
On Quantum and Probabilistic Linear
Lambda-calculi

(Extended Abstract)

Benôıt Valiron1

Laboratoire d’Informatique de Grenoble,
Université Joseph Fourier, Grenoble, France

Abstract

In this paper we give a fully complete model for a linear probabilistic lambda-calculus. The model is a
Kripke semantics based on the category of stochastic relations. We sketch how this relates to quantum
computation.

Keywords: Probabilistic computation, quantum computation, Bell inequalities, linear lambda-calculus,
Kripke semantics, completely positive maps, multinorm.

1 Introduction

Selinger and Valiron [6] gave a fully-abstract semantics for a linear quantum lambda-

calculus using the category CPM of completely positive maps. This semantics is

not surjective, and thus fails to distinguish between maps in the category that are

denotations of a program and maps that are not.

A surjective semantics for the first-order case was provided in [4]. The semantics

uses a notion of norm to determine which completely positive maps are denotations

of terms; namely, these are precisely the trace non-increasing ones. However, the no-

tion of norm fails to provide a suitable characterization of higher-order functions [5].

In this paper, we restrict our study to the probabilistic fragment of the language

described in [6]. We characterize the image of the language using the notion of

polytopes, and sketch how one can use such a result to characterize the information-

theoretic power of quantum computation over probabilistic computation. Finally we

provide a full and complete denotational semantics for a fragment of the probabilistic

linear lambda-calculus using an idea from Jung and Tiuryn [3].

1 Email: benoit.valiron@imag.fr

Electronic Notes in Theoretical Computer Science 270 (1) (2011) 121–128

1571-0661 © 2011 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.01.011
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82586073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:benoit.valiron@imag.fr
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.01.011
http://dx.doi.org/10.1016/j.entcs.2011.01.011
http://creativecommons.org/licenses/by-nc-nd/3.0/

2 The linear quantum lambda-calculus

We recall the linear typed lambda calculus for quantum computation defined in [6].

The terms and the types are respectively the following:

M,N,P ::= x | λx.M | MN | 〈M,N〉 | ∗ | Ω | let 〈x, y〉 = M in N |
let ∗ = M in N | if P then M else N | 0 | 1 | meas | new | U,

A,B ::= A⊗B | � | A�B | bit | qbit ,

where x ranges over term variables. We remind the reader that Ω corresponds to

the diverging term and we refer to [6] for the definition of the typing judgements.

This language is interpreted in the category CPM of completely positive

maps [4]. The types are interpreted in the following way.

[[bit]] = 1, 1, [[qbit]] = 2, [[A⊗B]] = [[A�B]] = [[A]]⊗ [[B]].

In this extended abstract we only recall the definition of the Booleans 0 and 1 and

refer the reader to [6] for the interpretation of all the terms: [[0]] = (1, 0) ∈ C
2,

[[1]] = (0, 1) ∈ C
2.

Using the language, it is possible to simulate a fair coin toss, for example with

the program meas(H(new 0)) : � � bit , with H corresponding to the Hadamard

gate. The interpretation of this term is (12 ,
1
2). Using a similar technique (and

possibly using the term Ω), it is possible to get a term simulating an unfair coin

with denotation (a, b) where a, b � 0 and a+ b � 1.

3 A probabilistic linear lambda calculus

We can modify the language of Section 2 to remove the quantum aspects and obtain

a purely probabilistic language. For this, we only need to change the constants. We

replace meas ,new and U with a set of constants c(a, b), one for each pair of real

numbers (a, b) such that a, b � 0 and a+b � 1. The types are modified by removing

the type qbit .

We are left with the following terms and types:

M,N,P ::= x | λx.M | MN | 〈M,N〉 | ∗ | Ω | let 〈x, y〉 = M in N |
let ∗ = M in N | if P then M else N | c(a, b) | 0 | 1,

A,B ::= A⊗B | � | A�B | bit .

In this context, the semantics in CPM of a term M is a completely positive

map from vectors of Cm to vectors of Cn for some natural numbers m and n. Note

that a completely positive map in this setting is the same as a (partial) stochastic

map from [0, 1]m to [0, 1]n. The result presented in [6] specializes to this case and

the semantics is fully abstract.

B. Valiron / Electronic Notes in Theoretical Computer Science 270 (1) (2011) 121–128122

4 Interpretation of the Bell inequalities

The Bell experiment [1] is the following. Consider a quantum machine that maxi-

mally entangles two quantum bits A and B

|φAB〉 = 1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

and sends qubit A to Alice and qubit B to Bob. Suppose that Alice and Bob can

independently choose one of the following three bases {a, b, c} for measuring their

quantum bits:

|0a〉 = |0〉, |0b〉 = 1

2
|0〉+

√
3

2
|1〉, |0c〉 = 1

2
|0〉 −

√
3

2
|1〉,

|1a〉 = |1〉 |1b〉 =
√
3

2
|0〉 − 1

2
|1〉, |1c〉 =

√
3

2
|0〉+ 1

2
|1〉.

The question is to compute the probability of obtaining the same output when

measuring A and B with respect to two different bases.

One can interpret this experiment in the context of higher-order quantum com-

putation. First, the machine entangles two quantum bits: It produces a map

EPR : � → qbit ⊗ qbit . Then Alice and Bob each takes one qubit, chooses a basis,

and measures: the measurement they perform is then a function f : qbit⊗trit → bit ,

where trit = �⊕�⊕�. One can curry this function to f ′ : qbit → (trit � bit)

The algorithm can be described by the composition

� EPR−−−→ qbit ⊗ qbit
f ′⊗f ′−−−→ (trit � bit)⊗ (trit � bit).

The algorithm produces a term of type (trit � bit) ⊗ (trit � bit). This type is

classical, and one can wonder whether the denotation of this term is the denotation

of a term in the probabilistic linear calculus. The Bell inequalities precisely show

that it is not the case. In other words, the terms expressible in the probabilistic

linear lambda calculus correspond precisely to what is known to physicists as local

hidden variable theories.

Consider a classical type A (that is, not containing qbit). In the remainder of

this paper, we shall develop a methodology for determining the vectors of [[A]] that

are representable by a term in the probabilistic linear calculus. This can be seen as

a generalization of the Bell inequalities to any higher-order type.

5 Factorization of the probabilistic calculus

As in [2], a program written in the probabilistic linear lambda-calculus of Section 3

can be “factored” into a probabilistic sum of deterministic programs. That is,

the denotation of any valid typing judgement Δ � M : A can be re-written as a

probabilistic sum

[[Δ � M : A]] =
∑
i

αi[[Δ � Ni : A]]

B. Valiron / Electronic Notes in Theoretical Computer Science 270 (1) (2011) 121–128 123

[[c(a, b)]] = [[if c(a, b) then 1 else 0]]

[[M(if c(a, b) then N1 else N2)]] = [[if c(a, b) then MN1 else MN2]]

[[〈M, if c(a, b) then N1 else N2〉]] = [[if c(a, b) then 〈M,N1〉 else 〈M,N2〉]]
[[λx.if c(a, b) then N1 else N2]] = [[if c(a, b) then λx.N1 else λx.N2]]

[[if (if c(a, b) then M else N) then P else Q]]

= [[if c(a, b) then ifM then P else Q else ifN then P else Q]]

Table 1
Rewriting rules for the if -term.

where each αi � 0 and
∑

i αi � 1, and where Ni does not contain any constant

term c(a, b).

The idea of the proof is the following: first, note that

[[Δ � if c(a, b) then M else N : A]] = b · [[Δ � M : A]] + a · [[Δ � N : A]].

Thus, for the result to be true, one needs to be able to send a term M containing

a constant term c(a, b) to a term of the form if c(a, b) then M1 else M2 with same

denotation, where M1 and M2 satisfy some invariant. Since the language is linear,

this is possible. As a proof start, consider the equalities in Table 1 with orientation

left-to-right.

6 Interpretation as polytopes

The deterministic terms (i.e. the ones with no occurrence of c(a, b)) share a special

property:

Proposition 6.1 Given a typing context Δ and a type A, there is a finite number

of deterministic terms Ni (up to beta-equivalence) such that Δ � Ni : A.

This proposition comes from the fact that the language is linear: one can enu-

merate all the possible (CUT-free) typing derivations. One can go one step further:

Proposition 6.2 Any deterministic closed term of type A has a denotation of the

form (xi1, . . . , x
i
n) ∈ [[A]], where for all j, xij is either 0 or 1.

It allows us to state the following theorem:

Theorem 6.3 The set of vectors in the set [[A]] that are the image of some linear

probabilistic program through the denotation is a convex 0-1-polytope (i.e. whose

vertices are of the form (x1, . . . , xn) ∈ [[A]], where each xi is either 0 or 1).

A few examples are given below:

(i) The deterministic closed terms of type [[bit]] are Ω, 0 and 1. That is, the

polytope of admissible vectors is spanned by (0, 0), (1, 0) and (0, 1).

B. Valiron / Electronic Notes in Theoretical Computer Science 270 (1) (2011) 121–128124

(ii) The deterministic closed terms of type [[bit ��]] are Ω, λx.if x then ∗ else Ω,

λx.if x thenΩelse ∗ and λx.if x then ∗else ∗. That is, the polytope of admissible

vectors is spanned by (0, 0), (0, 1), (1, 0) and (1, 1).

(iii) The deterministic closed terms of type [[(bit ��)��]] are of the form Ω,

λf. let ∗ = f0 in ∗ and λf. let ∗ = f0 in ∗. That is, the polytope of admissible

vectors is spanned by (0, 0), (1, 0) and (0, 1).

7 Polytopes are not compositional

The naive idea to develop a full and complete semantics for the probabilistic linear

lambda-calculus is the following. Consider a category whose objects are polytopes

and whose maps are CPM maps sending polytopes into polytopes. Then interpret

the language in this category.

It turns out that this does not work. Indeed, if it were the case, the identity

map C
2 → C

2 should be represented by a judgement x : (bit ��)�� � M : bit .

However, the only deterministic closed terms corresponding to ((bit��)��)�bit

are of the form λf. let ∗ = f(λx.if x then a else b) in c where c ranges over {0, 1} and

where a and b over {∗,Ω}. The corresponding vertices are

(0, 0, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0), (0, 0, 1, 0), (0, 1, 0, 1), (0, 1, 0, 0), (0, 0, 0, 1).

The identity map corresponds to the vector (1, 0, 0, 1), which is not in the polytope

spanned by these vectors. The closest approximation is 1
2(1, 0, 0, 1).

Thus, although polytopes provide a sound semantics, they are not sufficient to

characterize the definable maps of the probabilistic language.

8 Toward a full and complete semantics for the proba-
bilistic linear calculus

The polytopes we constructed are closed convex sets P containing the origin. Thus

they define a norm via

||v|| = min{λ | v ∈ λP}.
We are going to extend the idea of norm to the work of Jung and Tiuryn [3], and

define what we will call linear Kripke logical relations: instead of considering norms

of single vectors, we consider the norm of tuples of vectors.

8.1 A toy language

Consider the following reduced version of the probabilistic linear lambda-calculus:

Term M,N ::= xA | ΩA | c(μ) | λxA.M | MN | if P then M else N,

Type A,B ::= bit | A�B,

where 0 � μ � 1.

B. Valiron / Electronic Notes in Theoretical Computer Science 270 (1) (2011) 121–128 125

8.2 Linear Kripke logical relations

Consider a small category of sets C with the cartesian product as a monoidal struc-

ture, containing the object � = {�}. We are going to define a logical relation over

each object w of C, as a norm || − ||wA on tuples (xi)i∈w where xi ∈ [[A]] for all i ∈ w.

The relation at ground type must satisfy the following compatibility property: if

f : v → w is a map in C, then

||(xi)i∈w||wbit � 1 → ||(xf(i))i∈v||vbit � 1.

Also, still at ground type bit , the norm should satisfy the norm axioms:

||(xi + yi)i||wbit � ||(xi)i||wbit + ||(yi)i||wbit ,
||(xi)i||wbit � 0,

||(λxi)i||wbit = |λ|||(xi)i||wbit ,
||(xi)i||wbit = 0 iff ∀i xi = 0.

Finally, one should have ||((a, b))||�bit = |a| + |b| We extend the relation

for higher types as follows: ||(gj)j∈w||wA�B is defined as the maximum of

||(gf(j)(xi))j⊗i∈w′⊗v||w
′⊗v

B
, where f : w′ → w ∈ C, (xi)i∈v ∈ [[A]] such that

||(xi)i∈v||vA � 1.

We interpret (gf(j)(xi))j⊗i∈w′⊗v as the tuple (h(k))k∈w′⊗v where h is the map

w′ ⊗ v
f⊗id−−−→ w ⊗ v

g⊗x−−→ [[A�B]]⊗ [[A]]
εA,B−−−→ [[B]]

We will write ||x||A for ||(x)||�A. We call (|| − ||wA)w∈|C|,A∈Type a norm with varying

arity.

Lemma 8.1 Given w ∈ |C| and a type A, the norm || − ||wA satisfies the compatibility

property and the norm axioms.

8.3 Soundness

Lemma 8.2 (Soundness) For all closed terms M : A, ||[[M]]||A � 1.

The proof follows the idea developed in [3]. We define the notion of extended

environment as a pair (φ, ρ) of partial maps, where φ : Var → |C| and where

ρ is a map that assigns to a variable xA a tuple (xi)i∈φ(xA), with xi ∈ [[A]]. If

Δ = {x1 : A1, . . . , xn : An}, we write φ(Δ) in place of φ(x1) ⊗ · · · ⊗ φ(xn). We

define the extended interpretation of a typing judgement as a tuple

[[x1 : A1, . . . , xn : An � M : A]]ρ,φ = (xi)i∈φ(x1)⊗···⊗φ(xn),

where xi ∈ [[A]] for all i, and where the domain of ρ and φ is the set {x1, . . . , xn}.
The proof of Lemma 8.2 is done by structural induction. We first show that for

all typing judgements x1 : A1, . . . , xn : An � M : B, for all extended environments

B. Valiron / Electronic Notes in Theoretical Computer Science 270 (1) (2011) 121–128126

(φ, ρ) such that ||ρ(xi)||φ(xi)
Ai

� 1, the inequality

||[[x1 : A1, . . . , xn : An � M : B]]ρ,φ||φ(x1)⊗···⊗φ(xn)

B
� 1

is satisfied. We then conclude by using the following result.

Lemma 8.3 Given an environment ρ, let φ̄ be the constant map of value {�} and

let ρ̄ be the map assigning (ρ(xA)) to xA. Then [[Δ � M : A]]ρ̄,φ̄ = ([[Δ � M : A]]ρ).�

8.4 Completeness

The completeness result is obtained by choosing a carefully crafted category C. For
each type A, denote by BA the canonical basis of [[A]]. Define a category C as follows:

objects are products BA1 × · · · × BAn , and arrows are the identities on objects.

Convention 8.4 When considering the set BA, we will use the implicit order

(1, . . . , 0), . . . , (0, . . . , 1). We extend the order on BA1 × · · · × BAn using the lex-

icographic convention.

Definition 8.5 Let UA1,...,An be the set of tuples

{
([[M]](a1) · · · (an))(a1,...,an)∈BA1

×···×BAn

∣∣ � M : A1 � · · ·�An � bit
}

Lemma 8.6 The set UA1,...,An is convex, and its interior contains the origin.

Proof. The convexity is shown using the denotation of the if and of the Ω term.

The fact that the origin lies in the interior comes from the correspondence between

first-order and higher-order types. �

Lemma 8.7 Consider the tuple (xi)i∈BC1
×···×BCk

, where for all tuples i, xi ∈
[[A1 � · · ·�An �B]]. Then for all a ∈ BA1 × · · · × BAn, the value xi(a1) · · · (an)
is equal to (xi)a1⊗···⊗an, the coordinate of xi at a1 ⊗ · · · ⊗ an. Moreover, its norm

||(xi(a1) · · · (an))(a1,...,an)||
BC1

×···×BCk
×BA1

×···×BAn

B = ||(xi)i||BC1
×···×BCk

A1�···�An�B

Definition 8.8 Define the norm with varying arity (|| − ||wA)w∈|C|,A∈Type at ground

types as follows: the unit ball of || − ||BA1
×···×BAn

bit is UA1,...,An .

Lemma 8.9 (Completeness) Given x ∈ [[A]] such that ||(x)||A � 1, there exists a

closed term M such that [[M]] = x.

Theorem 8.10 The element x ∈ [[A]] is representable by a probabilistic lambda

term if and only if for all norms with varying arity (|| − ||wA)w∈|C|,A∈Type , the norm

||(x)|| � 1.

9 Conclusion

We considered the probabilistic fragment of the linear quantum lambda-calculus

described in [6]. We interpreted the Bell inequalities in this higher-order context.

B. Valiron / Electronic Notes in Theoretical Computer Science 270 (1) (2011) 121–128 127

We sketched a method for computing generalized Bell inequalities at higher types,

using convex polytopes.

The polytope interpretation does not provide a compositional semantics. Fi-

nally, we drafted a compositional full and complete semantics for a fragment of the

probabilistic linear lambda-calculus.

Acknowledgement

I would like to thanks Peter Selinger for suggesting the problem of characterizing the

definable higher-order probabilistic functions, and for providing the counterexample

in Section 7.

References

[1] Bell, J. S., On the Einstein Podolsky Rosen paradox, Physics 1 (1964), pp. 195–200.

[2] Danos, V. and R. S. Harmer, Probabilistic game semantics, ACM Transactional on Computational Logic
3 (2002), pp. 359–382.

[3] Jung, A. and J. Tiuryn, A new characterization of lambda definability, in: Proceedings of TLCA’93,
Lecture Notes in Computer Science 664, 1993, pp. 245–257.

[4] Selinger, P., Towards a quantum programming language, Mathematical Structures in Computer Science
14 (2004), pp. 527–586.

[5] Selinger, P., Towards a semantics for higher-order quantum computation, in: P. Selinger, editor,
Proceedings of QPL’04, TUCS General Publication No 33 (2004), pp. 127–143.

[6] Selinger, P. and B. Valiron, On a fully abstract model for a quantum linear functional language (extended
abstract), in: P. Selinger, editor, Proceedings of QPL’06, Electronic Notes in Theoretical Computer
Science 210, 2008, pp. 123–137.

B. Valiron / Electronic Notes in Theoretical Computer Science 270 (1) (2011) 121–128128

	Introduction
	The linear quantum lambda-calculus
	A probabilistic linear lambda calculus
	Interpretation of the Bell inequalities
	Factorization of the probabilistic calculus
	Interpretation as polytopes
	Polytopes are not compositional
	Toward a full and complete semantics for the probabilistic linear calculus
	A toy language
	Linear Kripke logical relations
	Soundness
	Completeness

	Conclusion
	Acknowledgements
	References

