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Abstract: An algorithm is described for surface fitting over a circle by using tensor product splines which satisfy 
certain boundary conditions. This algorithm is an extension of an existing one for fitting data over a rectangle. The 
knots of the splines are chosen automatically but a single parameter must be specified to control the tradeoff between 
closeness of fit and smoothness of fit. The algorithm can easily be generalized for fitting data over any domain that can 
be described in polar coordinates. Constraints at the boundaries of this approximation domain can be imposed. 

1. Introduction 

In [4], a semi-automatic algorithm is described for surface fitting with tensor product splines. 
Besides the set of data points, the user merely has to provide a parameter S, called ‘the 
smoothing factor’, by which he can control the trade-off between closeness of fit and smoothness 
of fit. The number of knots of the spline and their position are then determined automatically in 
an attempt to take account of the behaviour of the function underlying the data. The user must 
also specify a rectangular domain on which the approximation is determined. This can be rather 
inconvenient in applications with a well specified and nonrectangular approximation domain (e.g. 
the wing of an aeroplane on which a pressure distribution has to be approximated), especially if 
constraints at the boundary are to be satisfied. 

In this paper we will therefore show how the surface fitting algorithm can be adapted for 
nonrectangular domains which can easily be described in polar coordinates. We begin by 
considering the unit disc C = {(x, v) 1 x2 +y2 Q l}. If a smooth function F(x, y) on C is 
represented in polar coordinates, i.e. f( U, u) = F( u cos u, u sin o), then this function f will 
satisfy certain boundary conditions on its domain D = {(u, u) 10 G u < 1; --71< u G T}. In 
Section 2 we derive the conditions which guarantee C2 continuity for F. How these can be 
incorporated in an elegant way, into a tensor product spline s( u, u) on D, is explained in Section 
3. In Section 4 we can then describe our adapted surface fitting algorithm. Finally in Section 5, 
we demonstrate how this algorithm can be generalized if we have an approximation domain C* 
which can be described through a smooth periodic function R(u), i.e. if f( u, u) = 
F( uR( u) cos u, uR( u) sin u) on D. We also briefly discuss how we can impose additional 
constraints for F at the boundary of C*. 

* This research was supported by the FKFO under grant 2.0021.75. 
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In Section 6, some numerical results are presented, which were obtained from a Fortran 
program based on the algorithm described. 

2. Continuity conditions 

Let F(x, y) be a smooth function with bounded derivatives on the unit disc C. Consider the 
mapping 

x=ucosu, y= u sin 0, 

O<u<l, -a<o<lT. (2.1) 

Then f(u, u) = F(x, y) is also smooth and has bounded derivatives on the rectangle D = [O, 11 x 

[ -TT, IT]. Additionally, f will satisfy some boundary conditions. It is necessary to know them 
because later they will be imposed upon a spline approximation s for f and ensure in this way 
that S(x, y) = s(u, u) is also sufficiently smooth on C. We use bicubic splines. So, we will content 
ourselves with conditions which guarantee Cz continuity. 

First of all, f must be periodic in the variable u. Also 

f(0, u)=F&, -v<u<n, (2.2) 

where we use the notation 

I;;., j = a”+(0, o)/ax’ay’. 

The existence of F,, requires that 

E(O, O)= - %(O, 7) = F,,. 

Continuity of this derivative at the origin therefore means that 

From (2.1) we easily derive that 

E(x, y) = cos #(u, u) -qy(u, u), (x, y) z (0,O). 

(2.3) 

(2.4 

(2.6) 

If we replace i3f/au and af/au (considered as functions of u) by their Maclaurin expansion 
and take account of the fact that i3f(O, u)/au = 0 as follows from (2.2), condition (2.5) then 
simply becomes 

af cos uz(O, u) -sin u $(O, u) =%(O, 0). 

From the continuity of aF/ay we obtain in a similar way that 

%(o, $77) = - $0, iIT> = F,,, 

and 

(2.7) 

(2-8) 

sin uz(O, U)+COS U- a;;u (0, u) = $4 t+ (2.9) 



P. Dierekx / Data fitting oL>er a circle 163 

Now, let 

G(u) =E(O, L’). 

Then by differentiation (2.7) and (2.9) we find twice that 

G”(o)+G(u)=O, 

so that, taking account of the conditions (2.4) and (2.8) we may conclude that 

(2.10) 

(2.11) 

(2.12) 

In a similar way, we can find from the definition of the second order partial derivatives at the 
origin, that 

(2,13) 

(2.14) 

&(OA= $&(O, 71)’ - -$(o, $Tr) = - -g (0, $4 = 2&J. (2.15) 
U 

Continuity of these derivatives yields the following differential equation 

H”‘(u)+4H’(u)=O 

for 

(2.16) 

H(o) = S(o, u). (2.17) 

We may conclude therefore that 

$(o, u) = 4.0 cos’u + F,,2 sin*u + F,,,sin 2~. (2.18) 

We have also proved that the conditions (2.2), (2.12) and (2.18) are both necessary and sufficient. 

3. Tensor product splines for the unit disc 

Consider the rectangular domain D = [0, l] X [-P, T] and the strictly increasing sequence of 

real numbers 

0 = A, <A, < * - - <A, c hg+l = 1, (3.1) 

-T=/.la</l* < *** </.lLh</lLh+i =?Tr. (3.2) 

Then the function s( U, u) is called a spline on D, of degree k in u and I in u, with knots A;, 
i= 1,2,..., g, in the u-direction and pj, j = 1, 2,. . . , h, in the u-direction if the following 

conditions are satisfied: 
(i) On any subrectangle D,,j = [hi, A,,,] x [p/, P~+~], i = 0, . . . . g; j = O,.. ., h, s(u, u) is given 

by a polynominal of degree k in u and 1 m u. 
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(ii) All derivatives a’+’ s( U, u)/au’au’ for 0 < i G k - 1 and 0 <j G I - 1 are continuous in D. 
If we introduce a number of additional knots satisfying 

x _k<X -k+,G *** <h _i GO, 1 < hg+2 < . * - < Ag+k < Xg+k+,, (3.3) 

/lL-,<p_/+I < ‘.. Gp-1 < -n, T<p/,+z< *‘* </l,,+(<p,,+l+l, (3.4) 
but which are otherwise arbitrary, every such spline on D can uniquely be expressed as 

‘b, “) = t i ci.jM;.k+,(~)NJ,,+,(u)~ (3.5) 
ix-X_ j= -( 

where Mi.k+l(u) and N,.,+,( ) u are normalized B-splines [l]. These B-splines enjoy the following 
properties 

Mi,k+i(~)=O if u<hi or ~>h~+~+,, (3.6) 

9 (3.7) 

C”i,k+ltu) E l, (3.8) 

and they can be evaluated in a very stable way using the recurrence scheme of de Boor [l] and 
Cox [2], i.e. 

Mi,l(“) = 
i 

1 if Xi<u<Xi+,, 

0 if u<hi or u>Ai+,. 

(3.9) 

(3.10) 

Analogous results apply to the B-splines Nj,,+i( u). 
From [4] we recall the conditions for s( u, u) to be a single polynomial on D, i.e. 

g 
C Ui,4Ci,j=O, q=l,2 ,..., g, j= -I, -i+l,..., h, (3.11) 

i= -k 

and 

; bj.,ci,j = 0, r=l,2 ,..., h, i= -k, -k+l,..., g, (3.12) 
j= -1 

where the coefficients ui,q and bj,, denote the discontinuity jumps in the derivatives of the 
B-splines at the interior knots, i.e. 

ui,,=~~~~l(xq+o)-~~,~)t,(xq-o), (3.13) 

bj.,=Nii:‘,,(~L,+O)-_NiI:),I(CLr-O). (3.14) 

In our application we are interested in spline functions which are periodic in the variable u. If 
we choose the boundary knots (3.4) in the following way 

~-j=~l,+l-j-2Tr, pj+h+l =pj+zTT j=l.,2 1, ,***, (3.15) 

then (see e.g. [5]) 

N-j.(+l(“)~~-j+h+l.,+l(U+2~), i= 19 29...9/. (3.16) 



P. Dierckx / Data jitting ocer a circle 

Therefore, by taking account of property (3.6) and (3.7) applied 

find that 
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to the B-splines Ni,[+,( v), we 

a!+, -Tr) = ajs(u, IT) 
avi - a”j ’ 

j=O,l )...) I-1, O<U<l, (3.17) 

if the conditions 

C,.h+l-j = C;_-j 9 i= -k, -k+l,..., g, j=l, 2 ,..., 1, (3.18) 

are imposed. In Section 2 we find the other conditions for S( x, y) = s( /x2 arctan( y/x)) to 
have continuous second order derivatives at the origin. From (2.2), (2.12) and (2.18) we know that 
there should be numbers Sj,j = a’+jS(O, 0)/8xi8_y’ such that 

s(O, “) = &J.l). (3.19) 

w, “) 
a? =S,,,co~“+S~~,sinv, -‘TI<v<~, 

aS(o, VI 

au* 
= S2,0 cos*v + SO,, sin*” + S,,, sin 20. 

(3.20) 

(3.21) 

If the boundary knots (3.3) are chosen to be coincident (A_, = . . . = A_, = 0), then (see e.g. [3]) 

Mi,k+l(“) = ‘i.-kr (3.22) 

with Si.j the Kronecker delta. Consequently, from (3.5) and (3.8), it follows that (3.19) is 
equivalent to 

c- k.j= 0.0, s j=-I h. ,.**, (3.23) 

Condition (3.20) cannot be fulfilled exactly. However, it can be satisfied approximately if we 
replace cos v and sin v by their periodic spline interpolants Co(v) and Si( v), i.e. 

co(v) = Z!Y cU,N,,,+l(“)~ (3.24) 
j= -1 

with 

CO(~~)=COS(~~), j=O, l,..., h, (3.25) 

“-j= ah+l-j, j=l,2 I, ,.“, (3.26) 

and 

analogously. 
From (3.5), (3.7) and (3.6) it follows that 

and consequently from (3.22) and (3.23) that 

a.@, v) k h 
au 

=& j~,(c-k+l.j-sO,O~~.~+~(v)~ 

(3.27) 

(3.28) 

(3.29) 
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Substituting (3.29) into (3.20) and replacing cos u and sin u by the splines (3.24) and (3.27) we 
then obtain 

C- kt1.j =~~.~+S~.~~j+~~,~~j~ j= -I ,..., h, 

where 

3i.j= (Xl/k)S;.,* 

In a similar way, replacing cos2v, sin’v and sin 2u in (3.21) 
(B-spline coefficients y,, 8, and ei) finally results in the condition 

(3.30) 

(3.31) 

by their spline interpolants 

C- k+2.j = 4l.O + (l + x2/x* I( ajsI,Cl + Sj%.l) + Yjs2*.0 + ‘is,*,2 + ‘js?,l 7 

j= -1 ,..., h, 

where 

scj = [ h,A,/k(k - l)] si,j. 

Now, if we have an odd number of knots in the u-direction such that 

h=2n-1 

and 
P~+~=P~+~T, j=O,l,..., n, 

then, analogously to (3.16), 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

~.,,+~(u)=~+,,,+,(u+IT), j= -I,..., n-l. (3.36) 

Therefore, considering the properties cos( u + 7) = - cos u, sin( u + IT) = -sin u, the B-spline 
coefficients of our spline interpolants will also be such that 

OI/+n= -Lyi, Pj+n= -Pjv Yj+n = Yjv sj+, = sj9 E~+n = 'jv 

j=-[ ,...,n - 1. (3.37) 

So, from (3.29), (3.30), (3.36) and (3.37), we can easily derive that 

wo, 4 = as(0, u + T) 
al.4 

-- 
au ’ 

-ngu<O, (3.38) 

and analogously also that 

aZs(o, u) = aZs(o, 0 + 7) - 
au2 all2 

9 _T<U<O. (3.39) 

We may conclude then that although S(x, u) has only approximately C2 continuity at the 
origin, at least this property is guaranteed for any curve S( t cos w, t sin w), - 1 < t < 1 (the 
intersection of the graph of S( x, y) with any plane x sin w + y cos w = 0). 

4. Smoothing data over the circle 

We are ready now to consider the problem of fitting a smooth function S(x, y) to data zq 
(weights wq) given at points (x,, yq), q = 1, 2,. . . , m, scattered arbitrarily over the unit disc. 
Through the inverse mapping of (2.1), i.e. 

u= x +y \i-, 0 = arctan( v/x), (x, v> E c, P-1) 
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we can determine corresponding points ( uqr uq) on the rectangle D. The problem is then reduced 
to finding a smooth tensor product spline on D such that s( uq, u4) = zq. Let us first recall the 
basic principles of the general smoothing algorithm described in [4]. Then we can indicate how it 
must be adapted to find a smoothing spline that satisfies the additional constraints (3.19)-(3.21). 
In the unconstrained case, a spline s( U, u) is determined as the solution of the following 
minimization problem: 

Minimize 

J? h I x \2 h nlh \2 

(4.2) 

subject to the constraint 

a(F)= 2 w,(z,-.Y(u,, uq))2d. 
q=l 

(4.3) 

The quantity q(C) refers to the conditions (3.11)-(3.12). Therefore, it can be seen as a measure of 
the (lack of) smoothness of fit. Closeness of fit is measured through a(C). The parameter S, which 
is supplied by the user, controls the extent to which these two (very often contradictory) 
properties are satisfied. Let us suppose for the moment that S is such that condition (4.3) is 
feasible. It is clear that this will depend also on the number and the position of the knots of 
s(u, u). 

In order to solve the above minimization problem, consider first the following overdetermined 
system of equations 

fi i i ci,jMi,k+l(Uq)~.,+l(Uq)= fizqv 1, &...,m, 
i= -k jz -1 

q=l,2 ,..., g, j= -I,..,, h, (4.4) 

r=l,2 ,..., h, i= -k ,..., g. 

These equations will be solved in the sense of least-squares, i.e. such that a(C) +p-lq(C) is 
minimal, p being a parameter which dictates the trade-off between fitting and smoothing. Let 
sP( u, u) denote the corresponding spline. 

It is then easily verified that, using the method of Lagrange, problem (4.2)-(4.3) simply results 
in the computation of the B-spline coefficients C from (4.4) when p is given the value of the 
positive root of the equation F(p) = S with 

(4.5) 
q=l 

The smoothing spline sP( U, u) has the following properties [4]: 
(i) To each positive p there corresponds a single spline sP( U, u), the B-spline coefficients of 

which are the (minimal-length) solution of (4.4). 
(ii) As p tends to infinity, sP( U, u) becomes the least-squares spline $h( u, u). 
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(iii) As p tends to zero, sP( u, u) becomes the least-squares polynomial Pk.,( u, u) of degree k in 
u and 1 in u. 

(iv) F(p) is a continuous, strictly decreasing and convex function for p > 0. 

Therefore we know that, once a set of knots is found such that 

&J&o) < S -= F(O), 

with 

(4.6) 

(4.7) 

there exists a single spline sP( u, u) with these knots for which F( p) = S. This value of p can then 
be determined iteratively by means of a rational interpolation scheme [4]. 

To find a set of knots which satisfies (4.6) we proceed in the following manner. First we 
determine the least-squares polynomial Pk.,( u, u) which simply is the least-squares spline 
S,,( u, u). If F,,( co) < S this polynomial is a solution of our problem. However, usually we will 
find that F,,( co) > S. In that case we determine successive least-squares splines S,.,( U, u) with 
an increasing number of knots. At each iteration we locate one additional knot where the fit 
S.+(u, u) is particularly poor (for more details, see [4]). So the strategy for locating knots is 
adaptive in the sense that there will be more knots if S is small and fewer if it is large and also in 
the sense that the spline will have more knots in those regions where the function underlying the 
data is difficult to approximate then where it has a smooth behaviour. 

Now, to obtain a function S(x, u) which is sufficiently smooth on C, we will solve the 
problem (4.2)-(4.3) and the resulting system (4.4) subject to the additional constraints (3.18). 
(3.23), (3.30) and (3.32). -After eliminating these constraint equations, a system is obtained in the 
coefficients Sa,e, S,,O, S,,,, S&,, Sz2, SC,, c~,~, i = -k + 3, -k + 4, -k + 5,. . . , g; j = -1, 

-I+ l,..., h - I. It is solved in a stable way using an orthogonalization method with Givens 
rotations without square roots [7]. Advantage is hereby taken from the special bandstructure (see 
e.g. [6] for a detailed description in a similar problem). The iterative determination of the root of 
F(p) = S, now with the constrained spline S,( u, u) instead of sP( u, u) in the definition (4.5) of 
F, can be carried out in the same way as for the general smoothing spline, since S, has similar 
properties as sP. If p tends to zero, iP( u, u) will now become a least-square polynomial 
pk,,( u, u) still of degree k in u but of degree 0 in the variable u as follows from the periodicity 
property (3.17). 

So, also taking account of the C2 conditions (3.20) and (3.21) which will be satisfied exactly by 
this polynomial, we may just as well write that 

&l<u~ 0) VPk(U), O<u<l, --n<U<?T, (4.9) 

with pk(u) a polynomial of degree k, satisfying 

p;,(O) =p;1(0) = 0. (4.10) 

Also, the strategy for finding a suitable set of knots can readily be adapted. If F(O), now 
corresponding to the least-squares polynomial p,& u, u), is greater than S we determine 
successive constrained least-squares splines &( u, u) until again (4.6) is satisfied. We start this 
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iteration process with the spline S,.,(U, u) accordin g to the knots A, = 0.5, p, = a~(j - 4). 

j=l.2 , . . . .7. The spline interpolants for the trigonometric functions are then already reasonable 
accurate (maximal absolute error = 0.001 for cos u and sin u, = 0.01 for cos’u and sin2u, = 0.02 
for sin 20). For the reasons explained at the end of Section 3. we also add two knots instead of 
one (according to (3.34)-(3.35)) every time the u-direction is chosen. 

5. Generalizations 

The proposed method can easily be extended. Suppose that we have an approximation domain 
C* with a boundary that can be described in polar coordinates through a smooth periodic 
function R, i.e. if C* = {(x, y) 1 x2 +y2 < R*(arctan(y/s))}. Instead of (2.1) we can use the 

following mapping 

x = uR(u) cos u, y = uR(u) sin u, O<U<l, -?T<U<T, (5.0 

and once again find a spline approximation s on D for f( 11, v) = F( x, y). The conditions for C’ 
continuity can be derived in a similar way as described in Section 2. We obtain 

g(O, u) = R( u)( F,,. cos u + F,,, sin u) (5.2) 

and 

s(O, u> = R2(4( F’.,_, cos’u + F0,2 sin2u + F,., sin 2u), (5.3) 

instead of (2.12) and (2.18). So, the smoothing algorithm of Section 4 is very easily adapted. 
Instead of (4.1), we simply use the mapping 

u = /m/R(u), u = arctan(y/x), (x9 y) E c*, (5.4) 

to obtain the corresponding set of data points ( uq, u4) on D. The constraints (3.18), (3.23) (3.30) 
and (3.32) are maintained on the understanding that the parameters aj, pj, y,, Sj and cj must be 
seen now as the B-spline coefficients of the interpolants for R(u) cos u, R(u) sin u, R2( u) cos2c. 

R’(u) sin’u and R’(u) sin 20. 
Often, the reason for choosing a non-rectangular approximation domain C* is that we know 

some additional constrains for F at the boundary. Suppose for example that we are given the 
value of F, i.e. that we know a function 2 such that 

f(1, u)=Z(u), -n<u<?T. (5.5) 

How can we then implement such a constraint into our spline approximation? If we choose the 
boundary knots A,+* = A,,, = . - - = hgtktl = 1 then 

M,,+,(l) = 8,,8, (5.6) 

and consequently from (3.5) 

s(l, u)’ i cg,jNj,I+I(u)~ 

j= -/ 

So. if Z is identically zero, (5.5) simply results in 

c~.~=O, j= -I ,..., h. 

(5.7) 

(5.8) 
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This additional condition for the B-spline coefficients can then very easily be implemented 
into our approximation algorithm. If 2 has a constant value Z*, we can first calculate new 
function values zq* = zq - Z* and determine a corresponding spline s*( u, u) with B-spline 
coefficients clfj satisfymg the constraints (3.18), (3.23), (3.30), (3.32) and (5.8). The requested 
spline s( u, u) will have then coefficients c, , = c,:, + Z* as follows from property (3.8). Finally, if 

Z is an arbitrary periodic function with’a continuous second derivative, we can proceed as 
follows. Instead of f( u, u) we will approximate 

f(u, u)=f(u. u)-u’Z(u). 

This function also satisfies the conditions (2.2), (5.2) and (5.3) and moreover, 

(5.9) 

f(l, u) = 0. (5.10) 

So, starting from the function values Z, = zq - uiZ( u4) we will determine a spline S( u, u) in 
the same way as for s( u, u). If s( x, y) denotes the corresponding function on C*, then F(x, y) 
is finally approximated by 

s(x, y) = 3(x, y) +(x2 +y*)3’2z( u)/R3( u), (5.11) 

with u given by (5.4). 

6. Practical considerations and examples 

The algorithm described in Sections 4 and 5 has been implemented in a Fortran subroutine 
package, called SMOCIR. A copy of this package together with an example program can be 
obtained from the author, on magnetic tape. 

Apart from the set of data points (x,, y,, z4) with the corresponding weights w4, q = 

1, 2,..., m, the user must specify the approximation domain C* through a periodic function R 
and provide the smoothing factor S to control the trade-off between closeness of fit and 
smoothness of fit. Recommended values for S depend on the weights w4. If available, one should 
use an estimate aq of the standard deviation of the error in zq and set w4 = (S,,-‘. If this value is 
used for w4, then a good S-value should be found in the range m f fi [8]. More practical 
considerations as concerned the choice of S can be found in [4]. 

The program returns a bicubic (k = I= 3) spline approximation s( u, u) on D = [0, l] x [ -a, IT] 

with automatically located knots. The requested approximation S(x, y) = s( u, u) on C* can then 
be found through formula (5.4). 

We now give some examples of approximations constructed by means of SMOCIR. 

Example 1. Using a random number generator we generated 
- a set of 400 points (x9.’ y,), scattered uniformly over the unit disc (R(u) = 1). 
- a set of normally distributed stochastic variates e4, with expected value (EV) 0 and standard 

deviation (SD) 0.01. 
Then we considered the data (x,, y,), zq = F( xq, y,) + e4, w4 = (O.Ol)-*, q = 1, 2,. . . ,400 in 
order to find an approximation S( x, y) for F( x, y) = (x2 + y*)/(( x + y)* + 0.5). 

In Fig. 1 we give some results. Fig. l(a) shows a contour map of F(x, y) (function values 
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(e> (f) 

Fig. 1. Spline approximation S(x, y) for F(x, y) = (x2 + y2)/((x + y)* ‘0.5) on the unit disc. (a) Contour map of 
F(x, y), (b) Position of the data points, (c) Contour map of S(x. y), (d) Knot distribution. (e) Perspective view of 

F(x, y), (f) Perspective view of S(x, y). 

Fig. 2. Spline approximation S(x, y) for F(x, y) =I -[(3x -l)* +(3y - l)‘][ll-6x -6y]-’ on the unit disc. (a) 
Contour map of F(x, y), (b) Position of the data points, (c) Contour map of S(.u, y). (d) Knot distribution. (e) 
Perspective view of F(x, y). (f) Perspective view of S(x, y). 

0.2, 0.4,..., 1.8). In Fig. l(b) we have marked the position of the different data points (xy. _Y~). 
The contour map of Fig. l(c) corresponds to an approximation S(x, _Y) with smoothing factor 
S = 400. The corresponding tensor spline s( u, u) on the rectangle D has g = 4 knots in the 
u-direction and h = 11 knots in the u-direction. While D is further subdivided into rectangular 
panels D,.i by the intersection of knots, a non-rectangular geometry of panels is obtained after 
transformation to the circle, as can be seen in Fig. l(d). A such-like geometry of panels could in 
fact be a reason in itself for choosing a non-rectangular approximation domain, for example to 
cope more efficiently with radially changing difficulties in F. Finally in Fig. l(e) and l(f) we see a 
three-dimensional depiction of F(x, y) and its approximation. The quality of fit of S(x, J) may 
certainly be judged satisfactory although it seems somewhat inferior towards the boundary. 
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Fig. 3. Spline approximation S(x, y) for F(x, y) = exp(-2x’ -y2) cos(3n(4x2 +9y2)/8) over the ellipse 4x2 +9y’ 

< 4. (a) Contour map of F(x, y), (b) Position of the data points, (c) Contour map of S(x, y). (d) Knot distribution. 

(e) Perspective view of F(x, y). (f) Perspective view of S(x, y). 

Fig. 4. Spline approximation S(x, y) for F(x, y)= tg(a(x’ +Y’)~(~(x~ -y’)’ +3(x2 +Y~)~/~)-‘} (a) Contour map 
of S(x, y), (b) Perspective view of S(x, y). 

Example 2. The quality of fit can still be improved if we can impose additional boundary 
conditions. The program SMOCIR offers the possibility to determine a function S(x, y) which 
becomes identically zero at the boundary. In a second example, we therefore considered the 
approximation of a function F( x, y) = 1 - ((3x - 1)2 + (3y - 1)2)/(11 - 6x - 6y), again on the 
unit disc C. In a similar way as for the first example, we generated a set of data, now only 192 
points and with larger stochastic errors (EV = 0, SD = 0.02). Fig. 2 shows the approximation 
results for a function S(x, y) corresponding to a smoothing factor S = 200 (all w4 = (O.O2)-2). 
The quality of fit is very good now. Fig. 2(f) also shows that S(x, y) is indeed sufficiently 
smooth at the origin. 

Example 3. In a third example, we considered the approximation of F(x, y) = exp( - 2x2 - 
y2) cos(3~(4x~ + 9y2)/8) on the ellipse 4x2 + 9y2 < 4. The boundary of this domain is described 
in polar coordinates through the function R(u) = 2 (9 - 5 COS~O)-‘/~. We generated 400 data 
points with stochastic errors of about 1% (SD = 0.01). Figure 3 shows the approximation results 
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for a function S(x,y) vanishing at the boundary at the boundary and corresponding to a 
smoothing factor S = 400 (all w4 = (0.01)-2). The graphs for F(x,y) and S(x,y) are hardly 
distinguishable. 

Example 4. The package SMOCIR offers even more possibilities. The user can select the 
requested order of continuity at the origin (Co, C’ or C2) and h e can also obtain a tensor spline 

s( u,u) in the least-squares sense if he provides the knots A, and yj. These two options were used 
to find a function S(x,y) of only Co continuity at the origin and interpolating F(x,y) = tg( T(x2 

+r2)2/(2(x2 -y’)‘+ 3(x2 +y2)3/2) at 145 points. The results are shown in Fig. 4. The 

approximation domain corresponds to the function R( u) = 3(3 - cos 40)~‘. 
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