively to obtain the fermion determinant of the effective 
4-dimensional Dirac operator,

Z =
∫

[d
][d
̄][d�][d�†]exp
{
−
̄D(m)
 − �†D(1)�

}
= det D(mq),

where

D(mq) = (Dc + mq)(1 + rDc)
−1

= mq + (1 − rmq)

2r
[1 + γ5 S(H)], (4)

Dc = 1

r

1 + γ5 S(H)

1 − γ5 S(H)
,

S(H) = 1 − ∏Ns
s=1 Ts

1 + ∏Ns
s=1 Ts

, Ts = 1 − ωs H

1 + ωs H
,

H = cH w(1 + dγ5 H w)−1, H w = γ5 D w . (5)

For the optimal DWF without R5 symmetry [11], the weights 
{ωs} are fixed according to the formula (2), then S(H) is equal 
to the Zolotarev optimal rational approximation of the sign func-
tion of H , i.e., S(H) = H R Z (H2), satisfying the bound, |1 − S(λ)| ≤
dZ for λ2 ∈ [λ2

min, λ
2
max], where dZ is the maximum deviation 

|1 − √
xR Z (x)|max of the Zolotarev optimal rational approxima-

tion R Z (x) of 1/
√

x for x ∈ [1, λ2
max/λ

2
min], with degrees (n, n) for 

Ns = 2n + 1, and (n − 1, n) for Ns = 2n. However, it breaks the 
R5 symmetry, i.e., R5D(0)R5 	= D(0), where (R5)s,s′ = δs′,Ns+1−s . 
In the following, we construct the optimal DWF satisfying the R5
symmetry.
3. Optimal domain-wall fermion with R5 symmetry

First we recall the basic features of the optimal rational ap-
proximation of the ratio of two positive and continuous functions 
f (x)/g(x) for x ∈ [1, b]. Let R(m,n)(x) denote an irreducible rational 
polynomial of the form

R(m,n)(x) = pmxm + pm−1xm−1 + · · · + p0

qnxn + qn−1xn−1 + · · · + q0
(n ≥ m, pi,qi > 0).

According to de la Vallée–Poussin’s theorem and Chebycheff’s the-
orem, the necessary and sufficient condition for R(m,n)(x) to be the 
optimal rational approximation of f (x)/g(x) for x ∈ [1, b] is that 
δ(x) ≡ f (x) − g(x)R(m,n)(x) has (m + n + 2) alternate changes of 
sign in the interval [1, b], and attains its maxima and minima (all 
with equal magnitude), say,

δ(x) = +�,−�, · · · , (−1)m+n+1�

at consecutive points (xi , i = 1, · · · , m + n + 2)

1 = x1 < x2 < · · · < xm+n+2 = b.

For f (x)/g(x) = 1/
√

x, Zolotarev obtained two optimal rational 
polynomials in 1877, R(n−1,n)

Z (x) and R(n,n)
Z (x) [13], in terms of the 

Jacobian elliptic functions. The basic formulas of Zolotarev optimal 
rational polynomial are collected in Appendix A. (See also Refs. [14,
15].)

For the optimal DWF without R5 symmetry [11], the approx-
imate sign function S(H) of the effective 4-dimensional lattice 
Dirac operator is exactly equal to H R(n−1,n)

Z (H2) for Ns = 2n, and 
H R(n,n)

Z (H2) for Ns = 2n + 1.

In Fig. 1, we plot the deviation δ(m,n)
Z (x) = 1 − √

xR(m,n)
Z (x) of 

the Zolotarev optimal rational polynomials R(7,8)
Z (x) and R(8,8)

Z for 
x ∈ [1, b], b = λ2

max/λ
2
min = (6.20/0.05)2 = 15 376. In both cases, 

δ(x) has (m +n + 2) alternate changes of sign in the interval [1, b], 
with (m + 1) minima and (n + 1) maxima, all of the same mag-
nitude, thus satisfying the necessary and sufficient condition for 
the optimal rational approximation of 1/

√
x in the interval [1, b], 

according to de la Vallée–Poussin’s theorem and Chebycheff’s the-
orem. Note that dZ 
 1.19447 × 10−5 in the left figure (a), which 
is about 2.2 times of dz 
 5.39351 × 10−6 in the right figure (b), 
i.e., d(n−1,n)

Z 
 2.2d(n,n)
z , as pointed out in Ref. [15].

3.1. Ns = 2n (even)

For the case Ns = 2n (even), the requirement of R5 symmetry 
implies that ωs = ωNs+1−s , and

δ(λ) = 1 − S(λ) = 2
∏n

s=1(1 − ωsλ)2∏n
s=1(1 − ωsλ)2 + ∏n

s=1(1 + ωsλ)2
≥ 0, (6)

unlike the δ
(n−1,n)
Z (x) (shown in Fig. 1(a)) which varies alterna-

tively between +dZ and −dZ . Nevertheless, one can shift δZ (x)
by a constant +dZ , simply by changing the overall coefficient D0

of R(n−1,n)
Z (18) to D ′

0,

D ′
0 = 1√

ξ

∏n
l=1(ξ + C2l−1)∏n−1

l=1 (ξ + C2l)
, ξ = 1

1 − κ ′ 2sn2
(

K ′
2n ;κ ′

) . (7)

Then the maximal deviation becomes 2dZ , which is twice of that 
of the Zolotarev optimal rational polynomial. Obviously, this is the 
optimal chiral symmetry one can have for DWF with R5 symmetry. 
This can be attained by requiring δ(λ) to have 2n + 1 alternative 
maxima and minima for λ ∈ [λmin, λmax],
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Fig. 1. The deviation δ(x) = 1 − √
xR(m,n)

Z (x) of the Zolotarev optimal rational polynomial R(m,n)
Z (x) for x ∈ [1, b], b = λ2

max/λ
2
min = (6.20/0.05)2 = 15 376. In the left figure 

(a), (m, n) = (n − 1, n) = (7, 8), while in the right figure (b), (m, n) = (n, n) = (8, 8). In both cases, δ(x) has (m + n + 2) alternate changes of sign in the interval [1, b], with 
(m + 1) minima and (n + 1) maxima, all of the same magnitude, satisfying the necessary and sufficient condition of the optimal rational approximation of 1/

√
x for x ∈ [1, b], 

according to de la Vallée–Poussin’s theorem and Chebycheff’s theorem.
δ(λ) = 2dZ , 0, · · · , 2dZ , 0, 2dZ , dZ = 1 − �

1 + �
, (8)

at the consecutive points (λmin = λ1 < λ2 < · · · < λ2n+1 = λmax), 
where dZ is the maximum deviation |1 − √

xR(n−1,n)
Z (x)|max of 

the Zolotarev optimal rational polynomial R(n−1,n)
Z (x) for 1/

√
x, 

x ∈ [1, b]. This immediately implies that the weights in (3) can be 
fixed by the positions of the minima of δ(x),

ωs = ωNs+1−s = 1

λmin

√
1 − κ ′ 2sn2

(
(2s − 1)K ′

Ns
;κ ′

)
,

s = 1, · · · , Ns/2, (9)

where sn(u; κ ′) is the Jacobian elliptic function with modulus κ ′ =√
1 − 1/b, and K ′ is the complete elliptic function of the first kind 

with modulus κ ′ . Then the approximate sign function S(H) of the 
effective 4-dimensional Dirac operator (4) becomes

S(H) = hD ′
0

∏n−1
l=1 (h2 + C2l)∏n

l=1(h
2 + C2l−1)

, h = H

λmin
, (10)

which is exactly the same as the Zolotarev optimal rational ap-
proximation of the sign function (see Eq. (18)) except replacing D0
by D ′

0. Note that if we replace D0 by D ′′
0,

D ′′
0 =

∏n
l=1(1 + C2l−1)∏n−1

l=1 (1 + C2l)
, (11)

then δ(x) is shifted by a constant −dZ , thus its maxima become 0, 
and minima −2dZ . However, this cannot be realized by DWF with 
even Ns and R5 symmetry, due to the constraint (6), δ(λ) ≥ 0.

In Fig. 2, we plot 1 − S(λ) of the optimal DWF with R5 symme-
try, for Ns = 16, λmax/λmin = 6.20/0.05, and the weights according 
to (9). We see that 1 − S(λ) has 2n + 1 = 17 alternate maxima and 
minima in the interval [λmin, λmax], with 8 minima and 9 max-
ima, and |1 − S(λ)|max = 2dZ , where dZ is the maximum deviation 
|1 − √

xR(7,8)
Z |max of the Zolotarev optimal rational polynomial, as 

shown in Fig. 1(a).

3.2. Ns = 2n + 1 (odd)

For the case Ns = 2n + 1, the requirement of R5 symmetry im-
plies that ωs = ωNs+1−s , and
Fig. 2. The deviation 1 − S(λ) of the optimal DWF with R5 symmetry, for Ns = 16, 
λmax/λmin = 6.20/0.05, where the weights are computed according to (9).

δ(λ) = 1 − S(λ)

= 2(1 − ωn+1λ)
∏n

s=1(1 − ωsλ)2

(1 − ωn+1λ)
∏n

s=1(1 − ωsλ)2 + (1 + ωn+1λ)
∏n

s=1(1 + ωsλ)2
,

which can be positive, zero, or negative. Thus, we have two options 
to attain the optimal chiral symmetry with R5 symmetry, i.e., to 
shift δ(λ) by a constant +dz , or −dz .

The first option is to require δ(λ) to have 2n + 2 alternative 
maxima and minima in the interval [λmin, λmax],

δ(λ) = 2dz, 0, · · · , 2dz, 0, dz = 1 − σ

1 + σ
,

at consecutive points (λmin = λ1 < λ2 < · · · < λ2n+2 = λmax), where 
dz is the maximum deviation |1 − √

xR(n,n)
Z (x)|max of the Zolotarev 

optimal rational polynomial R(n,n)
Z (x) for 1/

√
x in the interval 

[1, b]. Thus the weights in (3) can be fixed by the positions of the 
minima of δ(x),
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Fig. 3. The deviation 1 − S(λ) of the optimal DWF with R5 symmetry, for Ns = 17, λmin = 0.05, and λmax = 6.20. In (a), the weights are computed according to (12), while in 
(b), according to (15).
ωs = ωNs+1−s = 1

λmin

√
1 − κ ′ 2sn2

(
(2s − 1)K ′

Ns
;κ ′

)
,

s = 1, · · · , (Ns + 1)/2. (12)

Note that the smallest weight ωn+1 is chosen to be the unpaired 
one at the center of the fifth dimension, such that δ(λ) does not 
change sign for all λ ∈ [λmin, λmax]. Then the approximate sign 
function S(H) of the effective 4-dimensional Dirac operator (4) be-
comes

S(H) = hd′
0

∏n
l=1(h

2 + c2l)∏n
l=1(h

2 + c2l−1)
, h = H

λmin
, (13)

which is exactly the same as the Zolotarev optimal rational approx-
imation of the sign function (see Eq. (19)) except for the overall 
coefficient d′

0,

d′
0 = 1√

ξ

n∏
l=1

(ξ + c2l−1)

(ξ + c2l)
, ξ = 1

1 − κ ′ 2sn2
(

K ′
2n+1 ;κ ′

) . (14)

The second option is to require δ(λ) to have 2n + 2 alternative 
maxima and minima in the interval [λmin, λmax],

δ(λ) = 0, −2dz, · · · , 0, −2dz, dz = 1 − σ

1 + σ
,

at consecutive points (λmin = λ1 < λ2 < · · · < λ2n+2 = λmax). This 
immediately implies that the weights in (3) can be fixed by the 
positions of the maxima of δ(x),

ωs = ωNs+1−s = 1

λmin

√
1 − κ ′ 2sn2

(
(Ns + 3 − 2s)K ′

2Ns
;κ ′

)
,

s = 1, · · · , (Ns + 1)/2. (15)

Note that the largest weight ωn+1 is chosen to be the unpaired one 
at the center of the fifth dimension, such that δ(λ) does not change 
sign for all λ ∈ [λmin, λmax]. Then the approximate sign function 
S(H) of the effective 4-dimensional Dirac operator (4) becomes

S(H) = hd′′
0

n∏ (h2 + c2l)

(h2 + c2l−1)
, h = H

λmin
, (16)
l=1
which is exactly the same as the Zolotarev optimal rational approx-
imation of the sign function (see Eq. (19)) except for the overall 
coefficient d′′

0,

d′′
0 =

n∏
l=1

(1 + c2l−1)

(1 + c2l)
. (17)

In Fig. 3, we plot 1 − S(λ) of the optimal DWF with R5 sym-
metry, for Ns = 17, and λmax/λmin = 6.20/0.05. In Fig. 3(a), the 
weights are computed according to (12), while in Fig. 3(b), ac-
cording to (15). In both cases, 1 − S(λ) has 2n + 2 = 18 alternate 
maxima and minima in the interval [λmin, λmax], with 9 minima 
and 9 maxima. The maximum deviation |1 − S(λ)|max = 2dz , where 
dz is the maximum deviation |1 −√

xR(8,8)
Z |max of the Zolotarev op-

timal rational polynomial, as shown in Fig. 1(b).

4. Numerical test

Theoretically, the sign function error |1 − S(H)| of the optimal 
DWF with R5 symmetry is twice of that without R5 symmetry. 
Nevertheless, it is interesting to check their difference in large-
scale simulations of lattice QCD, by computing the residual mass 
[12]

mres = 1

4r

〈
tr{[D−1(mq)]†(1 − S2)D−1(mq)}0,0

〉
U〈

tr{[(Dc + mq)−1]†(Dc + mq)−1}0,0
〉
U

=
〈
tr(Dc + mq)

−1
0,0

〉
U〈

tr[γ5(Dc + mq)γ5(Dc + mq)]−1
0,0

〉
U

− mq,

where (Dc + mq)
−1 denotes the valence quark propagator, tr de-

notes the trace running over the color and Dirac indices, and the 
brackets 〈· · ·〉U denote averaging over an ensemble of gauge con-
figurations.

To generate the gauge ensemble, we perform the hybrid Monte 
Carlo simulation of (2 + 1)-flavor QCD on the 243 × 48 lattice 
with the Wilson gauge action at β = 6/g2 = 6.10 (lattice spac-
ing a ∼ 0.06 fm), for the sea-quark masses mua = mda = 0.005 and 
msa = 0.04, with pion mass ∼ 260 MeV. For the quark part, we use 
optimal DWF with R5 symmetry for u, d and s quarks, with c = 1, 
d = 0 (i.e., H = H w ), Ns = 16, and λmax/λmin = 6.20/0.05. The 
weights are computed according to the formula (9). The strange 
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quark is simulated with the exact pseudofermion action for one-
flavor DWF [10], and the up and down quarks are simulated with 
the 2-flavor algorithm as outlined in [9]. We generate the initial 
400 trajectories with 2 Nvidia GTX-TITAN GPUs working together. 
After discarding the initial 240 trajectories for thermalization, we 
sample one configuration every 5 trajectories, resulting 32 “seed” 
configurations. Then we use these 32 seed configurations as the 
initial configurations for 32 independent simulations on 32 Nvidia 
GTX-TITAN GPUs. Each GPU generates 100–110 trajectories, and we 
accumulate a total of 3300 trajectories. From the saturation of the 
binning error of the plaquette, as well as the evolution of the topo-
logical charge, we estimate the autocorrelation time to be around 
10 trajectories. Thus we sample one configuration every 10 trajec-
tories, and obtain 330 configurations for this ensemble.

Then we compute two sets of quark propagators with point 
source at the origin and mqa = 0.005, one set with the {ωs} exactly 
the same as the sea-quarks (with R5 symmetry), and the other 
set with the {ωs} (2) without R5 symmetry. The residual mass of 
the set with R5 symmetry is (mresa)R5 = 0.00024(1), while that of 
the set without R5 symmetry is mresa = 0.00014(1). Thus the ratio 
(mres)

R5/mres 
 1.71(14), consistent with the theoretical expecta-
tion.

5. Concluding remarks

With the weights (9), (12) and (15) for optimal DWF with R5
symmetry, together with those (2) for optimal DWF without R5
symmetry [11], this completes the study of DWF with the ap-
proximate sign function S(H) in the effective 4-dimensional lattice 
Dirac operator satisfying |1 − S(λ)| ≤ 2dZ (with R5 symmetry) or 
|1 − S(λ)| ≤ dZ (without R5 symmetry) for λ2 ∈ [λ2

min, λ
2
max], where 

dZ is the maximum deviation |1 − √
xR Z (x)|max of the Zolotarev 

optimal rational polynomial R Z (x) of 1/
√

x for x ∈ [1, λ2
max/λ

2
min], 

with degrees (n − 1, n) for Ns = 2n, and (n, n) for Ns = 2n + 1.
The correspondence between the approximate sign function 

S(H) of the optimal DWF and the Zolotarev optimal rational poly-
nomial gives the optimal rational approximation a more general 
viewpoint. In general, the deviation δ(x) = 1 − √

xR Z (x) can be 
shifted by a constant ε , simply by adjusting the overall coefficient 
D0 in (18) or d0 in (19). In particular, for R(n−1,n)

Z , if D0 is re-
placed by D ′

0 (7), then ε = +dZ , δmax = 2dZ and δmin = 0; while by 
D ′′

0 (11), ε = −dZ , δmax = 0 and δmin = −2dZ . Similarly, for R(n,n)
Z , 

if d0 is replaced by d′
0 (14), ε = +dz , δmax = 2dz and δmin = 0; 

while by d′′
0 (14), ε = −dz , δmax = 0 and δmin = −2dz . Even though 

this does not satisfy the criterion that the maxima and the min-
ima of δ(x) all have the same magnitude and δmin = −δmax , the 
most salient features of the optimal rational approximation are 
preserved, namely, the number of alternate maxima and minima 
is (m + n + 2), with (n + 1) maxima and (m + 1) minima, as well 
as all maxima (minima) are equal. We can regard this as the gen-
eralized optimal rational approximation (with a constant shift ε). 
For ε > 0, this can be realized by DWF with/without R5 symmetry. 
However, for ε < 0, it cannot be realized by DWF with R5 symme-
try and Ns = 2n (even), due to the constraint (6), δ(λ) ≥ 0.
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Appendix A

In this appendix, we collect the basic formulas of the Zolotarev 
optimal rational polynomials R(n−1,n)

Z (x) and R(n,n)
Z (x) for the in-

verse square root function 1/
√

x, x ∈ [1, b].

R(n−1,n)
Z (x) = D0

∏n−1
l=1 (x + C2l)∏n

l=1(x + C2l−1)
=

n∑
l=1

Bl

x + C2l−1
, (18)

R(n,n)
Z (x) = d0

n∏
l=1

x + c2l

x + c2l−1
= (x + c2n)

n∑
l=1

bl

x + c2l−1
, (19)

where

Cl = sn2( lK ′
2n ;κ ′)

1 − sn2( lK ′
2n ;κ ′)

, cl = sn2( lK ′
2n+1 ;κ ′)

1 − sn2( lK ′
2n+1 ;κ ′)

,

Bl = D0

∏n−1
i=1 (C2i − C2l−1)∏n

i=1,i 	=l(C2i−1 − C2l−1)
,

bl = d0

∏n−1
i=1 (c2i − c2l−1)∏n

i=1,i 	=l(c2i−1 − c2l−1)
,

D0 = 2�

1 + �

∏n
l=1(1 + C2l−1)∏n−1

l=1 (1 + C2l)
, d0 = 2σ

1 + σ

n∏
l=1

1 + c2l−1

1 + c2l
,

� =
2n∏

l=1

�2
(

2lK ′
2n ;κ ′

)
�2

(
(2l−1)K ′

2n ;κ ′
) , σ =

2n+1∏
l=1

�2
(

2lK ′
2n+1 ;κ ′

)
�2

(
(2l−1)K ′

2n+1 ;κ ′
) .

Here sn(u; κ ′) = η is the Jacobian elliptic function with modulus 
κ ′ = √

1 − 1/b, as defined by the integral

u(η) =
η∫

0

dt√
(1 − t2)(1 − κ ′ 2t2)

,

K ′ = u(1) is the complete elliptic function of the first kind with 
modulus κ ′ , and � is the elliptic theta function.

For R(n−1,n)
Z , the deviation δ(x) = 1 − √

xR(n−1,n)
Z (x) has 2n +

1 alternate changes of sign in the interval [1, b], and attains its 
maxima and minima,

δ(x) = dZ , −dZ , · · · , dZ , −dZ , dZ , dZ = 1 − �

1 + �
,

at consecutive points (1 = x1 < x2 < · · · < x2n+1 = b),

xi = 1

1 − κ ′ 2sn2
(

(i−1)K ′
2n ;κ ′

) , i = 1, · · · ,2n + 1.

For R(n,n)
Z , the deviation δ(x) = 1 −√

xR(n,n)
Z (x) has 2n + 2 alter-

nate changes of sign in the interval [1, b], and attains its maxima 
and minima,

δ(x) = dz, −dz, · · · , dz, −dz, dz = 1 − σ

1 + σ
,

at consecutive points (1 = x1 < x2 < · · · < x2n+2 = b),

xi = 1

1 − κ ′ 2sn2
(

(i−1)K ′
2n+1 ;κ ′

) , i = 1, · · · ,2n + 2.
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