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ABSTRACT 

We apply a recent characterization of optimality for the abstract convex program 
with a cone constraint to three matrix theory problems: (1) a generalization of Farkas’s 
lemma; (2) paired duality in linear programming over cones; (3) a constrained matrix 
best approximation problem. In particular, these results are not restricted to poly- 
hedral or closed cones. 

1. INTRODUCTION 

In this paper we apply a recent characterization of optimality for the 
abstract convex program with a cone constraint to three matrix theory 
problems: (1) a generalization of Farkas’s lemma; (2) paired duality in linear 
programming over cones; (3) a constrained matrix best approximation prob- 
lem. In particular, these results are not restricted to polyhedral or closed 
cones. 

2. PRELIMINARIES 

First, let us consider the abstract convex program 

w p=inf{p(x): g(x)E -S, xEG}, (2.1) 

wherep:X~RU{+oo},g:X~RmU{+oo};Xisatopologicalvectorspace; 
52 C X is convex and S is a convex cone in R”, i.e. S + SC S and tS C S for all 
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t>O; and p is a convex (extended) functional (on Q) and g is S-convex (on a), 
i.e. 

for all x, y E!J and O<tG 1. For greater generality, we have attached an 
abstract maximal element to R” (see e.g. [I3]). Note that R” is linearly 
ordered by S, i.e. xasy if and only if x-y ES. This ordering is transitive and 
reflexive. It is antisymmetric exactly when S is pointed, i.e. Sfl -S= (0). 

We will also need the following notation: the cone K C S is a face of S if 

x,y~S and x+yEK =) x,yEK. 

The feasible set of (P) is 

F={xEO:g(x)E-S}. 

The minimal cone of (P) is 

Sf= n {faces of S containing -g(F)}. 

The minimal cone has the following property (see [7]): 

-g(F)miSf# 0) (2.2) 

where ri denotes relative interior. For a set T in R”, the polar cone of T is 

Tt={$~Rm:$y~Oforall yin T}, 

where $y denotes the inner product of $ and y in R”. The orthogonal 
complement of T is 

TL=T+n-T+. (2.3) 

We now have the following characterization of optimality for (P) which 
holds without any constraint qualification. 

THEOREM 2.1 [7]. Suppose that p, the optimal value of (P), is finite. 
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Then 

p=inf{p(x)+hg(x): xEFf} (24 

for some X in (Sf)’ and Ff=G?2gg-‘(Sf-Sf). Moreover, ifp=p(a) fir 
some a in F, then 

Xg(a)=O (2.5) 

and (2.4) and (2.5) characterize optimulity of a in F. 
The above theorem differs from the standard Lagrange multiplier theorem 

(e.g. [12]) in three ways. First, the Lagrange multiplier X is found in the 
(possibly) larger cone (Sf)’ rather than S +; second the variable x is 
restricted to the (possibly) smaller set Ff rather than 52; and third, the above 
theorem holds irrespective of any constraint qualification. In the presence of 
Slater’s qualification, 

3x~Q such that g(x)E -intS, 

where int denotes interior, the above theorem reduced to the standard 
theorem. 

There are situations where we can strengthen the above theorem in the 
sense that we can replace (Sf)’ by a smaller cone and replace Ff by a larger 
set. Thus we get closer to the standard result. We now include several results 
of this type. 

COROLLARY 2.1 [7]. Theorem 2.1 holds with S+ replacing (Sf)’ exactly 
when 

s++(Sf)L=(Sf)+, (2.6) 

or equivalently, when S is closed, exactly when 

S++(Sf)l is closed. (2.7) 

COROLLARY 2.2 [9]. Suppose that g is affine and G is a finite dimen- 
sional subspace. Then Theorem 2.1 holds with Ff replaced by 52. 



104 HENRY WOLKOWICZ 

COROLLARY 2.3. Suppose that (P) satisfies the generalized Slate-r’s condi- 
tion 

3;4~riQ with g(f)+riS. (2.8) 

Then the standard Lagrange multiplier theorem holds, i.e., Theorem 2.1 holds 
with Ff replaced by Q and (Sf)’ replaced by S +. 

Proof. By (2.2), we get that Sf = S. Now choose &, i = 1,. . . , t, in S _L 
such that 

s-s= ff &?. (2.9) 
i=l 

By Theorem 2.1, we have 

p=inf{p(x)+Ag(x): xEfi?2ng-'(S-S)} 

for some A in S +. This, by (2.9), is equivalent to 

~=inf{p(x)+Xg(x):($g)(x)~O, i=l,...,t, xE51). (2.10) 

Since g is S-convex and {+} cSI CS+, we conclude that both &g and --Gig 

are convex (on a), which implies that 

Gig is affine (on Q), i=l ,.a*, t. 

Thus the program (2.10) is linearly constrained, and moreover, by (2.8), 

2Eri!d, &g(?)GO, i=l,..., t. (2.11) 

This is the generalized Slater’s condition for an ordinary convex program, 
since the constraints Gig are affine. Therefore (see [14, Theorem 28.2]), there 
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exist Kuhn-Tucker multipliers oi 2 0, i = 1,. . . , t, such that 

p=inf{p(z)+hg(x)+ ~e,&g(x): XEQ}. (2.12) 

The results now follows, since 

We now include the following duality result. We define Lf, the restricted 
Lagrangian , by 

Lf(A)=inf{p(x)+Ag(x): n:EFf}, 

and the restricted dual problem 

(Df) d=sup(Lf(X): &(Sf)+). 

Then (Df) is a concave optimization problem, and we get: 

THEOREM 2.2 [7]. Zfp<co, then 

p=sup(Lf(h): XE(Sf)+). (2.13) 

Moreover, if(2.6) holds, then (Sf)+ can be replaced by S+. 

COROLLARY 2.4. Zf PL( co, Q i-s a finite dimensional subspace, and g is 
afine, then (2.13) holds with Ff replaced by Q (in the definition of Lf(A)). 

Proof Note that for every X in (Sf) + and x E S!, 

Lf(A),cp(x). 

Thus pad. Now Corollary 2.2 guarantees the existence of h in (Sf)’ with 

p=Lf(A). n 

We now present the applications of this theory. We restrict ourselves to X 
also finite dimensional. 
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3. A GENERALIZATION OF FARKAS’S LEMMA 

The original Farkas’s lemma (e.g. [lo]) gives the equivalence of the 
consistency of the system 

Ax=b, XEK, (34 

with the statement 

Aty~K+ * by 30, (3.2) 

where A is an m X n matrix, A’ is its transpose, and K = K + = R’!+ . This has 

been extended to K a closed convex cone in [3] under the assumption that 
A(K) [or equivalently K+%(A)] is closed, where %( *) denotes null space. 
We now present a generalization of Farkas’s lemma without this extra 
assumption. We let Sf be the minimal cone for the constraint -A’ y E - S. 

THEOREM 3.1 [9]. The system 

6) Ax=b, xE(Sf)+, 

is consistent if and only if 

(ii) Aty~S * by>O. 

Proof. Since S is a convex cone and A is linear, statement (ii) is 
equivalent to the fact that 

O=p=inf{by: -Aty~ -S}. 

Corollary 2.2 implies that this is equivalent to 

(3.3) 

O=p=inf{by+X( -Aty)} (3.4) 

for some h in (S ) . f + Since the inf is achieved at y ‘0, we can differentiate to 
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get statement (i), i.e. 

0= -$[by--h(A’y)] 

=b-Ah. 

4. PAIRED DUALITY IN LINEAR PROGRAMMING OVER CONES 

We first consider the following pair of linear programs with cone con- 
straints. Both S and !2 are now convex cones (not necessarily polyhedral or 
closed) while g( x ) = b-Ax, where b is an m-vector and A is an m X n matrix. 
We again denote the feasible set of (P) 

F= {x~fi: Ar-bES}, 

and set the minimal cones 

Sf= n {facesof ScontainingA(F)-b}, 

Qf = n {faces of 62 containing F} . 

Note that if we consider the constraint 

km=[:, -_$](‘:)E-(;I=-W-J), 

then 

The dual pair is 

w 

(D) 

p=iinf cx 

subject to Ax-bES, XEG, 

sup by 

subject to c-AtyE(ilf)+, ME+. 
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The Lagrangian of (P) and (D) is 

L(x, y)=cx+y(b-Ax) 

=by+(c-Aty)x. (4.1) 

The point (x0, y”)E!#X(Sf)+ is a saddle point of L(x, y) with respect to 
wx(Sf)+ if 

(4.2) 

THEOREM 4.1. Consider the paired programs (P) and (D). Then: 

(a) Zf one of the problems is inconsistent, then the other is inconsistent or 
unbounded. 

(b) Let the two problems be consistent, and let x0 be a feasible solution of 
(P) and y” be a feasible solution of(D). Then 

cx” aby’. (4.3) 

(c) Zf both (P) and (D) are consistent, then they have optimal solutions 
and their optimal values are equal. 

(d) Let x0 and y” be feasible solutions of(P) and (D) respectively. Then 
x0 and y” are optimal if and only if 

y”(Axo -b)+(c-A’y”)xo =O, 

or equivalently, if and only if 

y”(Aro-b)=(c-A’y”)xo=O. 

(e) Zf Sf is closed (which hoZds if S is closed), then the vectors x0 E R” 
and y” ER”’ are optimal solutions of(P) and (D) respectively if and only if 
the point (x0, y”) is a saddle point of L(x, y) for all (x, y) in fif X(Sf)+, 
and then 

~(xo, yO)=cro =by’. (4.4) 
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Proof (a): If (P) is inconsistent, then by [5, Theorem 3.31, there exists a 
vector $I such that 

AGpEG2+, -+Es+, bc#oO. (4.5) 

Since fi2f Cfd and Sr CS, we get that f’J2+ C(nf)’ and S+ C(Sf )+. Thus (D) 
is unbounded. 

Conversely, suppose that (P) is consistent and bounded. Now (P) is 
equivalent to 

p=inf{cx: Ax-bESf, XEW}. (4.6) 

Moreover, if we rewrite the constraints as 

we see that (S X L?)r=Sf X Qf, and thus by (2.2), there exists 

$~riQf with AA-bEriSf-. 

Therefore, from (4.6) and Corollary 2.3, we get 

p=inf{cx+y(b-Ax): xCG?f) 

for some y in (S ) . f + Since Q;2fis a cone, this implies that 

cx- yAxa0 for all xEW, 

i.e., we have c-Aty~(Qf)+ and yC(Sf)+. Thus y is a feasible solution of 

(D). 
(b): 

cx”>cxo +y’(b-Ax’), since b-Ax0 E -Vwhile y” e(Sf)+ 

=(c-Atyo)xo +y”b>yob, since c-Atyo ~(a~)’ while x0 EFCaf. 



110 HENRY WOLKOWICZ 

(c): Since both programs are consistent, part (b) implies that p, the 
optimal value of (P), is not - co. Thus Theorem 2.2 applied to (4.6) implies 

p= sup inf {cx+y(b-Ax)}. 
yqSf)+ xEQ’ 

(4.7) 

Since ii?* is a cone, the inf for a fixed y is either yb or - cc. Since we are then 
taking the sup, we can assume that the inf is yb, i.e. we can add the 
constraint 

cx-yAx=(c-A’y)x>O for all xEfG?*, 

i.e. 

c-Aty@Qf)+. 

Moreover, this inf is achieved with x=0. Thus (4.7) becomes 

p= sup (yb: 
Ywf)+ 

c-Aty~(slf)+). 

(d): First suppose that x0 and y” are both optimal. Thus 

y”b=p=cxo >cx” +y’(b-Ax’), since b-Ax0 E -Sf when x0 EF 

=y’b+(c-Atyo)xo+, 

i.e. (c-Atyo)xo =y’(b-Ax’)=O. Conversely, suppose x0 and y” are feasi- 
ble and (c-Atyo)xo =y’(b-Ar’)=O. Then by (b) 

yOb=yOb+(c-AtyO)xO 

=a0 +y’(b-Ax’) 

=a0 >byO. (4.8) 

Then cx” = by’, and by (b) and (c), both x0 and y” are optimal. 
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(e): Let (x0, y”) be a saddle point of L(x, y): with respect to 52f X($)‘. 
Then, for x~8f, 

L(X, Y”)=byo + (c--Atyo)x 

=by” + (c-A’y”)xo. 

Thus (c-A”y’)(x-x”)>O for all x~fJ< Setting x=0 and x=2x0 implies 
that (c-A*y”)x>O. Thus c-Atyo ~(a~)‘, i.e., y” is a feasible point of (D). 
Similarly, for any y E (9) + , 

qx”, Y"). 

Thus (y-y’)(b--Ax’)<0 for all ye+. Again, setting y=O and y=2y, 
shows that yo(b-Ax’)=0 and thus Ax0 -b~(Sf)++=s~, since Sfis closed. 
This implies that x0 is also feasible. Substituting x= y=O in the definition of 
the saddle point implies that cx” <L(x’, yO)<byO, which, by (b) and (c), 
proves the optimality of x0 and y”. 

Conversely, let x0 and y” be optimal solutions of (P) and (D) respectively. 
Then cx” = by0 by (c), and (4.4) follows from (d). Moreover, for any x~ Gf, 

aby’, since c-A’y’ E(Gtf)’ 

=L(xO, Y"), by (4. 

Similarly for any yE(Sf)+ we have L(x’, y)~L(x’, y’), and thus (r’, y”) 
is a saddle point of L(x, y) \;ith respect to Of X(S*)‘. H 

The above theorem is an extension of the results given for polyhedral 
cones in [l] (see also [5]). 
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5. A BEST APPROXIMATION PROBLEM 

Consider the following problem: 

PROBLEM. Given the real symmetric nXn matrix B and the three 
subspaces L,, La, and L, of R”, find the (unique) real symmetric n X n matrix 
A which is closest to B in Frobenius norm (Hilbert-Schmidt norm) and which 
is negative semidefinite (nsd) on L,, positive semidefinite (psd) on La, and 0 
on L,. 

Solution. First, it is clear that A must be 0 on L, nL,. Thus, we can 
rewrite the problem so that A must be: 0 on L, + L, n L,; nsd on L;, any 
complementary subspace of L, fl L, +L, fl L, in L,; and psd on Lk, any 
complementary subspace of L, n L, + L, fl L, in L,. Now set Lj = L, + L, f? 
L,, and let: P, be the projection on L; along any complementary subspace of 
R” which contains L’, + Lj; Pz be the projection on Lk along any complemen- 
tary subspace which contains L; + Lj; and P3 be the projection on Lj along 
any complementary subspace which contains L; + L’,. We now define the 
unitary diagonalizations 

P,BP,‘= qDiCJt 

=lJjDi’~“+~Di-~“, i=I,2,3, 

where the Vi are the unitary matrices of eigenvectors, Di are the diagonal 
matrices of eigenvalues, and Di’ and Dip are the diagonal matrices of positive 
and negative eigenvalues. We let S be the cone of n X n psd matrices, in the 
space Y =R (nZ+n)/2 of nX n real symmetric matrices represented by their 
distinct triangular parts. The norm in Y is given by the Euclidean inner 
product 

(A, B) =trAB, 

the trace of the matrix product AB. We define the projection in Y, 

9. =I. -P4.P4, 

where P4 is the (orthogonal) projection on L; + LL + Lj. Let us now show that 
the solution is 

A=UD-Uf+UD+Ut+~B. 11 1 22 2 (54 
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Choose the matrices E,, E,, and E, so that 

L; =%(E,), 

where %( ) denotes range space. The matrix X in Y is nsd (psd) on L; (Lk) if 
and only if E:XE, (EiXE,) is nsd (psd) on all of R”, since 

(EfXEiyly)=(X(Eiy),(Eiy)) for yinR”. 

Now we can rewrite the problem as the abstract convex program 

(P) I 
minimize p(X)=~IIX-BB12=+tr(X-B)2 

subject to g,(X)=EiXE, E -S, 

g2(X)= -E;XE, E -S, 

g,(X)=E;XE, E(0). 

The generalized Lagrange multiplier theorem states that if A satisfies the 
constraints and 

O=v~(A)+v(~,,g,tA))+v(~,,g,(A))+v(~,~g,(A))~ 
(5.2) 

O=(‘i,gi(A)), i=1,2,3, 

for some matrices X,, h, in S +, A, in {0)+x Y, where v denotes gradient, 
then A solves (P). 

Let A be as in (5.1) and set 

A, =E,‘U,D,-U,E;‘, 

A, =E.&DJJ..E;‘, 

where E/ denotes the generalized inverse of Ei (see e.g. [4]) which satisfies 

E,E/ =P i' 
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g,(A) =EIAE, 

=E;(U,D,U; + U,D,+U,t +C!?B)E, 

=E;P;( U,D,U; +P;U,D,fU,tP,)P,E, 

=EfU,D,U;E,, since P2P1 = 0 

E-S, since Dl is nsd. 

Similarly 

g,(A)= -EfJJ,D,+U,E, E -S 

and 

g,(A)=E$AE, =O. 

Moreover, both A, and X, are in S + =S (see e.g. [6]), since both 0: and 
-D,- are psd, while h, E {O}+ = Y. We have left to show that (5.2) holds, or 
equivalently, after differentiating, that 

B=A+E,A,E; -E&E; +E,A,E;, 

tr h,E:AE, =O, i=1,2,3. 

Now 

A+E,h,E; -E&E; +E,A,E; =A+ tJ,D$J; + C&D,-U,P,BP, 

=U,D,U;+U’D&+P,BP,+9B 

=P,BP, +P,BP, +P,BP, +(I-P,)B(Z-P,) 

=B; 
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while 

= tr U, 0: U:A 

=o, 

since the projections are mutually complementary and 0: Dl =O. Similarly 

trh,EfAE, =O, i=2,3. 

Uniqueness follows from the strict convexity of the objective function p(X). 
n 

REMARK 5.1. We were able to use the standard Lagrange multiplier 
theorem in the above, even though Slater’s condition fails for (P). The cone S 
of psd matrices is very well behaved in general. In fact, if K is a face of S, 
then 

S + + K i is closed. (5.3) 

For (see [2]) there exists a projection P in S such that PS=K, and moreover 

s++lcL =s+%(P), 

(where 92 denotes null space) is closed if and only if PS is closed (see [ 111). 
Recall that the condition (5.3) is the one in Corollary 2.1 which allows one to 
replace (Sf)’ by S+ in Theorem 2.1. 

REMARK 5.2. It is well known (see e.g. [12, p. 2221) that the Lagrange 
multipliers are sensitivity coefficients, i.e., if a solves the original program (P) 
in Section 2 with Lagrange multipler h, while a, solves the perturbed 
program (P,) with the perturbed constraint g(x)Ex-S, then 

For the above matrix problem, suppose that we allow the following perturba- 
tion: 

A must be “almost” nsd on L,, 
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i.e., we are given the scalar E and we require 

(Ax,x)~s(x,x) forall xinLr. 

Then this is equivalent to the perturbation 

(EiAE,y,y)~&(E:E,y,y) for all y, 

or equivalently 

E;AE, -&E:E, E -S. 

If A, is the solution of the perturbed problem, then, using the value of A, 
found in our solution, we get 

expanding both sides yields 

detrE+U D+U’EttE”E 1111111 

=.str U,Dl+U:. 

As may have been expected, the sensitivity depends on the nonnegative 
eigenvalues of P,BP,. Note also that if ~(0, then the feasible set F= 0 . 

Similarly, if A, solves the problem with the three perturbed constraints 

(Ax, x)%(x,x) forall xinL,, 

(-Ax, x)Ge2(x, X) forall xinL,, 

(AX, x)=eg(r, x) for all xin La, 

where pi, Ed, and .sa are three scalars, then 
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In addition, if we had Lagrange multipliers corresponding to A,, we would 

also get a lower bound for p(A) -p( A,). 

6. CONCLUDING REMARKS 

In [9] we have presented various strengthened versions of Theorem 2.1 
which, under certain hypotheses, use smaller cones than ( Sr)’ , though not 
necessarily S + . This has led to various cones replacing (Sf)’ in the generali- 
zation of Farkas’s lemma, i.e. various equivalent statements. 

These strengthenings can also be applied to the paired duals in Section 4. 
For example, under certain closure conditions, we would get a family of 

paired duals 

(PK,LJ 
i 

p=inf cx 

subject to Ax--bEK, xEL, 

i 

sup by 

subject to c-A’yEM+, YEN+, 

where K, L, M, and N are convex cones which satisfy certain closure 
hypotheses as well as the inclusions S~CKCS, fif CLC& S+CM+C 

( !Jf )’ , and Q + C N + C(Sf)' . These closure conditions hold in the event 
that both a and S are polyhedral cones, in which case we can choose M= Q 
and N= S. Theorem 4.1 then reduces to a result given in [l] (see also [5]). 

These strengthenings of Theorem 4.1 will be presented in a future study. 
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