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Abstract

Self-similarity properties of the coe�cient patterns of the so-called m-Carlitz sequences of
polynomials are considered. These properties are coded in an associated fractal set – the rescaled
evolution set. We extend previous results on linear cellular automata with states in a �nite �eld.
Applications are given for the sequence of Legendre polynomials and sequences associated with
the zero Bessel function. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has been observed that the patterns representing the time evolution of many cel-
lular automata starting with a �nite initial con�guration exhibit a fractal (self-similar)
structure [25]. Willson proposed a rescaling procedure of the time evolution pattern
which associated with every linear cellular automata with states in the ring of integers
modulo a prime power, a compact set [23]. It was called later on rescaled evolution set
[9]. Fractal properties of the rescaled evolution set reect properties of the evolutions
patterns.
The problem of describing this properties was considered in [24,21] and the ref-

erences. In [9], the authors addressing the same problem introduced the class of
m-Fermat cellular automata and showed that for any m-Fermat cellular automata start-
ing with a �nite initial condition there exists a rescaled evolution set. Furthermore,
the self-similarity structure of the rescaled evolution set of an m-Fermat automaton is
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described by a hierarchical iterated function system, or generated by an appropriate
matrix substitution.
Among others, Bondarenko [5] and Sved [20], observed that many classical num-

ber sequences modulo m also exhibit certain self-similarity features. Using an idea
from Hasseler, Peitgen and Skordev [9] the fractal structure of Gaussian binomial
coe�cients and the Stirling numbers of the �rst and second kind modulo a prime
power was described in [14] . Earlier this was done for the binomial coe�cient
modulo a prime power with a di�erent method in [10]. The basic idea is to con-
sider these classical number sequences as orbits of (time dependent) cellular automata.
For all number tables under investigation it turns out that the underlying cellular au-
tomata are linear automata with the m-Fermat property. Therefore, a rescaled evo-
lution set exists and thus explains the observed self-similarities in the number table
itself.
In this paper, we study a special type of time dependent linear cellular automata,

for which there exist a rescaled evolution set. To this end, we need a generalization
of the m-Fermat property which is closely connected with the Lucas property, cf.
[17].
It was observed by I. Schur that the sequence of Legendre polynomials modulo an

odd prime number has a property similar to the Lucas property [22,2] and the references
there. This congruence is called Schur congruence for Legendre polynomials.
Carlitz generalized this congruence introducing m-Carlitz sequences of polynomials

[6] (the name was introduced in [2]). The notion of m-Carlitz sequences is the proper
generalization of the m-Fermat property.
In this note, we associate with every m-Carlitz sequence of polynomials a rescaled

evolution set. This set is usually a fractal. The self-similarity structure of these sets is
deciphered with an appropriate hierarchical iterated function system which is generated
by a matrix substitution.
Several examples illustrate the general result. In particular, rescaled evolution sets

for the sequence of Legendre polynomials modulo an odd prime number and the Carlitz
sequences of polynomials associated with the Bessel function J0(X ).

2. m-Carlitz sequences of polynomials

Let m be a natural number ¿2. With Q(m) we shall denote the rationals

Q(m) =
{a
b
: a ∈ Z; b ∈ N; gcd(m; b) = 1

}
:

Note that Q(m) is a commutative ring.

De�nition 1. A sequence of polynomials R= (Rn(X ))n¿0; Rn(X ) ∈ Q(m)[X ] is called
m-Carlitz sequence (or a sequence with the m-Carlitz property) if

• R0(X ) = 1; and
• Rnm+u(X ) ≡ Rn(Xm)Ru(X ) (modm); n ∈ N; u ∈ {0; : : : ; m− 1}.

for m ∈ N; m¿2.
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It follows from the de�nition that

Rn(X ) ≡ Rns(Xm
s
) : : : Rn1 (X

m)Rn0 (X ) (modm)

holds for n= nsms + · · ·+ n1m+ n0; nj ∈ {0; : : : ; m− 1}; 06j6s.

Remark 1. 1. In [2], the authors introduce a more general notion of m-Carlitz se-
quences. The sequences we shall consider here are called simple m-Carlitz sequences.
2. Let m¿2 be a natural number and let R0(X ) = 1; Rj(X ) ∈ Q(m)[X ]; 06j6m− 1

be polynomials. Then these polynomials induce a unique m-Carlitz sequence by setting

Rn(X ) = Rns(X
ms) : : : Rn1 (X

m)Rn0 (X )

for n= nsms + · · ·+ n1m+ n0, nj ∈ {0; : : : ; m− 1}; 06j6s.
3. Linear cellular automata with the m-Fermat property generate particular examples

of m-Carlitz sequences of polynomials. Let R(X ) ∈ Q(p)[X ] and let p be a prime
number. The polynomials Rj(X ) = R(X ) j; 06j6p − 1 generate a unique p-Carlitz
sequence. This sequence is the orbit of 1 w.r.t. linear cellular automaton corresponding
to the polynomial R(X ), e.g. [1].
4. Let p1; : : : ; ps be prime numbers and assume that R( j) = (R(j)n (X ))n¿0 is a

pj-Carlitz sequence for 06j6s. Then the sequence (Rn(X ))n¿0 de�ned by

Rn(X ) =
s∑
i=1

p1 : : : pi−1pi+1 : : : psR(i)n (X ) + p1 : : : psQ(X )

is a pj-Carlitz sequence for all pj; 06j6s and all Q(X ) ∈ Z[X ]
5. The Legendre polynomials provide another example of a Carlitz-sequence. One

possible de�nition of the Legendre polynomials P = (Pn(X ))n¿0 is to be the unique
solution of the recurrence relation

(n+ 1)Pn+1(X ) = (2n+ 1)XPn(X )− nPn−1(X ); n¿1

with the initial condition P0(X ) = 1; P1(X ) = X , [15, p. 46].
For a given odd prime number we consider the Legendre polynomials as an element

of Q(p)[X ]. By [15, p. 44], we obtain

Pn(X ) =
1
2n

bn=2c∑
v=0

(−1)v
(n
v

)(2n− 2v
n− 2v

)
xn−2v

a p-Carlitz sequence. A property discovered by Schur, and called Schur congruence
for Legendre polynomials [22,6]. For a simple proof of this congruence see [2].
6. In [17], McIntosh introduced and considered number (and polynomial) sequences

satisfying a property which he called Lucas Property (LP) or Double Lucas Property
(DLP).
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De�nition 2. A sequence r : N × N → Q(p) has the p-Lucas property if it satis�es
the following conditions.

• r(m; n) ≡ 0 (modp) for m¿n and 06n6p− 1.
• r(m; n) ≡ r(ms; ns) : : : r(m0; n0) (modp) for m= msps + · · ·+ m1p + m0 and n=
nsps + · · ·+ n1p+ n0, where mj; nj ∈ [p]; 06j6s, and at least one of ms or ns
is di�erent from zero.

Because of r(m; n) ≡ 0 (modp) for m¿n it follows that the sequence of polyno-
mials R= (Rn(X ))n¿0 de�ned as Rn(X ) =

∑
m r(m; n)X

m is a p-Carlitz sequence.
The converse is not true. The coe�cients (q(m; n))m;n¿0 of a given p-Carlitz se-

quence of polynomials

Q= (Qn(X ))n; Qn(X ) =
∑
m

q(m; n)Xm

do not necessarily form a p-Lucas sequence.
If deg Qj6p−1 holds for all 06j6p−1, then the double sequence (q(m; n))m;n¿0

forms a sequence with p-Lucas property.
7. More examples for and properties of m-Carlitz sequences of polynomials can be

found in [2].

3. Rescaled evolution set

In this section, we develop a graphical representation of and a proper rescaling
procedure for p-Carlitz sequences of polynomials. The approach is the same as the
one developed for cellular automata in [9,11].
The basic idea is to associate a compact subset in R2 – rescaled evolution set –

with a p-Carlitz sequence of polynomials. In general, this compact set is a fractal.
The self-similarity structure of the rescaled evolution set is encoded by a hierarchical
iterated function system.
Let �c([p]) be the set of all sequences a : Z → [p], where [p] = {0; : : : ; p − 1},

with compact support, i.e., Card{m: m ∈ N; a(m) 6= 0}¡∞. By 0, we denote the zero
sequence and �∗

c ([p]) = �c([p]) \ {0}.
With (H(R2); h) we denote the space of nonempty compact subsets of R2 equipped

with the Hausdor� metric h which is induced by the maximum norm on R2, e.g., [8,7].
Let I={(x; y): x; y ∈ [0; 1]} denote the unit square, then I(n; m)={(x; y)+(n; m): x; y ∈
[0; 1]} with n; m ∈ N denotes the translated unit square.

De�nition 3. The map G : �∗
c ([p])→ H(R2), de�ned by

G(a) =
⋃

{I(m; 0)): a(m) 6= 0}

is called graphical representation of the sequence a.
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Remark 2. 1. The choice of the graphical interpretation is not important. Another
natural graphical representation is

G∗(a) = {(m; 0): a(m) 6= 0};
where a 6= 0. We could and shall use also a more general graphical representation.
Let Kj; j = 1; : : : ; p − 1 be a nonempty compact subsets in R2. Then a graphical
representation GK1 ;:::;Kp−1 is de�ned by

GK1 ;:::;Kp−1 (a) =
⋃

{(m; 0) + Kj: a(m) = j};
where a 6= 0.
2. Let R(X )=

∑∞
n=0 rnX

n be a polynomial with coe�cients in Q(m), then the sequence
of coe�cients of the polynomial R(X )modp can be considered as an element of
�∗
c ([p]). The graphical representation or R(X ) is de�ned as the graphical representation
of its sequence of coe�cients modulo p:

G(R(X )) = G((rnmodp)n¿0):

We say that the sequence r = (r(m; n))m;n¿0 is generated by a p-Carlitz sequence of
polynomials R= (Rn(X ))n¿0 if

Rn(X ) ≡
∑
m

r(m; n)Xm (modp)

holds for all n ∈ N.

De�nition 4. Let R = (Rn(X ))n¿0 be a p-Carlitz sequence of polynomials and r =
(r(m; n)modp)m;n¿0 the double sequence associated with it. The set

Xk(R) =
pk−1⋃
n=0

(G(Rn(X )) + (0; n))

is called the kth graphical representation of R (modp).

Proposition 1. Let R = (Rn(X ))n¿0 be p-Carlitz sequence of polynomials. Then the
sequence(

1
pk
Xk(R)

)
k¿0

converges in the space (H(R2); h).

Proof. The proof follows the same lines as the proof of Theorem 4:5 in [9]. It is
su�cient to prove that

h(Xk(R);
1
p
Xk+1(R))6C;

where C =max{deg Rj(X ): 06j6p− 1}. This implies that the sequence is a Cauchy
sequence and therefore convergent, since (H(R2); h) is a complete metric space [8,7].
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We have to show that

Xk(R)⊂
(
1
p
Xk+1(R)

)
C
;

1
p
Xk+1(R)⊂(Xk(R))C;

where (M)C = {(x; y): (x; y) ∈ R2; dist((x; y); M)¡C} for M ⊂R2 (C-neighborhood
of the set M in R2).
Let (m; n) ∈ Xk(R), i.e., r(m; n) 6≡ 0 (modp) and 06n6pk − 1. Then the p-Carlitz

property of the sequence R implies Rpn(X ) ≡ Rn(Xp) (modp) and therefore r(pm;pn)
6≡ 0 (modp), and 06pn6pk+1 − p6pk+1 − 1, i.e., (pm;pn) ∈ Xk+1(R). In other
words,

Xk(R)⊂
(
1
p
Xk+1(R)

)
1
⊂
(
1
p
Xk+1(R)

)
C

which proves the �rst inclusion.
For the second inclusion, we consider (m; n) ∈ Xk+1(R), i.e., r(m; n) 6≡ 0 (modp)

and 06n6pk+1 − 1. Let n= n′p+ u; 06u6p− 1. Then
Rn(X ) ≡ Rn′(Xp)Ru(X ) (modp)

which implies

r(m; n) ≡
∑
s

r(sp; n′p)r(sp; u) (modp);

where the summation is over all s with m−degRu(X )6s6m. Since r(n; m) 6≡ 0 (modp)
there is at least one s satisfying the above condition and such that r(sp; n′p) 6≡
0 (modp). Then (s; n′) ∈ Xk(R) and dist(1=p(m; n); (s; n′))6(1=p)degRu(X ). Which
gives the second inclusion.

We call the limit of the sequence

X∞(R) = lim
k→∞

1
pk
Xk(R)

the rescaled evolution set of the p-Carlitz sequence R.

Remark 3. 1. The proposition does not depend on the graphical representation.
2. Figs. 1–3 represent some rescaled evolution sets of p-Carlitz sequences. All �g-

ures exhibit the simplest self-similarity features, namely the rescaled evolution set is
generated by a iterated function system. In general rescaled evolution sets have a more
complex self-similarity structure. For other examples of rescaled evolution sets of linear
cellular automata see [9,13].
3. Let R be a p-Carlitz sequence R and X∞(R) its associated rescaled evolution set.

Since in most cases the rescaled evolution set is a fractal set we are interested in the
box-counting dimension (see e.g. [8]) of X∞(R). Let l ∈ N; s ∈ Z. We call a l-block
b ∈ [p]l s-accessible, or accessible if s=1, w.r.t.p-Carlitz sequence if there exist m; n ∈
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N with (r(m; n); r(m+ s; n); : : : ; r(m+ s(l− 1); n))= b, where r= (r(m; n)modp)m;n¿0
denotes the associated double sequence of R.
Let k ∈ N and let s; l ∈ N then the set

Xk(R; l; s) =
⋃
m;n

{
I(m; n): (r(m; n); r(m+ s; n); : : : ; r(m+ s(l− 1); n)
6= (0; : : : ; 0); 06t6pk − 1

}

is called the (l; s) representation of level k (w.r.t.R).
For an s-accessible l-block b the set

Xk(R; b; s) =
⋃{

I(m; n): (r(m; n); r(m+ s; n); : : : ; r(m+ s(l− 1); n) = b;
06n6pk − 1

}

is called the (s; b) representation of level k (w.r.t.R).
Again, we consider the rescaled sequences of the (l; s) representation of level k and

(s; b) representation of level k, respectively, and we obtain:
(a) The sequence(

1
pk
Xk(R; l; s)

)
k¿0

converges to the rescaled evolution set X∞(R).
(b) The sequence(

1
pk
Xk(R; b; s)

)
k¿0

has a limit X∞(R; b; s).
The �rst assertion is an immediate consequence of Proposition 1 and an appropriate

choice of the graphical representation, which is de�ned as

Gs(a) =
⋃
m

{I(m; 0): a(m+ s) 6= 0}:

The second assertion is essentially Lemma 5:2 in [12]. In general, the limit X∞(R; b; s)
depends on the choice of the block b. In [12], Theorem 4 shows that for p-state linear
cellular automata with p a prime number the limit is independent of the choice of b
and therefore equal to the rescaled evolution set.
There are several ways to compute the box-counting dimension of X∞(R). We �x

l¿1 and de�ne

Nk(R; l) = Card{(m; n): (r(m; n); r(m+ 1; n); : : : ; r(m+ l− 1; n))
6= (0; : : : ; 0); 06t6pk − 1}

which is equal to the number of black squares in the (l; 1) representation of level k.
Then the box-counting dimension of the rescaled evolution set is given by

lim
k→∞

logNk(R; l)
k logp

= dimB X∞(R):

In Section 7 we shall show that the limit exists and, furthermore, we present a formula
for computing the box-counting dimension.
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The existence of the limit yields that the growth rate of Nk(R; l) is proportional to
pDk where D = dimB X∞(R). Moreover, the growth rate of the number of accessible
l-blocks of a given p-Carlitz sequence is independent of l, see Corollary 3 in [12].

4. p-automaton corresponding to a p-Carlitz sequence

In this section, we study the double sequence generated by a p-Carlitz sequence
under the aspect of automaticity. A (two-dimensional) p-automaton provides a device
to compute the value of r(n; m) modulo p from a knowledge of the p-adic expansion
of n and m, respectively, [3,19].
Let R = (Rn(X ))n¿0 be a p-Carlitz sequence of polynomials and r = (r(m; n)

modp)m;n¿0 the double sequence associated with it.
We start with the de�nition of the two-dimensional p-automaton, or equivalently a

(p× p)-substitution, A(R) associated with R.
Let d=max{Rj(X ): 06j6p− 1}. The p-automaton Ap(R) has
• state alphabet Zdp, where Zp = Z=pZ. The elements of Zdp are denoted as (a−d+1;
a−d+2; : : : ; a−1; a0).

• initial state e0 = (0; : : : ; 0; 1),
• output alphabet Zp.
• output map � : Zdp → Zp which is de�ned as

�(a−d+1; : : : ; a0) = a0:

What is left is the de�nition of the input maps

(i; j) : Zdp → [p]d; i; j ∈ Zp:
For that purpose we introduce some notations. Let Zp[[X−1]] denote the Laurent series
with coe�cients in Zp. We de�ne the d-block map bd : Zp[[X−1]]→ Zdp as∑

j∈Z
ljX j 7→ (l−d+1; : : : ; l0):

The map bd is a linear map of Zp-linear spaces or �nitely generated free Zp-modules.
By ei, i= 0; : : : ; d− 1, we denote the ith basis vector of the linear space Zdp. We then
have

ei = bd(X−i)

for i = 0; : : : ; d− 1.
With the help of the d-block map we are in a position to de�ne the input maps of our

automaton Ap(R). The input maps (i; j) : Zdp → Zdp will be linear maps and therefore
it is su�cient to de�ne (i; j) : Zdp → Zdp only on the elements el, l= 0; : : : ; d− 1. We
set

(i; j):el ≡ bd(X−lp−iRj(X )) (modp)

for i; j ∈ Zp, 06l6d− 1.
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The input maps are extended to the maps (m; n) : Zdp → Zdp, m; n ∈ N with

(m; n):a ≡ (m0; n0)(m1; n1) : : : (ms; ns):a = r(m; n) (modp); a ∈ Zp
for

m= msps + · · ·+ m1p+ m0; n= nsps + · · ·+ n1p+ n0; mj; nj ∈ [p]:
Observe that e0 is a �xed point of the map (0; 0).

Proposition 2. Let R= (Rn(X ))n¿0 be a p-Carlitz sequence of polynomials and r =
(r(m; n)modp)m;n¿0 the double sequence generated by it. The p-automaton Ap(R)
generates the sequence r, i.e.;

�((m; n):e0) ≡ r(m; n) (modp); m; n ∈ N:

Proof. As in the proof of Theorem 3 given in [1] it is su�cient to show that

(m; n):e0 ≡ bd(X−mRn(X )) (modp)

holds for all m; n ∈ N.
For m= n= 0 there is nothing to show.
Let n = nsps + · · · + n1p + n0 and m = msps + · · · + m1p + m0 denote the p-adic

expansion of n and m, respectively. Furthermore, let us assume that at least one of the
digits ms, ns is di�erent from zero. The proof proceeds by induction with respect to s.
For s = 0 we obtain the de�nition of the input maps (i; j). Let us now assume that
assertion is true for all numbers of the set {0; : : : ; ps−1− 1} and that m; n are given by
their p-expansions above. Then

(m; n):e0 ≡ (m0 + m′p; n0 + n′p):e0 = (m0; n0):(m′; n′):e0

≡ (m0; n0):bd(X−m′
Rt′(X ));

by the induction hypothesis;

≡
∑
u

r(m′ − u; n′)(m0; n0):eu

≡
∑
u

r(m′ − u; n′)bd(X−up−m0Rn0 (X ))

≡
∑
u

r(m′p− up; n′p)bd(X−up−m0Rn0 (X ));

from the p-Carlitz property;

≡
(∑

u

(m′p− up; n′p)r(up+ m0 + j; n0)
)
j=−d+1;:::;0

≡ (r(m− d+ 1; n); : : : ; r(m; n)) (modp);
as d¿degRj(X ); 06j6p− 1:
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Remark 4. 1. In other words, Proposition 2 states that the sequence (r(m; n)
modp)m;n¿0 associated with a p-Carlitz sequence is p-automatic, in the sense of
Allouche and Mendes France [3] and Salon [19].
2. A di�erent proof of the above proposition is given in [2].

5. Self-similarity structure of the rescaled evolution set of a p-Carlitz sequence of
polynomials

In this section, we shall describe the self-similarity structure of the rescaled evolution
set corresponding to a p-Carlitz sequence R=(Rn(X ))n¿0. In the previous section, we
have seen that the double sequence associated to a p-Carlitz sequence is p-automatic.
The two-dimensional p-automaton Ap(R) associated to a p-Carlitz sequence R yields
a (p× p) substitution (see [19,9,11,13]) which is the appropriate tool to describe the
rescaled evolution set.
We denote this substitution by

�p = �p(R) : Zdp → (Zdp)
[p]×[p]

a 7→ ((i; j):a)06i; j6p−1:

The substitution �p induces a map

�p : �(N2; Zdp)→ �(N2; Zdp);

where �(N2; Zdp) = {!: ! : N2 → Zdp}, as follows:
�p(!)(m; n) = (m0; n0):!(m′; n′);

where m= m′p+ m0; n= n′p+ n0; m0; n0 ∈ [p]; m′; n′ ∈ N.
This map may be interpreted in the following way: the elements ! of �(N2; Zdp) are

(in�nite) matrices with entries in Zdp. The map �p replaces each entry !(m; n) by the
p× p-matrix ((i; j):(!(m; n)))i; j.
Now we shall introduce as in [9] a geometrical object connected a nonzero element

! with compact support. Denote by �∗
c (N2; Zdp) the set of all nonzero elements of

�(N2; Zdp) with compact support.

De�nition 5. The map

g : �∗
c (N2; Zdp)→ H(R2)

with

g(!) =
⋃
m;n

{I(m; n): !(m; n) 6= 0}:

is called the graphical representation of !.

The remarks following De�nition 3 apply also. We consider the sequence of graphical
representations associated with the iterations of the substitution �p.
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Lemma 1. Let ! ∈ �∗
c (N2; Zdp) such that �p(!)(0; 0) = !(0; 0); then the sequence(

1
pn
g(�np(!))

)
n¿0

converges in the space (H(R2); h).

Proof. The assertion follows from
1
pn+1

g(�n+1p (!))⊂ 1
pn
g(�np(!))

for all n ∈ N.

We denote this limit by Ap;∞(!) and call it rescaled evolution set of ! w.r.t. the
substitution �p.
Now we shall describe the rescaled evolution set X∞(R) of a p-Carlitz sequence of

polynomials.
Let ei be the ith basis vector in Zdp and �i the element of �c(N2; Zdp) by �i(0; 0)= ei

and �i(m; n) = 0 otherwise for 06i6d; d=max{degRj(X ); 06j6p− 1}.

Proposition 3. Let R=(Rn(X ))n¿ be a p-Carlitz sequence of polynomials and �p its
associated matrix p × p-substitution. Then the rescaled evolution set of R is given
by

X∞(R) =
d−1⋃
i=0

{Ap;∞(�i) + (i; 0)}:

Proof. Let � ∈ �∗
c (N2; Zdp) be de�ned by �(m; n) = 0 if n= 0 or for n= 0, m¿d and

�(m; 0) = em if m6d− 1. Then from the de�nition it follows that

Ap;∞(�) =
d−1⋃
m=0

(Ap;∞(�m) + (m; 0))

with

Ap;∞(�) = lim
n→∞ g(�np(�)):

Now we shall prove that

X∞(R) =Ap;∞(�):

The last equality follows from

(m; n):e0 = �kp(�)(m; n)

which we prove next. Let m=msps+ · · ·+m1p+m0 and n= nk−1ps+ · · ·+ n1p+ n0
be the p-adic expansion of n and m, respectively.
If s6k − 1 then we have
(m; n):e0 = �kp(�0)(m; n):
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If s¿k, then for t = s− k we have
(m; n):e0 = (m0; n0) : : : (mk−1; nk−1)(mk; 0) : : : (ms; 0):e0:

For m̂= msps−k + · · ·+ mk+1p+ mk we have (m̂; 0):e0 = emk which gives
(m; n):e0 = �kp(emk )(m̂; n)

and proves our assertion.

Remark 5. As in [9,11] the rescaled evolution set X∞(R) is described by a hierarchical
iterated function system (HIFS) de�ned by the (p×p)-substitution �p(R). To explain
the construction we begin with an introduction of HIFS, which is adapted to our
purposes, for a more general introduction see [4,16,18].
Let (Z∗

p)
d be the set of all nonzero elements of Zdp. Furthermore, we consider the

contracting mappings f�;� of the unit square I de�ned by

f�;�(X; Y ) =
(
X + �
p

;
Y + �
p

)
;

where �, � ∈ [p].
With a pair (a; b) ∈ (Z∗

p)
d × (Z∗

p)
d we associate a subset J (a; b)⊂ [p]2, which may

be the empty set.
Let N = pd − 1 = Card(Z∗

p)
d. The N -fold product H(I)N equipped with maximum

metric

h∞(C ;D) = max{h(Ca; Db): a; b ∈ (Z∗
p)
d};

where C = (Ca)a, D = (Da)a, is a complete metric space [7].
A mapping F :H(I)N → H(X )N is called p-adic HIFS if F satis�es:
• For all a, b ∈ (Z∗

p)
d there exists a set J (a; b)⊂ [p]2 such that the a-component

F(C)a of F(C) is of the form

F(C)a =
⋃
b

Fab(Cb)

and nonempty.
• The maps Fab :H(I)→ H(I) ∪ {∅} which are de�ned as

Fab(A) =
⋃

�;�∈J (v;w)
f�;�(A); A ∈ H(I):

A map F that is a p-adic HIFS is a contraction map and therefore it has a unique
�xed point A= (Aa)a ∈ H(I)N , [4,16,18].
Given a p-Carlitz sequence R we can associate an HIFS to it by setting

J (a; b) = {(i; j): (i; j):a = b; i; j ∈ [p]};
where (i; j) are the input maps of the automaton A(R). We denote this HIFS by
Fp(R) and its �xed point by A(R)=(A(R)a). Similar arguments as in [12] show that

Ap;∞(a) = A(R)a; a ∈ (Z∗
p)
d:
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6. Rescaled evolution sets of selected Carlitz sequences

In this section, as an application of the previous sections, we study �rst the Legendre
polynomials as a p-Carlitz sequence. We present one image of the rescaled evolution
for p = 3: Moreover, we state the associated (p × p)-substitutions and compute the
box-counting dimension of the rescaled evolution set.
Next, we study the substitutions de�ned by a Carlitz sequence of polynomials that

are closely related to the Bessel function J0(X ).

Lemma 2. Let p= 2s+ 1 be a prime number and let P= (Pj(X ))j ∈ N denote the
Legendre polynomials. Then we have
(1)

degPj(X ) = j; 06j6s;

degPs+j(X ) = s− j; 16j6s:

(2) For 06j6s and j an even number

rp(2m; j) 6= 0modp; for 06m6
j
2
;

rp(2m+ 1; j) = 0modp; otherwise:

For 06j6s; j and j an odd number

rp(2m+ 1; j) 6= 0modp; for 06m6
j − 1
2
;

rp(2m; j) = 0modp; otherwise:

(3) For 16j6s and s+ j an even number

rp(2m; s+ j) 6= 0modp; for 6m6
s− j
2
;

rp(2m+ 1; s+ j) = 0modp; otherwise:

For 16j6s such that s+ j is an odd number

rp(2m+ 1; s+ j) 6= 0modp; for 6m6
s− j − 1

2
;

rp(2m; s+ j) = 0modp; otherwise:

The proof is a consequence of Lucas’ Lemma and some easy computations.
If we consider the sequence Legendre polynomials modulo p, we simply write Pp.

Proposition 4. Let p=2s+1 be a prime number. The rescaled evolution set X∞(Pp)
of the sequence of Legendre polynomials modulo p is the attractor of the iterated
function system given by

Fp(P) = {I :fi;j; (i; j) ∈ M (Pp)};
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where M (calPp) = {(i; j): j = i + 2k; 06i6s− k; 06k6s} and

fi;j(X; Y ) =
(
X + i
p

;
Y + j
p

)
; (X; Y ) ∈ I:

The box-counting dimension of the rescaled evolution set is

dimB X∞(Pp) =
log(s+ 1)(s+ 2)=2

logp
:

Proof. The HIFS corresponding to the matrix p ×p-substitution �p(P) is in fact an
iterated function system (IFS). It is described by the preceding Lemma. The formula
for the box-counting dimension is then a consequence of the de�nition of the IFS.
Moreover, we have that the Hausdor� dimension of the rescaled evolution set is equal
to the box-counting dimension [7]. Since the IFS Fp(P) satis�es the open set condition
(this holds for all p-adic HIFS [18]). Then the formula for the box-counting dimension
follows from the Moran–Hutchinson formula about the Hausdor� dimension (in this
case also the box-counting dimension) of the attractor of the IFS Fp(P) [8,7].

Corollary 1. The growth rate of the number of nontrivial coe�cients modp of the
sequence of Legendre polynomials is

lim
k→∞

logN (Pp; k)
k logp

=
log (s+ 1)(s+ 2)=2

logp
:

6.1. Legendre polynomials modulo 3

The sequence of Legendre polynomials P3 = (Pn(X )mod 3)n¿0 is generated by the
polynomials P0(X ) = 1, P1(X ) = X , P2(X ) = 1 ∈ F3[X ]. The matrix substitution �3 =
�3(P) : F3 → F[3]×[3]3 (here d=max{degPj(X )mod 3: 06j62}= 1) is given by

�3(u) = u

∣∣∣∣∣∣
1 0 0
0 1 0
1 0 0

∣∣∣∣∣∣
and u ∈ {0; 1; 2}]. The rescaled evolution set X∞(P3) is the attractor of the IFS
(iteration function system {I; fi; j: (i; j) ∈ M (P3)}) where (see Fig. 1)

fi;j(X; Y ) =
(
X + i
3

;
Y + j
3

)
; (X; Y ) ∈ I

and M (P3) = {(0; 0); (1; 1); (0; 2)}.

6.2. Legendre polynomials modulo 5

The sequence of Legendre polynomials P5 = (Pn(X )mod 5)n¿0 is generated by the
polynomials P0(X ) = 1, P1(X ) = X , P2(X ) = 2 + 4X 2, P3(X ) = X , P4 = 1 ∈ F5[X ].
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Fig. 1. Rescaled evolution set of the Legendre polynomials mod 3.

The matrix substitution �5 =�5(P) : F25 → (F25)[5]×[5] (here d=max{degPj(X )mod 5 :
06j64}= 2) is given by

�5(01) =

∣∣∣∣∣∣∣∣∣∣

01 10 00 00 00
00 01 10 00 00
02 20 04 40 00
00 01 10 00 00
01 10 00 00 00

∣∣∣∣∣∣∣∣∣∣
and �5(10)=�5(00)=0, �5(�; �)=��5(01). The rescaled evolution set X∞(P5) is the
atractor of the IFS (iteration function system) {I; fi; j: (i; j) ∈ M (P5)} where

fi;j(X; Y ) =
(
X + i
5

;
Y + j
5

)
; (X; Y ) ∈ I

and M (P5) = {(0; 0); (1; 1); (0; 2); (2; 2); (1; 3); (0; 4)}.
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6.3. Legendre polynomials modulo 7

The sequence of Legendre polynomials P7 = (Pn(X )mod 7)n¿0 is generated by the
polynomials P0(X )=1, P1(X )=X , P2(X )=3+5X 2, P3(X )=2X+6X 3, P4(X )=3+5X 2,
P5(X ) = X , P6(X ) = 1 ∈ F7[X ]. The matrix substitution �7 = �7(P) : F37 → (F37)[7]×[7]
(here d=max{degPj(X )mod 7: 06j66}= 3) is given by

�7(001) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

001 010 100 000 000 000 000
000 001 010 100 000 000 000
003 030 305 050 500 000 000
000 002 020 206 060 600 000
003 030 305 050 500 000 000
000 001 010 100 000 000 000
001 010 100 000 000 000 000

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and �7(010)= �7(100)= �7(000)= 0, �7(i; j; k)= k�7(001). The rescaled evolution set
X∞(P5) is the attractor of the IFS {I; fi; j: (i; j) ∈ M (P7)} where

fi;j(X; Y ) =
(
X + i
7

;
Y + j
7

)
; (X; Y ) ∈ I

and M (P7) = {(0; 0); (1; 1); (0; 2); (2; 2); (1; 3); (3; 3); (0; 4); (2; 4); (1; 5); (0; 6)}.

6.4. Legendre polynomials modulo 11

The sequence of Legendre polynomials P11 = (Pn(X )mod 11)n¿0 is generated by
the polynomials P0(X )=1, P1(X )=X , P2(X )=5+7X 2, P3(X )=4X +8X 3, P4(X )=
10+10X 2 +3X 4, P5(X )=6+5X 3 +X 5, P6(X )=10+10X 2 +3X 4, P7(X )=4X +8X 3,
P8(X ) = 2+ 7X 2, P9(X ) =X , P10(X ) = 1 ∈ F11[X ]. The matrix substitution is �7(P) :
F511 → (F511)[11]×[11] (here d = max{degPj(X )mod 7: 06j610} = 5). For simplicity
we shall give a nontrivial restriction of the substitution �11: F11 → F[11]×[11]11 which
generates the double sequence associated with Legendre polynomials mod 11:

�11(u) = u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
2 0 7 0 0 0 0 0 0 0 0
0 4 0 8 0 0 0 0 0 0 0
10 0 10 0 3 0 0 0 0 0 0
0 6 0 3 0 1 0 0 0 0 0
10 0 10 0 3 0 0 0 0 0 0
0 4 0 3 0 0 0 0 0 0 0
5 0 7 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;
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where u ∈ {0; : : : ; 10}. The rescaled evolution set X∞(P11) is the attractor of the IFS
{I; fi; j: (i; j) ∈ M (P11)} where

fi;j(X; Y ) =
(
X + i
11

;
Y + j
11

)
; (X; Y ) ∈ I

and

M (P11) = {(0; 0); (1; 1); (0; 2); (2; 2); (1; 3); (3; 3); (0; 4); (2; 4); (4; 4); (1; 5); (3; 5);
(5; 5); (0; 6); (2; 6); (4; 6); (1; 7); (3; 7); (0; 8); (2; 8); (1; 9); (0; 10)}:

6.5. The Bessel function J0(X )

Using the Bessel function J0(X ), Carlitz de�ned a sequence of polynomials !n(X )
with p-Carlitz property, as follows [6]. Let

J0(X ) =
∞∑
0

(−1)nX 2n
22n(n!)2

denote the power series of the Bessel function J0(X ), then

J0(2
√
XZ)

J0(2
√
Z)

=
∞∑
0

!n(X )Zn

(n!)2

de�nes a sequence of polynomials. The sequence of polynomials J3=(!n(X )mod 3)n¿0
is a 3-Carlitz sequence of polynomials. Therefore, it is generated by the polynomials
!0(X )=1; !1(X )=1+2X;!2(X )=2X +X 2 ∈ F3[X ]. The substitution associated with
this sequence of polynomials is �3(J) : F23 → (F23)[3]×[3]. For simplicity, we shall give
a nontrivial restriction of it �3 : F3 → (F3)[3]×[3] de�ned by

�3(u) = u

∣∣∣∣∣∣
0 2 1
1 2 0
1 0 0

∣∣∣∣∣∣ ;
where u ∈ {0; 1; 2}. The substitution �3 generates the double sequence (!n(X )
mod 3)n¿0. The rescaled evolution set X∞(J3), see Fig. 2, is the attractor of the
IFS {I; fi; j: (i; j) ∈ M3(J3)}, where

fi;j(X; Y ) =
(
X + i
3

;
Y + j
3

)
; (X; Y ) ∈ I; (i; j) ∈ M (J3)

with M (J3) = {(0; 0); (0; 1); (1; 1); (1; 2); (2; 2)}.
The sequence of polynomials J5 = (!n(X )mod 5)n¿0 is a 5-Carlitz sequence of

polynomials. Therefore, it is generated by the polynomials !0(X ) = 1; !1(X ) = 1
+4X;!2(X )=3+X +X 2; !3(X )=4+3X +4X 2+4X 3; !4=1+X +3X 2+4X 3+X 4 ∈
F5[X ].
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Fig. 2. Rescaled evolution set of J3 = (!n(X )mod 3)n¿0.

The substitution associated with this sequence of polynomials is �5(J) : F45 →
(F45)[5]×[5]. For simplicity, we shall give a nontrivial restriction of it �5 : F5 →
(F5)[5]×[5] de�ned by

�5(u) = u

∣∣∣∣∣∣∣∣∣∣

1 1 3 4 1
4 3 4 4 0
3 1 1 0 0
1 4 0 0 0
1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
;

where u ∈ {0; 1; : : : ; 4}, which generates the double sequence corresponding to J5.
The rescaled evolution set X∞(J5) is the attractor of the IFS {I; fi; j: (i; j) ∈

M5(J5)} where

fi;j(X; Y ) =
(
X + i
5

;
Y + j
5

)
; (X; Y ) ∈ I; (i; j) ∈ M (J5)
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Fig. 3. Rescaled evolution set of J5 = (!n(X )mod 5)n¿0.

with

M (J5) = {(0; 0); (0; 1); (0; 2); (0; 3); (0; 4); (1; 1); (1; 2);
(1; 3); (1; 4); (2; 2); (2; 3); (2; 4); (3; 3); (3; 4); (4; 4)}:

The rescaled evolution set X∞(J5) shown in Fig. 3 coincides with the rescaled
evolution set corresponding to the binomial coe�cients modulo 5, [10].

7. Growth rate of blocks in p-Carlitz sequence of polynomials

In this section, we briey discuss the growth rate of nontrivial blocks in the double
sequence which is generated by a p-Carlitz sequence of polynomials.
Let R = (Rn(X ))n¿0 be a p-Carlitz sequence of polynomials and r = (r(m; n)

modp)m;n¿0 the associated double sequence, and let X∞(R) be the associated rescaled
evolution set.
The geometrical representation of the substitution �p = �p(R) corresponding to

R is hierarchical iterated function system (HIFS [18]), which decodes not only the
self-similarity properties of the double sequence r. It gives also information about
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the growth rate of the number of nontrivial l-blocks in it. We remind the reader the
de�nition of

Nk(R; l) = Card{(m; n): (r(m; n); r(m− 1; n) : : : ; r(m− l+ 1; n)) 6=
(0; : : : 0)modp; 06n6pk − 1}:

We say that the growth rate of the nontrivial l-blocks is Dl if the limit

Dl = lim
k→∞

logNk(R; l)
k logp

exists. Denote by Dk and Dk the liminf and limsup of the above sequence. Observe that
Dk corresponding Dk are the low box-counting (dimB) and upper box-counting (dimB)
dimensions of the rescaled evolution set X∞(R) (for the box-counting dimensions see
[9]). Since this set is constructed by hierarchical iterated function system the lower- and
upper box-counting dimensions coincide and are also equal to the Hausdor� dimension
of the rescaled evolution set [8]. Therefore we have in the notations adopted

Corollary 2. The growth rate of nontrivial l-blocks in the double sequence associated
with p-Carlitz sequence of polynomials does not depend on l and is equal to the
box-counting (and Hausdor�) dimension of the rescaled evolution set:

Dp(R) = dimB X∞(Rp) = dimH X∞(R):

Remark 6. There are formulas for the box-counting (in this case equal to the
Hausdor�) dimension of the components of the attractor vector of HIFS [16,4,7]. This
general formulas are applicable since the p-adic HIFS corresponding to a p-Carlitz
sequence of polynomials satisfy the open set condition. This formula generalizes the
Moran–Hutchinson formula for the Hausdor� dimension of the attractor of IFS [8].
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