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Vitamin E dependent microRNA regulation in rat liver
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Abstract Dietary vitamin E (VE) is known to regulate gene
expression by altering mRNA concentrations. Recently, micro-
RNA (miRNA) have been discovered as a means of posttran-
scriptional gene regulation. Since the effect of VE on miRNA
regulation is unknown, we fed rats for 6 months diets deficient
or sufficient in VE and determined hepatic concentrations of
miRNA involved in processes previously associated with VE
(lipid metabolism, miRNA-122a; cancer and inflammation,
miRNA-125b). VE-deficiency resulted in reduced concentrations
of miRNA-122a and miRNA-125b. The findings of the present
study demonstrate that differences in dietary VE may affect
hepatic miRNA concentrations in vivo.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

In rats, vitamin E (VE), particularly its major congener a-

tocopherol (aT), has been shown to regulate gene expression

by increasing or lowering mRNA concentrations in various tis-

sues [1–6]. In mammals, mRNA levels often correlate poorly

with the respective protein concentrations [7]. The recent dis-

covery of microRNA (miRNA) revealed a possible explana-

tion for this phenomenon. miRNA are a class of small, non-

coding, double-stranded RNA that, in their mature form, are

single-stranded and �22 nucleotides long. Mature miRNA

post-transcriptionally suppress gene expression by binding at

the 3 0 untranslated region of mRNA and inhibiting their trans-

lation into proteins [8]. It has been calculated that each

miRNA binds on average 100 different target mRNA, allowing

for post-transcriptional silencing of many different genes, or

potentially entire pathways, by a single miRNA [9]. miRNA

are encoded for in the genome and are, thus, liable to regula-

tion. Presently, the potential regulatory effects of dietary VE

on the expression of miRNA are unknown. In order to inves-

tigate the role of dietary VE on miRNA expression, we fed rats

for 6 months diets deficient or sufficient in VE and analyzed

miRNA concentrations in the liver. For this study, we selected

miRNA that were previously shown to be involved in pro-
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cesses that have been associated with VE, namely lipid

metabolism (miR-122a) [10,11], cancer progression and inflam-

mation (miR-125b) [12–14].
2. Materials and methods

2.1. Experimental animals and diets
Two groups of 8 recently weaned male Fisher 344 rats (mean body

weight, 51 ± 5 g; Charles River Laboratories, Sulzfeld, Germany) were
randomly assigned to a VE-containing (VE+) or a VE-deficient diet
(VE�). The composition of the semi-synthetic diets (ssniff Spezialdiae-
ten GmbH, Soest, Germany) was (g/kg diet): casein, 240; corn starch,
modified, 480; glucose, 110; cellulose, 50; VE-free vitamin premix
(E15313-2), 10; mineral premix (E15000), 60; rapeseed oil, 50. All
VE in the diets originated from native or antioxidant-stripped rapeseed
oils, respectively, and were as follows (mg/kg diet; analyzed by HPLC):
VE�: aT, <1; cT, <1; VE+: aT, 12; cT, 24. Because consumption of
oxidized lipids may alter gene expression [15], great care was taken
to protect the used oils and diets from oxidation. Peroxide values of
the oils were <0.5 mEq O2/kg, indicating that no lipid oxidation had
occurred. Butylated hydroxytoluene (Carl Roth GmbH, Karlsruhe,
Germany; 200 mg/kg) was added to all oils as a preservative. Diets
were vacuum-packed with oxygen absorber pads in polyethylene and
stored at �20 �C. The animals had free access to tap water and the
experimental diets throughout the experiment and were housed in pairs
in a conditioned room (temperature, 22 ± 2 �C; relative humidity, 55%;
12 h light/dark cycle). The animal experiment was conducted in accor-
dance with the German regulations on animal care and with permis-
sion of the responsible authority. Food consumption was recorded
daily and animal weight weekly. At the end of the experiment, the rats
were fasted for 12 h prior to CO2-anaesthesia and decapitation. The li-
ver was excized and dissected; one part was stored in RNAlater (Qia-
gen, Hilden, Germany) and the remainder snap-frozen in liquid
nitrogen and stored at �80 �C until used.

2.2. Quantification of tocopherols
Tocopherols were quantified by HPLC with fluorescence detection

as described by Augustin et al. [16].

2.3. Total RNA isolation
Total RNA including miRNA were extracted by using the miRN-

easy� Isolation Kit (Qiagen). DNA digestion was performed with
the RNase-Free DNase Set (Qiagen). The concentration of isolated
RNA was determined spectrophotometrically by measuring the absor-
bance at 260 nm; purity was determined using the ratio of 260/280 nm
and a ratio of 1.6–1.9 was considered acceptable. Total RNA aliquots
were stored at �80 �C until PCR or TaqMan analysis.

2.4. Real-time qRT-PCR
Primer sequences for real-time quantitative RT-PCR experiments

were designed with Primer3 software (version 0.4.0; http://frod-
o.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). Primer pairs (Table
1) were obtained from MWG Biotech AG (Ebersberg, Germany).
One-step qRT-PCR was carried out with the QuantiTec� SYBR�
blished by Elsevier B.V. All rights reserved.
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Table 1
Nucleotide sequences of primers used for the real-time qRT-PCR experiments

Gene Primer sequence forward (50–3 0) Primer sequence reverse (50–30)

b-Actin GGG GTG TTG AAG GTC TCA AA TGT CAC CAA CTG GGA CGA TA

CD36 AAG CAA GGT TGC CAT AAT TG CCA AAC ACA GCA TAG ATG GA

5a-R1 TTA TGC TGA AGA CTG GGT GA AAA TAG TTG GCT GCA GAT ACG

c-GCSm TGT GTG ATG CCA CCA GAT TT GCT TTT CAC GAT GAC CGA GT

aTTP GCT TTT CAA ATT ACC CCA TC GAT CCC ACG AAC TTT CAA TG

HO-1 GGG TGA CAG AAG AGG CTA AG GCT GAT CTG GGA TTT TCC TC

Fig. 1. Effect of dietary VE on aT concentrations in the liver (A) and
plasma cholesterol concentrations (B) of rats fed VE-deficient (VE�) or
-sufficient (VE+) diets for 6 months. Values are expressed as mean ±
S.E.M., n = 8. *P < 0.05, ***P < 0.0001.
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Green RT-PCR kit (Qiagen). RT-PCR amplification was performed in
a Rotor-Gene 3000 thermocycler (Corbett Research, Sydney, Austra-
lia). Relative mRNA concentrations are given as the ratios between
the amount of the target gene and the housekeeping gene b-actin.

2.5. TaqMan analyses
TaqMan� MicroRNA Assays were obtained from Applied Biosys-

tems (ABI, Foster City, CA, USA). miRNA quantification was per-
formed as two-step RT-PCR. Reverse transcription was performed
in a thermocylcer (Biometra, Goettingen, Germany) with specific miR-
NA primers from the TaqMan� MicroRNA Assays and reagents from
the TaqMan� MicroRNA Reverse Transcription Kit. During the PCR
step, PCR products were amplified from cDNA samples using the Taq-
Man MicroRNA Assay together with the TaqMan� Universal PCR
Master Mix (ABI). PCR was performed in an Applied Biosystems
7300 Real-Time PCR System. Target sequences were as follows:
hsa-miR-122a, UGGAGUGUGACAAUGGUGUUUGU; hsa-miR-
125b, UCCCUGAGACCCUAACUUGUGA; hsa-miR-146a, UGA-
GAACUGAAUUCCAUGGGUU. Relative miRNA concentrations
are given as the ratios between the amount of the target gene and
the endogenous control snoRNA (Rat).

2.6. Western blot experiments in liver homogenates
Liver tissue (100 mg) was homogenized in RIPA buffer, lysates were

purified by centrifugation (4 �C, 14000 · g, 30 min) and total protein
concentrations in each lysate were quantified using a BCA Protein As-
say Kit (Pierce). Total proteins of the lysate (40 lg per lane) were sep-
arated by SDS gel electrophoresis followed by transferring the proteins
to a PVDF membrane. Samples were then incubated with the primary
antibodies (diluted in 5% non-fat milk (1:1000)) and the secondary
antibodies (Santa Cruz Biotechnology; anti-mouse horseradish perox-
idase) in blocking buffer (anti-HO-1, 1:4000; anti-b-actin, 1:1000). The
blots were exposed to Immun-Star Western Chemiluminescent Kit
(Bio-Rad Laboratories, Hercules, CA, USA) and scanned with a
Chemidoc (Bio-Rad). Digital images were captured and quantified
using the Quantity-One system (Bio-Rad). Relative concentrations of
proteins were quantified as the ratio between the amount of target pro-
tein and the amount of the housekeeping protein b-actin.

2.7. Statistical analyses
Statistical comparisons were made by means of a one-tailed un-

paired t-test (normal distribution, homogeneity of variances), Welch-
corrected t-test (heterogeneity of variances), or a Mann–Whitney U-
test (skewed data) as appropriate using the software Instat 3 for Mac-
intosh (version 3.0b; GraphPad Software, Inc., San Diego, CA).
3. Results and discussion

Neither symptoms of ataxia, a classical sign of severe VE-

deficiency, nor differences in feed intake and life weight gain

were observed in the animals fed VE-deficient (VE�) or VE-

sufficient (VE+) diets for 24 weeks (data not shown), which is

in accordance with previous findings [6]. As expected, hepatic

aT concentrations were reduced in the VE� rats (Fig. 1A), in

agreement with the literature [17]. Differences in hepatic aT

were previously shown to affect relative mRNA concentrations

in the liver of rats [6]. In order to verify the differential expres-

sion of genes regulated by aT, we quantified relative mRNA
concentrations of known VE sensitive genes in the livers of

our rats. As expected, mRNA concentrations of CD36 and

5a-R1 were significantly increased, and mRNA concentrations

of aTTP and c-GCSm were significantly decreased in the VE�

animals (Fig. 2).

Recently, miRNA have been discovered as molecules that ef-

fect post-transcriptional gene-silencing by a process termed

RNA interference [18]. To date, the impact of dietary VE on

hepatic miRNA concentrations is unknown. VE has long been

investigated for its potential cardiovascular disease (CVD) and

cancer preventive properties [19,20]. Increased circulating con-

centrations of blood lipids, especially cholesterol, and pro-

inflammatory cytokines have been associated with increased

risk for CVD and cancer [21,22]. For the current investiga-

tions, we selected two miRNAs (122a, 125b) that were shown

to regulate genes associated with lipid metabolism and cancer.



Fig. 2. Effects of dietary VE on scavenger receptor CD36, 5-a-steroid reductase type 1 (5a-R1), regulatory subunit gamma-glutamylcysteinyl
synthetase (c-GCSm), and aT transfer protein (aTTP) mRNA concentrations in rat liver. Values are mean ± S.E.M., n = 8. **P < 0.001,
***P < 0.0001.
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Because miRNA are evolutionary conserved across species, the

chosen miRNA are found in rat as well as in human tissue [23].

miR-122 is liver-specific and the most abundant miRNA in

the liver [24]. In our rats, concentrations of miR-122a in the

liver (Fig. 3) and cholesterol in plasma (Fig. 1B) were signifi-

cantly lower in the VE� than in the VE+group. Esau and

co-workers [10] used antisense oligonucleotide inhibition to

specifically inhibit miR-122 in mice, which resulted in signifi-

cantly increased hepatic concentrations of 108 mRNA related

to lipid metabolism and significantly reduced plasma choles-

terol and triacylglycerol concentrations. A comparable experi-

ment recently supported the finding that cholesterol

concentrations are only weakly reduced upon targeted inhibi-

tion of miR-122, although a large number of genes related to

lipid metabolism were differentially regulated [25]. Apart from

its role in lipid metabolism, miR-122 was down-regulated in

rodent and human hepatocellular carcinomas [11] and is

thought to play a critical role in liver development [26]. Shan

and colleagues demonstrated that inactivation of miR-122 by

antagomir 122, a chemically synthesized oligonucleotide with

sequence complimentary to miR-122, resulted in decreased

Bach-1 and increased HO-1 mRNA concentrations [27].

Bach-1 is a repressor of the redox-sensitive transcription factor

nuclear factor erythroid 2-like 2 (Nrf2), which controls HO-1

expression [28]. In agreement, HO-1 mRNA as well as protein

concentrations were increased in our VE-deficient rats (Fig. 4).
Because oxidative stress is known to cause Nrf2 activation [29],

the induction of HO-1 expression in our rats might also have

occurred by a miR-122 independent mechanism.

VE-depletion in our rats caused significant, but relatively

weak changes in miR-122a when compared to targeted inhibi-

tion [10,25]. In fact, dietary factors are not expected to exert

drastic effects on miRNA expression. Nevertheless, even small

changes in hepatic miRNA expression over a prolonged period

may be of biological significance.

In our study, miR-125b was significantly down-regulated in

the VE� as compared to the VE+ animals (Fig. 3). A role for

miR-125b in cancer development has been suggested because

miR-125b was down-regulated in human prostate cancer tis-

sues [12,13], lung cancer cell lines [30], breast cancer [31],

and in squamous cell carcinoma of the tongue [32]. Shi and

colleagues [33], on the other hand, found over-expression of

miR-125b in prostate cancer cell lines and prostate cancer sam-

ples. Retroviral infection of the breast cancer cell line SKBR3

with constructs expressing 125b resulted in ca. 35% suppres-

sion of the oncogenic proteins ERBB2 and ERBB3 at the tran-

script as well as protein levels, and the cells exhibited reduced

migration and invasion capacities [34]. A role of miR-125b in

inflammation is supported by a study that identified TNFa as a

direct target of miR-125b. A decrease of miR-125b resulted in

increased TNFa production and inflammation in LPS stimu-

lated macrophages [35]. Thus, the reduced miR-125b levels ob-



Fig. 3. Effects of dietary VE on miR-122a and miR-125b concentra-
tions in rat livers. Values are mean ± S.E.M., n = 8. *P < 0.05,
***P < 0.0001.

Fig. 4. Effects of dietary VE on (A) HO-1 mRNA concentration
(values are mean ± S.E.M., n = 8, **P < 0.001) and (B) protein levels
of HO-1 and b-actin (loading control). Western blots of two
representative animals per group are shown.
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served in our VE-deficient rats may be associated with an en-

hanced inflammatory response due to VE-deficiency, as previ-

ously described [36,37].

In conclusion, in rats fed a VE-depleted diet for 6 months,

VE-deficiency resulted in reduced concentrations of miR-

122a and miR-125b, which may play an important role in lipid

metabolism, carcinogenesis, and inflammation. Thus, the gene

regulating properties of aT may be, at least partly, mediated by

changes in miRNA levels.
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