Some congruences modulo 2 and 5 for bipartition with 5-core

NIPEN SAIKIA*, CHAYANIKA BORUAH

Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India

Received 13 October 2015; received in revised form 14 May 2016; accepted 24 May 2016

Abstract. We find some congruences modulo 2 and 5 for the number of bipartitions with 5-core for a positive integer \(n \) in the spirit of Ramanujan.

Keywords: Bipartition; 5-core partition; Partition congruence

2010 Mathematics Subject Classification: 11P83; 05A15; 05A17

1. Introduction

A bipartition of a positive integer \(n \) is a pair of partitions \((\lambda, \mu)\) such that the sum of all of the parts is \(n \). A bipartition with \(t \)-core is a pair of partitions \((\lambda, \mu)\) such that \(\lambda \) and \(\mu \) are both \(t \)-cores. If \(A_t(n) \) denotes the number of bipartitions with \(t \)-core of \(n \), then \(A_t(n) \) is defined by

\[
\sum_{n=0}^{\infty} A_t(n)q^n = \frac{(q^t; q^t)_\infty^{2t}}{(q; q)_\infty^{2t}}.
\]

(1.1)

where \((a; q)_\infty = \prod_{n=1}^{\infty} (1 - aq^n)\). We note the following well known congruence property which can be proved by using binomial theorem: For any prime \(p \) and positive integer \(k \),

\[
(q^k; q^k)_\infty \equiv (q^{pk}; q^{pk})_\infty \pmod{p}.
\]

(1.2)

The function \(A_t(n) \) defined in (1.1) have been studied by many mathematicians. Lin [8] discovered some interesting congruences modulo 4, 5, 7, and 8 for \(A_3(n) \). Yao [10] established several infinite families of congruences modulo 3 and 9 for \(A_9(n) \). Xia [9]

* Corresponding author.

E-mail addresses: nipennak@yahoo.com (N. Saikia), cboruah123@gmail.com (C. Boruah).

Peer review under responsibility of King Saud University.
established several infinite families of congruences modulo 4, 8 and \(\frac{4k-1}{3} \) \((k \geq 2)\) for \(A_3(n)\) and also generalized some results due to Lin and Yao. Baruah and Nath [1] also proved some results on \(A_3(n)\).

In this paper, we are concerned with the function \(A_5(n)\) which denotes the number of bipartition with 5-core of \(n\) and is given by

\[
\sum_{n=0}^{\infty} A_5(n)q^n = \frac{(q^5; q^5)_\infty^{10}}{(q; q)_\infty^2}. \tag{1.3}
\]

In Section 3, we find some congruences modulo 2 and 5 for \(A_5(n)\) in the spirit of Ramanujan. Section 2 is devoted to record some preliminary results.

2. Preliminaries

Ramanujan’s general theta-function \(f(a, b)\) [3, p. 35, Entry 19] is defined by

\[
f(a, b) = (-a; ab)_\infty (-b; ab)_\infty (ab; ab)_\infty, \quad |ab| < 1. \tag{2.1}
\]

Lemma 2.1 ([4, Theorem 2.2]). For any prime \(p \geq 5\), we have

\[
(q; q)_\infty = \sum_{k=-\frac{p-1}{2}}^{\frac{p-1}{2}} (-1)^k q^{(3k^2+k)/2} f \left(-q^{3p^2+(6k+1)p}, -q^{3p^2-(6k+1)p} \right)
+ (-1)^{\frac{\pm p-1}{6}} q^{n/24} (q^{n^2}; q^{p^2})_\infty, \tag{2.2}
\]

where \(\frac{\pm p-1}{6} := \begin{cases} \frac{p-1}{6}, & \text{if } p \equiv 1 \text{ (mod } 6), \\ \frac{-p-1}{6}, & \text{if } p \equiv -1 \text{ (mod } 6). \end{cases}\)

Furthermore, if \(-\frac{p-1}{2} \leq k \leq \frac{p-1}{2}\) and \(k \neq \frac{\pm p-1}{2}\), then \(3k^2+k \equiv 2p^2 \pm 24 \text{ (mod } p)\).

Lemma 2.2 ([7, Theorem 1]). We have

\[
\frac{(q^5; q^5)_\infty}{(q; q)_\infty} = \frac{(q^8; q^8)_\infty(q^{20}; q^{20})_\infty^{2}}{(q^2; q^2)_\infty^2(q^{40}; q^{40})_\infty} + q \frac{(q^4; q^4)_\infty^3(q^{10}; q^{10})_\infty(q^{40}; q^{40})_\infty}{(q^2; q^2)_\infty^3(q^{8}; q^{8})_\infty(q^{20}; q^{20})_\infty}.
\]

Lemma 2.3 ([6]). We have

\[
\frac{1}{(q; q)_\infty} = \frac{(q^{25}; q^{25})_\infty^5}{(q^5; q^5)_\infty^6} \left(F^{5-4}(q^5) + q F^{5-3}(q^5) + 2q^2 F^{2-2}(q^5) + 3q^3 F^{1-1}(q^5) + 5q^4 - 3q^5 F(q^5) + 2q^6 F^2(q^5) - q^7 F^3(q^5) + q^8 F^4(q^5) \right),
\]

where \(F(q) := q^{-1/5} R(q)\) and \(R(q)\) is Rogers-Ramanujan continued fraction defined by

\[
R(q) := \frac{1}{q^{1/5}} \frac{1}{1 + q \frac{q^2}{1 + q \frac{q^3}{1 + q \frac{q^4}{1 + q \frac{q^5}{1 + q \frac{q^6}{1 + q \cdots}}}}}; \quad |q| < 1.
\]
Lemma 2.4 ([3, p. 39, Entry 24(ii)]). We have
\[
(q; q)^3 = \sum_{n=0}^{\infty} (-1)^n (2n + 1) q^{n(n+1)/2}.
\]

Lemma 2.5 ([2, p. 648, Theorem 2.1; Eqns. (2.1), (2.5) & (2.13)]). If
\[
\sum_{n=0}^{\infty} p_3(n) q^n = (q; q)^3,
\]
then for any positive integer \(k\),
\[
p_3 \left(\frac{3^{2k} n + 3^{2k} - 1}{8} \right) = (-3)^k p_3(n),
\]
\[
p_3 \left(\frac{5^{2k} n + 5^{2k} - 1}{8} \right) = 5^k p_3(n)
\]
and
\[
p_3 \left(\frac{7^{2k} n + 7^{2k} - 1}{8} \right) = (-7)^k p_3(n).
\]

3. CONGRUENCES MODULO 2 AND 5 FOR \(A_5(n)\)

Theorem 3.1. We have
(i) \(A_5(2n + 1) \equiv 0 \pmod{2}\).
(ii) \(A_5(8n + 4) \equiv 0 \pmod{2}\).

Proof. Using (1.2) with \(p = 2\) in (1.3), we find that
\[
\sum_{n=0}^{\infty} A_5(n) q^n = \frac{(q^5; q^5)^{10}}{(q; q)^2} \equiv \frac{(q^{10}; q^{10})^5}{(q^2; q^2)^5} \pmod{2}.
\]
The right hand side of (3.1) contains no term involving odd power of \(q\), so extracting the terms involving \(q^{2n+1}\) from (3.1), we arrive at (i).

Extracting the terms involving \(q^{2n}\) from (3.1) and replacing \(q^2\) by \(q\) and simplifying using (1.2), we obtain
\[
\sum_{n=0}^{\infty} A_5(2n) q^n \equiv \frac{(q^5; q^5)^5}{(q; q)^5} \equiv \frac{(q^{20}; q^{20}) (q^5; q^5)^5}{(q; q)^5} \pmod{2}.
\]
Employing Lemma 2.2 in (3.2) and simplifying using (1.2), we deduce that
\[
\sum_{n=0}^{\infty} A_5(2n) q^n \equiv (q^4; q^4) (q^{20}; q^{20}) + q \frac{(q^{10}; q^{10}) (q^{40}; q^{40})}{(q^2; q^2)} \pmod{2}.
\]
The right hand side of (3.3) contains no term involving \(q^{4n+2} \), so extracting the terms involving \(q^{4n+2} \) from (3.3), we complete the proof of (ii).

Theorem 3.2. Let \(p \geq 5 \) be a prime with \(\left(\frac{-5}{p} \right) = -1 \). Then for non-negative integers \(\alpha \) and \(n \), we have

\[
\sum_{n=0}^{\infty} A_5(8p^{2\alpha} n + 2p^{2\alpha} - 2) q^n \equiv (q; q)_{\infty}(q^5; q^5)_{\infty} \pmod{2},
\]

(3.4)

where, here and throughout the paper \(\langle : \rangle \) denotes the Legendre symbol.

Proof. Extracting the terms involving \(q^{4n} \) from (3.3) and replacing \(q^4 \) by \(q \), we obtain

\[
\sum_{n=0}^{\infty} A_5(8n)q^n \equiv (q; q)_{\infty}(q^5; q^5)_{\infty} \pmod{2},
\]

(3.5)

which is the case \(\alpha = 0 \).

Assume (3.4) holds for \(\alpha \). Employing Lemma 2.1 in (3.4), we obtain

\[
\sum_{n=0}^{\infty} A_5(8p^{2\alpha} n + 2p^{2\alpha} - 2) q^n \\
\equiv \left[\sum_{k=-\frac{p-1}{2}}^{\frac{p-1}{2}} (-1)^k q^{(3k^2+k)/2} f \left(-q^{\frac{3p^2-6k+1}{2}}, -q^{\frac{3p^2-(6k+1)}{2}} \right) \right] \\
+ (\pm \frac{p-1}{6}) q^{\frac{p^2-1}{24}} (q^p; q^p)_{\infty} \\
\times \left[\sum_{m=-\frac{p-1}{6}}^{\frac{p-1}{6}} (-1)^m q^{5(3m^2+m)/2} f \left(-q^{\frac{5p^2+6m+1}{2}}, -q^{\frac{5p^2-(6m+1)}{2}} \right) \right] \\
+ (\pm \frac{p-1}{6}) q^{\frac{5p^2-1}{24}} (q^{5p}; q^{5p})_{\infty} \pmod{2},
\]

(3.6)

Consider the congruence

\[
\frac{3k^2+k}{2} + 5 \left(\frac{3m^2+m}{2} \right) \equiv 6 \left(\frac{p^2-1}{24} \right) \pmod{p}.
\]

(3.7)

The congruence (3.7) is equivalent to

\[
(6k+1)^2 + 5(6m+1)^2 \equiv 0 \pmod{p}.
\]

(3.8)

For \(\left(\frac{-5}{p} \right) = -1 \) the congruence (3.8) has a unique solution \(k = m = \pm \frac{p-1}{6} \). So extracting the terms involving \(q^{p^{4n+(p^2-1)/4}} \) from (3.6), dividing by \(q^{(p^2-1)/4} \) and replacing \(q^p \) by \(q \), we
deduce that
\[\sum_{n=0}^{\infty} A_5 \left(8p^{2\alpha+1}n + 2p^{2\alpha+2} - 2 \right) q^n \equiv (q^p; q^p)_{\infty} (q^5p; q^5p)_{\infty} \pmod{2}. \quad (3.9) \]

Extracting the terms involving \(q^{\alpha n} \) from (3.9) and replacing \(q^p \) by \(q \), we obtain
\[\sum_{n=0}^{\infty} A_5 \left(8p^{2\alpha+2}n + 2p^{2\alpha+2} - 2 \right) q^n \equiv (q; q)_{\infty} (q^5; q^5)_{\infty} \pmod{2}, \quad (3.10) \]
which is the case \(\alpha + 1 \) of (3.4). Hence, the proof is complete. \(\square \)

Corollary 3.3. Let \(p \geq 5 \) be a prime with \(\left(\frac{-5}{p} \right) = -1 \). Then for non-negative integers \(\alpha \) and \(n \), we have
\[A_5 \left(8p^{2\alpha+2}n + 2p^{2\alpha+1}(4j + p) - 2 \right) \equiv 0 \pmod{2}, \quad (3.11) \]
where \(j = 1, 2, 3, \ldots, p-1 \).

Proof. Extracting the terms involving \(q^{\alpha n+j} \) for \(j = 1, 2, 3, \ldots, p-1 \) from (3.9), we arrive at the desired result. \(\square \)

Theorem 3.4. For any positive integer \(k \), we have
\[A_5 \left(2^k n + 2^k - 2 \right) \equiv A_5(2n) \pmod{2}. \]

Proof. Extracting the terms involving \(q^{2n+1} \) from (3.3), dividing by \(q \) and replacing \(q^2 \) by \(q \), we obtain
\[\sum_{n=0}^{\infty} A_5(2^n + 2)q^n \equiv \frac{(q^{20}; q^{20})_{\infty} (q^5; q^5)_{\infty}}{(q; q)_{\infty}} \pmod{2}. \quad (3.12) \]
Combining (3.2) and (3.12), we deduce that
\[A_5(2^n + 2) \equiv A_5(2n) \pmod{2}. \quad (3.13) \]
Iterating (3.13) by replacing \(n \) by \(2n + 1 \) and for any positive integer \(k \), we obtain
\[A_5 \left(2^k n + 2^{k-1} + 2^{k-2} + \cdots + 2 \right) \equiv A_5(2n) \pmod{2}. \quad (3.14) \]
Simplifying (3.14), we arrive at the desired result. \(\square \)

Theorem 3.5. We have
(i) \(\sum_{n=0}^{\infty} A_5 \left(16n \right) q^n \equiv (q; q)_{\infty}^3 \pmod{2} \),
(ii) \(A_5 \left(80n + 16i + 8 \right) \equiv 0 \pmod{2} \), where \(i = 1, 2, 3 \) and 4.
Proof. Simplifying (3.5) using (1.2), we obtain
\[
\sum_{n=0}^{\infty} A_5(8n)q^n \equiv \left(\frac{q^{5}q^5}{q^{2}q^2}\right)_{\infty} (\mod 2). \tag{3.15}
\]
Employing Lemma 2.2 in (3.15) and simplifying using (1.2), we deduce that
\[
\sum_{n=0}^{\infty} A_5(8n)q^n \equiv (q^{2}q^2)_{\infty} (\mod 2). \tag{3.16}
\]
Extracting the terms involving \(q^{2n}\) from (3.16) and replacing \(q^{2}\) by \(q\), we arrive at (i). Again, extracting the terms involving \(q^{2n+1}\) in (3.16), dividing by \(q\) and replacing \(q^{2}\) by \(q\), we obtain
\[
\sum_{n=0}^{\infty} A_5(16n+8)q^n \equiv (q^{5}q^{5})_{\infty} (\mod 2). \tag{3.17}
\]
Extracting the terms involving \(q^{5n+i}\) for \(i = 1, 2, 3,\) and 4 from (3.17), we arrive at (ii). □

Theorem 3.6. For any positive integer \(k\), then

(i) \(A_5(16 \cdot 3^{2k}n + 2 \cdot 3^{2k} - 2) \equiv A_5(16n) \pmod{2},\)

(ii) \(A_5(16 \cdot 5^{2k}n + 2 \cdot 5^{2k} - 2) \equiv A_5(16n) \pmod{2},\)

(iii) \(A_5(16 \cdot 7^{2k}n + 2 \cdot 7^{2k} - 2) \equiv A_5(16n) \pmod{2}.\)

Proof. Employing (2.3) in Theorem 3.5(i), we deduce that
\[
A_5(16n) \equiv p_3(n) \pmod{2}. \tag{3.18}
\]
Employing (3.18) in (2.4), (2.5), and (2.6), we arrive at (i), (ii), and (iii), respectively. □

Corollary 3.7. If \(n\) is not a triangular number, then
\[
A_5(16n) \equiv 0 \pmod{2}.
\]

Proof. Employing Lemma 2.4 in Theorem 3.5(i), we obtain
\[
\sum_{n=0}^{\infty} A_5(16n)q^n \equiv \sum_{n=0}^{\infty} (-1)^n(2n+1)q^{n(n+1)/2} \pmod{2}. \tag{3.19}
\]
The desired result now follows easily from (3.19). □

Corollary 3.8. If \(n\) is not a triangular number, we have
\[
A_5(16 \cdot 3^{2k}n + 2 \cdot 3^{2k} - 2) \equiv 0 \pmod{2},
\]
\[
A_5(16 \cdot 5^{2k}n + 2 \cdot 5^{2k} - 2) \equiv 0 \pmod{2},
\]
\[
A_5(16 \cdot 7^{2k}n + 2 \cdot 7^{2k} - 2) \equiv 0 \pmod{2}.
\]
Proof. We employ Corollary 3.7 in Theorem 3.6 to complete the proof. □

Theorem 3.9. We have
(i) \(A_5(5n + 2) \equiv 0 \pmod{5} \),
(ii) \(A_5(5n + 3) \equiv 0 \pmod{5} \),
(iii) \(A_5(5n + 4) \equiv 0 \pmod{5} \).

Proof. Squaring the identity in Lemma 2.3, we find that

\[
\frac{1}{(q; q^2)_\infty^2} = \frac{(q^{25}; q^{25})_{\infty}^{10}}{(q^5; q^5)_{\infty}^{12}} \{ F^{-8}(q^5) + 2qF^{-7}(q^5) \\
+ 5q^2F^{-6}(q^5) + 10q^3F^{-5}(q^5) + 20q^4F^{-4}(q^5) \\
+ 16q^5F^{-3}(q^5) + 27q^6F^{-2}(q^5) + 20q^7F^{-1}(q^5) + 15q^8 - 20q^9F(q^5) \\
+ 27q^{10}F^2(q^5) - 16q^{11}F^3(q^5) + 20q^{12}F^4(q^5) - 10q^{13}F^5(q^5) \\
+ 5q^{14}F^6(q^5) - 2q^{15}F^7(q^5) + q^{16}F^8(q^5) \}.
\] (3.20)

Employing (3.20) in (1.3), we find that

\[
\sum_{n=0}^{\infty} A_5(n)q^n = \frac{(q^{25}; q^{25})_{\infty}^{10}}{(q^5; q^5)_{\infty}^{12}} \{ F^{-8}(q^5) + 2qF^{-7}(q^5) \\
+ 5q^2F^{-6}(q^5) + 10q^3F^{-5}(q^5) + 20q^4F^{-4}(q^5) \\
+ 16q^5F^{-3}(q^5) + 27q^6F^{-2}(q^5) + 20q^7F^{-1}(q^5) + 15q^8 - 20q^9F(q^5) \\
+ 27q^{10}F^2(q^5) - 16q^{11}F^3(q^5) + 20q^{12}F^4(q^5) - 10q^{13}F^5(q^5) \\
+ 5q^{14}F^6(q^5) - 2q^{15}F^7(q^5) + q^{16}F^8(q^5) \}.
\] (3.21)

Extracting the terms involving \(q^{5n+2} \) from (3.21), then dividing by \(q^2 \) and replacing \(q^5 \) by \(q \), we find that

\[
\sum_{n=0}^{\infty} A_5(5n + 2)q^n = 5 \frac{(q^5; q^5)_{\infty}^{10}}{(q; q^2)_{\infty}^{12}} \{ F^{-6}(q) + 4qF^{-1}(q) + 4q^2F^4(q) \}.
\] (3.22)

Now (i) follows easily from (3.22).

Extracting the terms involving \(q^{5n+3} \) from (3.21), then dividing by \(q^3 \) and replacing \(q^5 \) by \(q \), we find that

\[
\sum_{n=0}^{\infty} A_5(5n + 3)q^n = 5 \frac{(q^5; q^5)_{\infty}^{10}}{(q; q^2)_{\infty}^{12}} \{ 2F^{-5}(q) + 3q - 2q^2F^5(q) \}.
\] (3.23)

Now (ii) follows easily from (3.23).

Extracting the terms involving \(q^{5n+4} \) from (3.21), then dividing by \(q^4 \) and replacing \(q^5 \) by \(q \), we find that

\[
\sum_{n=0}^{\infty} A_5(5n + 4)q^n = 5 \frac{(q^5; q^5)_{\infty}^{10}}{(q; q^2)_{\infty}^{12}} \{ 4F^{-4}(q) - 4qF(q) + q^2F^6(q) \}.
\] (3.24)

Now (iii) follows easily from (3.24). □
Remark 3.10. Theorem 3.9(ii) also follows as a particular case of a general result in [5, p. 4, Theorem 8].

Theorem 3.11. For any positive integer \(k \), we have
\[
A_5(5^k n + 2 \cdot 5^k - 2) \equiv 5^k A_5(n) \quad \text{(mod 10)}.
\]

Proof. From (3.23), we note that
\[
\sum_{n=0}^{\infty} A_5(5n + 3)q^n = \frac{(q^5; q^5)_{10}^{\infty}}{(q; q^2)_{\infty}^{\infty}} \left\{ 10 \left(F_5^{-5}(q) + q - q^2 F_5^5(q) \right) + 5q \right\}
\equiv 5q \frac{(q^5; q^5)_{10}^{\infty}}{(q; q^2)_{\infty}^{\infty}} \quad \text{(mod 10)}. \quad (3.25)
\]
Employing (1.3) in (3.25), we obtain
\[
\sum_{n=0}^{\infty} A_5(5n + 3)q^n \equiv 5 \sum_{n=0}^{\infty} A_5(n)q^{n+1} \quad \text{(mod 10)}. \quad (3.26)
\]
Extracting the term involving \(q^{n+1} \) on both sides of (3.26), we obtain
\[
A_5(5n + 8) \equiv 5A_5(n) \quad \text{(mod 10)}. \quad (3.27)
\]
Iterating (3.27) by replacing \(n \) by \(5n + 8 \) \(k \) times, we deduce that
\[
A_5 \left(5^k n + \left(5^{k-1} + 5^{k-2} + \cdots + 5 + 1 \right) 8 \right) \equiv 5^k A_5(n) \quad \text{(mod 10)}. \quad (3.28)
\]
Simplifying (3.28), we arrive at the desired result. \(\square \)

Corollary 3.12. For any positive integer \(k \), we have
(i) \(A_5 \left(5^k n + 2 \cdot 5^k - 2 \right) \equiv 0 \quad \text{(mod 5)}, \)
(ii) \(A_5 \left(5^k n + 2 \cdot 5^k - 2 \right) \equiv A_5(n) \quad \text{(mod 2)}. \)

Proof. Proof follows from Theorem 3.11. \(\square \)

ACKNOWLEDGMENT

The first author (Nipen Saikia) is thankful to Council of Scientific and Industrial Research of India for partially supporting the research work under the Research Scheme No. 25(0241)/15/EMR-II (F. No. 25(5498)/15).

REFERENCES

Some congruences modulo 2 and 5 for bipartition with 5-core