
DISCRETE 
MATHEMATICS 

ELSEVIER Discrete Mathematics 140 (1995) 119-127 

A Helly theorem for geodesic convexity in strongly 
dismantlable graphs 

N o r b e r t  Po la t  

IAE, Universite Jean Moulin (Lyon II1), 15, quai Claude Bernard. 69239 Lyon Cedex 2, France 

Received 27 March 1992; revised 4 April 1994 

Abstract 

A (finite or infinite) graph G is strongly dismantlable if its vertices can be linearly ordered 
x o .. . . .  x~ so that, for each ordinal fl < ~, there exists a strictly increasing finite sequence (i~)0~<j~<n 
of ordinals such that i o = fl, i, = ct and xi~ +1 is adjacent with x~j and with all neighbors of x~j in the 
subgraph of G induced by {xy: fl ~<7 ~<~ }. We show that the Helly number for the geodesic 
convexity of such a graph equals its clique number. This generalizes a result of Bandelt and 
Mulder (1990) for dismantlable graphs. We also get an analogous equality dealing with infinite 
families of convex sets. 

O. Introduction 

A convexity on a connected graph G is an algebraic closure system ~ on V(G), such 
that every element of c~, the convex sets, induces a connected subgraph of G. 

Several kinds of graph convexities have already been investigated (see [2-6, 8]). 
Two of them seem the most natural: the geodesic convexity and the minimal path 
convexity. In the first (resp. second) a subset C of V(G) is convex if it contains the set of 
vertices of any geodesic, i.e., shortest path (resp. chordless path)joining two vertices in 
C. For  these convexities the standard parameters such as Carathrodory,  Helly and 
Radon numbers, have been studied. In particular, the Helly parameter, the only one 
we will consider in this paper, has received the most attention. The Helly number h(G) 

of a graph G is the smallest integer (if there is one) such that any finite family of 
h(G)-wise non-disjoint convex sets has a non-empty intersection. This integer is 
clearly not smaller than the cardinality of any simplex (i.e., complete subgraph) of G, 
thus than the supremum of these cardinalities, the clique number co(G) of G. For the 
minimal path convexity, Duchet [5], and independently Jamison and Nowakowski 
[8], proved that the equality h(G)=co(G) holds for any connected graph, finite or 
infinite. As for the geodesic convexity, except for distance-hereditary graphs (i.e., 
graphs for which all induced paths are geodesics, such as trees for example) where the 
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equality h(G)= og(G) is an obvious consequence of the Duchet-Jamison-Nowakowski 
theorem, and for pseudo-modular graphs (cf. [3]), it seems that, so far, this equality 
has been proved for some classes of finite graphs only: first by Cepoj [4] for chordal 
graphs, then, generalizing this result, by Bandelt and Mulder [3] for dismantlable 
graphs (a graph G is dismantlable if its vertices can be linearly ordered Xo . . . . .  x, so 
that, for each i < n, there is a vertex of the subgraph G~ induced by {x~ . . . . .  x, } which is 
adjacent with xi and with all neighbors of xi in Gi). 

To study certain problems of invariant simplices in infinite graphs, we recently 
extended this concept of dismantlable graphs by introducing the strongly dismantlable 
(or subretract collapsible) graphs. Since the finite strongly dismantlable graphs are the 
dismantlable ones, it seems quite reasonable to check if Bandelt and Mulder's result 
[3, Theorem 1] can be extended to strongly dismantlable graphs. This is what we first 
do in this paper (Theorem 4.1). Then, in Section 5, we consider infinite families of 
convex sets. 

1. Notation 

The graphs we consider are undirected, without loops and multiple edges. If x 
and y are two vertices of a graph G we denote x =oY if x = y  or {x,y}eE(G). If 
x~V(G), the set V(x;G):={y~V(G): {x,y}~E(G)} is the neighborhood of x. For 
A~V(G)  we denote by GIA the subgraph of G induced by A, and we set 
G-A:=GI(V(G)-A) .  A path W:=(Xo . . . . .  x , )  is a graph with V(W)={Xo . . . . .  x,}, 
x i#x j  if iv~j, and E(W)={{xi,xi+l}: 0~<i<n}. A ray or one-way infinite path 
R:=(Xo,Xl . . . .  ) is defined similarly. A vertex xi of a path W:=(Xo . . . . .  x , )  with 
0 < i < n  will be called an internal vertex of W. A subset C of V(G) is geodesically 
convex, for short convex, if it contains the set I (x, y) of vertices of every xy-geodesic, for 
all x, y~C. The convex hull coo(C) of C in G is the smallest convex set of G containing 
C, thus coo(C)= U,~>0C, where Co = C and C,+1 = Ux.y~c. l(x, y). The usual distance 
in G between two vertices x and y, that is the length of an xy-geodesic in G, will be 
denoted by disto(x, y). The diameter of G is diam(G):= sup {disto(x, y): x, y~ V(G)}. 
A graph is bounded if its diameter is finite. A subgraph H of G is isometric if 
distn(x,y)=disto(x,y) for all vertices x and y of H. If x is a vertex of G and 
r a non-negative integer, the set Bo(x, r) := { y~ V(G): disto(x, y) ~< r } is the ball of center 
x and radius r in G. We will write x -.<oY (resp. x <6Y) if Bo(x, 1)___Bo(y, 1) (resp. 
Bo(x, 1)cBo(y, 1)), and we will say that x is dominated (resp. strictly dominated) 
by y in G. 

If G and H are two graphs, a map f :  V(G)~ V(H) is a contraction if f preserves the 
relation = , i.e., if x = o y implies f (x )  = Hf(y). Notice that a contraction f :  G ~ H  is 
a non-expansive map between the metric spaces (V(G), disto) and (V(H), distx), i.e., 
distil(f  (x), f(y))<<.disto(x,y) for all x, yeV(G). A contraction f from G onto an 
induced subgraph H of G is a retraction, and H is a retract of G, if its restriction f l  H to 
H is the identity. 
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2. Strongly dismantlable graphs and retract-collapsible graphs 

The concept of dismantlability can be straightforwardly extended to infinite graphs 
as follows. 

Definition 2.1. A graph G is said to be dismantlable if there is a well-ordering ~ on 
V(G) such that, any vertex x which is not the greatest element of (V(G),~<) if such 
a greatest element exists, is dominated by some vertex y # x  in the subgraph of 
G induced by the set {ze V(G): x<.z}. 

As this extension seems too much general to get interesting results, we introduced 
the following restricted concept. 

Definition 2.2. A graph G is strongly dismantlable if there is a well-ordering ~< on V(G) 
with a greatest element m such that, for every vertex x # m, there is a strictly increasing 
finite sequence x = Xo < . - .  < x, = m where, for 0 ~< i < n, the vertex x~ is dominated by 
xi+l in the subgraph of G induced by the set {ze V(G): xi~z}.  

Clearly any strongly dismantlable graph is dismantlable. Furthermore, by [10, 
Theorem 4.4], any rayless connected dismantlable graph is strongly dismantlable. Thus, 
in particular the finite strongly dismantlable graphs are the dismantlable ones. 

In order to characterize those graphs, and thus to work more easily with them, we 
will recall other classes of graphs. 

2.3. Let D(G):= {x~ V(G): x < 6 y for some y~ V(G)}. For  an ordinal ~, we define G (') 
inductively as follows: 

• G (°) := G, 
• G (~+1) :=Gt~)_D(G(~)), 
• G t~) := Na<~G (p) if ct is a limit ordinal. 
The ordinal d(G):=min {~t: G(~)=G t~+t>} will be called the depth of G, and the 

subgraph G(~):=G tdt~" the base of G. Finally, for xeV(G) the depth of x will be 
d (x) :=max {~t:~t~<d(G) and x~V(Gt~))}. 

Definition 2.4. A graph G is said to be collapsible if G t*> is empty or is a simplex. 

Definition 2.5. A graph G is said to be retractable if, for any ordinals ~t and fl with 
~t <~ fl <<. d(G), there exists a re t ract ionf~ : Gt~)~ G tp> satisfying the following properties: 

(i) f~a =f#  of~r for any ordinal ~ with ~t ~<), ~< t ;  
(ii) x <~,. ,f~+l(x) for any xeD(Gt~)); 

(iii) if fl is a limit ordinal >~, then, for any xeV(G(~)), there is an ordinal 6 with 
0t ~< 3 < t ,  such that 5 ~<), ~< fl implies f~(x) =f~y(x). 
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In particular any graph of depth 0 is retractable. A graph is said to be retract- 
collapsible if it is retractable and collapsible. 

Lemma 2.6 (Polat [10, Lemmas 3.6 and 3.7]). l f G  contains no infinite simplices and 
has a finite depth, or if G is rayless, then G is retractable. 

2.7. Let G be a graph, and (Tx)x~v(6) a family of pairwise-disjoint rayless trees such 
that T / ~ G = ( x ) =  TtZ ) for every xEV(G). Note that any rayless tree is retract- 
collapsible by Lemma 2.6. Then H := Gu (..)x~v(G) T~ will be called a tree-extension of G. 
Observe that H (®) is a subgraph of G since the base of Tx is ( x )  for every x~V(G). 

Definition 2.8. A graph G will be said subretractable (resp. subretract-collapsible) if 
there is a tree-extension of G which is retractable (resp. retract-collapsible). The base of 
a retractable tree-extension of G will be called a subbase of G. The subdepth of G will be 
the ordinal 

sd(G):=min{d(H): H is a retractable tree-extension of G}. 

Clearly, sd(G)=d(G) if G is retractable. 

Proposition 2.9 (Polat [11, Theorem 3.11]). A graph is strongly dismantlable if and 
only if it is subretract-collapsible. 

Therefore, the retract-collapsible graphs are particular strongly dismantlable 
graphs. 

3. Examples of strongly dismantlable graphs 

3.1 [11, Theorem 3.4]. A ball-Helly graph (i.e., a graph such that any family of 
pairwise-non-disjoint balls has a non-empty intersection) is strongly dismantlable if 
and only if it contains no isometric rays. 

3.2 [11, Theorem 4.5]. A ball-Helly graph G is retract-collapsible if it has one of the 
following properties: 

(i) G is rayless; 
(ii) G is bounded; and in this case d(G)<diam(G). 

In particular any rayless tree is retract-collapsible since any tree is a ball-Helly 
graph. 

3.3 [11, Theorem 5.2]. Let G be subretractable graph. Then G is cop-win (the cop-win 
graphs are the graphs characterized by Nowakovski and Winkler [9] where, in some 
pursuit game, a cop can always catch a robber) if and only if it is subretract-eollapsible. 
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Consequently any strongly dismantlable graphs is cop-win, but we do not yet know if 
the converse holds. 

3.4. We will complete this section by proving a result that gives another example of 
strongly dismantlable graph. We recall that a graph is chordal if it contains no induced 
cycles of length greater than three. 

Theorem 3.5. Let G be a connected rayless graph. Then G is chordal if and only if every 
connected induced subgraph of G is retract-collapsible. 

Proof. (a) Suppose that G is not chordal, then G contains an induced cycle C of 
length greater than three. But such a cycle C is not collapsible since Ct~°~= C is not 
a simplex. 

(b) Conversely, suppose that G is chordal, and let H be a non-empty connected 
subgraph of G. H is clearly chordal and also rayless since so is G. Hence, it is 
retractable by Lemma 2.6. We have then to show that H t°°~ is a simplex to comp- 
lete the proof. As H is non-empty, connected and retractable, H t~  is a non- 
empty connected graph. Furthermore it is chordal since so is H. Suppose that H t~  
is not a simplex. Define vertices Xo, Xl . . . .  of H t~  such that (Xo, . . . ,xn)  is an 
induced path of H, for every n. Since H t°°~ is connected and not complete, there 
exists an induced path (Xo,Xl ,X2)  of length two. Suppose that Xo . . . . .  xp have 
already been defined, for some p~> 2. Since D(Ht°°~)=O, the vertex xp is not strictly 
dominated by xp_ 1 in H t~. Hence, there is a vertex xp+ le V(xp; Ht~)  - BH,~,(xp-x, 1). 
This vertex is distinct from Xo . . . . .  xp since x~H,~,x~ for 0 ~<i~< p - 2 ,  as (Xo . . . . .  xp) 
is induced. Suppose that xp+l is adjacent with a vertex xi for some i < p - 1 .  Let i 
be the greatest such integer. Then (xi, x~+l . . . . .  xp+l,x~) is a cycle of length 
greater than three. Since H t~  is chordal, this cycle must have a chord, and this 
chord must be incident with xp+ 1 as (xi . . . . .  xp) is induced by hypothesis; but this 
contradicts the maximality of i. Thus (Xo . . . . .  xp, xp+ 1 ~ is an induced path. 

Therefore (Xo, x l , . . .  ) is a (induced) ray of H t~J, a contradiction with the property 
of G. Consequently H t ~  is complete. [] 

Corollary 3.6. Let G be a connected rayless graph. Then G is chordal if and only if every 
connected induced subgraph of G is cop-win. 

That immediate consequence of 3.3 and 3.5 generalizes a result of Anstee and 
Farber [1, Corollary 2.8] about finite chordal graphs. Note that an infinite chordal 
graph may not be strongly dismantlable, even if it is bounded. Indeed Hahn et al. [7, 
Theorem 3.3] constructed a chordal graph of diameter two which was not cop-win, 
hence not strongly dismantlable by 3.3. 
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4. A Helly theorem 

Theorem 4.1. Let G be a stronoly dismantlable oraph such that og(G) is finite. Then 
h(G)=~o(G). 

Proof. We have to prove that h(G)<<.o~(G). 
(a) Suppose that G is retract-collapsible. Assume first that G is a tree, then, since 

the geodesic convexity and the minimal path convexity coincide for trees, Duchet- 
Jamison-Nowakowski's theorem gives h(G)=to(G)=I or 2 according as G has 
only one or more than one vertex. Assume now that G is not a tree. Then, since it is 
retract-collapsible, it must contain a simplex of cardinality 3, hence n :=h(G)>~ 3. 
Suppose that G has no simplex of cardinality n. Let I be a set of cardinality 
n, and (At)t~ a family of (n-1)-wise non-disjoint convex sets in G such that 

Nt+,at=0. 
In the following, for every J__l and ct<<.d(G), we put A+=N~+At and 

Atfl= A+n V(Gt:)), with AI:~= ~t:~ for all i+l. Besides we call critical set for the family 
(A~)t~ a set C:={ad i~I} where a~A~_lq for every i~l. Note that atCAi since 
(']t~tAt =0, and that the convex hull c o ~ ( C - { a t } ) -  At, for all iel. Finally, we denote 
by (f~a),~<a,<a~) the family of retractions as defined in 2.3. 

(al) We will prove by induction on ~ ~< d(G) that ~ '~ ~ - ~  # 0  for all i~I. This is clear if 
-~'~ ~ = 0 for ~t = O. Let a/> O. Suppose that this holds for any fl < ~, and assume that ,,t~_/~ 

some pel. 
Let C:={at: i~I} be a critical set for the family (A~)tet such that the integer 

2(C) := ~ , ~  disto(a, a~) is minimum. And let 

fl :=sup{y < oc fo~(at)~At_~} for all i~l }. 

If Yv is the least ordinal ? such that foyp(av)=fo~(av), then fo~p(ap)¢A~-~p~ by the 
assumption, hence fl < yv~< a, with the strict inequality by 2.3(iii) if • is a limit ordinal. 
Furthermore, by 2.3(iii),fop(aO~A~_ ~il for all i~l, with fop+t(aj)¢Al-~ for some j¢I. 
The set fop(C) is then a critical set for the family (At)ia which is included in V(G~P~). 
Since fop is a retraction and by the minimality of 2(C), dista~,(fop(a0, 
fop(ar))=dist~(a, a~) for every i, i'el: hence 2(foa(C))=2(C). 

For all i ~ l - { j } ,  let bt be a neighbor of fop(a j) on an (fop(aj), (fop(a0)-geodesic in 
GtB~. Note that bt ~A~- ~i.j/, hence in particular fop + ~ (a~) # bt. Since fop + ~ (a j) is adjacent 
to bt for every i e l - { j  }, all bt's must be adjacent; otherwise there would be i:~ i' such 
that the path (fop(at),fo~ + ~ (a~),foa(a3) is a geodesic, hence fop + 1 (a j) would belong to 
A~_~j~ by convexity, contrary to the hypothesis. Then, since G has no simplex of 
cardinality n, the bt's cannot be all distinct, hence bk=bh for some k#h. Thus 
bkeA~-~. Therefore, C':=(fo~(C)-{fo~(a~)})~{bk} is a critical set for (At)te~ such 
that 

dista(bk,foa(at)) <~ distG(b.fop(a~)) + 1 = dista (foa (aj),foa(ai)) 
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for all i e I -  {p }, with at least strict inequalities for i= k and i=  h. Hence, 2(C' )< 2(C), 
a contradiction with the minimality of 2(C). Consequently A<~} -~r~ --,I-/i} ~-v for all ieI. 

(a2) For  ~ = d(G), (A~)i~ is then a family of ( n -  1)-wise non-disjoint convex sets in 
G <~} such that N ~ A ~ = 0 .  Thus, there is a critical set C for this family. This set is of 
cardinality n by the definition of critical sets, thus G I C is not a simplex by the 
assumption we made for G, but this contradicts the hypothesis that G is collapsible. 

Therefore h(G)=oJ(G). 
(b) Suppose now that G is strongly dismantlable, thus subretract-collapsible, but 

not retract-collapsible. Let H :--GuUx~vt~}T~ be a retract-collapsible tree-extension 
of G such that d(H)= sd(G). Any subset of V(G) which is convex in G is also convex in 
H, and conversely. Furthermore, for every xe V(G), h(Tx)=o~(T~)<<.2 by (a); hence 
h(G) = h(H). Besides co(G) = o~(H). Hence, h(G)= o~(G), and the proof is complete. [] 

Corollary 4.2. Let G be either a ball-Helly graph without isometric rays, or a rayless 
chordal graph. I f  to(G) is finite, then h(G)=to(G). 

This is a consequence of 4.1 and of 3.1 or 3.5, respectively. 

5. Infinite families of convex sets 

The Helly number of a graph G is related to finite families of convex sets only, even 
if G is infinite; if one omits this condition of finiteness by considering any family of 
convex sets, finite or infinite, then the equality h(G)--co(G) does not hold in general. 
Take, for example, a one-way infinite path R:=(Xo,Xl . . . .  ) and the family ({xi: 
n < i} )n~>0 of convex sets; then these sets are pairwise non-disjoint, but have an empty 
intersection. We will show that this is not the case for the strongly dismantlable 
graphs. 

Notation 5.1. If I is a set and n a cardinal, [ I ]  <n will denote the set of subsets of I of 
cardinality less than n. For a graph G, we will denote by ~o+(G) the least cardinal 
n such that G has no simplex of cardinality n; if to + (G) is finite, then it is the successor 
of the usual clique-number co(G) of G. A family of sets will be said < n-wise non-disjoint 
(n>0)  if it is p-wise non-disjoint for every cardinal p<n, i.e., if every subfamily of 
cardinality less then n has a non-empty intersection. For a graph G we will denote by 
h + (G) the least cardinal n such that any family of < n-wise non-disjoint convex sets in 
G has a non-empty intersection. If the Helly-number h(G) of G exists, then 
h+(G)=h(G)+l. 

Definition 5.2. A set S of vertices of a graph G is fragmented if there is a finite subset 
F of V(G) such that the elements of S are pairwise separated by F (i.e., two different 
elements of S do not belong to the same component of G-F) .  



1 2 6  N. Polat / Discrete Mathematics 140 (1995) 119-127 

Lemma 5.3. Let A = {aa: fl < ct } be an infinite set of vertices of a connected rayless graph 
G. Then there is a cofinal subset F of ct such that { a / ) , s F }  is fragmented. 

Proof. Assume that this does not hold. Then, for any finite subset F of V(G), there is 

f l<~  and a component G(F) of G - F  which contains {at: fl~<),<~}. 
Construct vertices Xo,Xx ....  such that, for n>0 ,  x,_~ and x~ are adjacent and 

x,~ V(G({xo . . . . .  x,_ ~ })), as follows. Let Xo be any vertex of G. Suppose that Xo . . . . .  x, 
have already been constructed. By the assumption, G({xo . . . . .  x,}) is non-empty, and 
by the induction hypothesis, it is a strict subgraph of G( {Xo . . . .  , x,_ ~ } ) for n ~> 1 since 
x,~ V(G({xo . . . . .  x~_ ~ })). Then let x, + 1 be a vertex of G({xo . . . . .  x, }) adjacent with 
x,. Therefore, (Xo, xt . . . .  ) is a ray, thus contradicting the assumption on G. [] 

Theorem 5.4. Let G be a strongly dismantlable graph which is rayless if its subdepth is 
infinite. Let x be an infinite cardinal, and let (Ai)i~ be a family o f (x-wise  non-disjoint 
convex sets in G. I f  ~ i ~ A i = 0 ,  then there exists a simplex K in G such that 
I V(K)~Ai[ >1 x for every ieI; in particular, sd(G) isfinite. Furthermore h + (G)= ~o + (G). 

Proof. (a) Assume that G is retract-collapsible and that there is no simplex K in 
G such that I V(K)c~Ail>>.x for every ieI. 

We will use the notation we introduced in part (a) of the proof of Theorem 4.1. 
Notice that, for any J~[ l]  <~, the subgraph G I At ~ is a simplex if A~ ~ + t~ =0,  since, for 
any two non-adjacent vertices a and b of At ~, ifc is an internal vertex of an ab-geodesic 
in G <~>, then so is fo~+l(c). 

(al) We will prove by induction on ~t<<.d(G) that A~ ~J 4:0 for all J e [ l ]<~ .  This is 
clear if ct = 0. Let ~ >/0. Suppose that this holds for any fl < ct. 

Case 1: c t=f l+  1. (AlaJ)i~1 is then a family of <x-wise non-disjoint convex sets in 

,~ A~P>_ 0 G (a) such that I l i e l  i - -  , thus [A~a)[/>x for any JE[I ]<~;  hence A~ ~) is not a simplex 
by the assumption and the fact that IA~c~A~P)[ >>. x for every i~I. Thus, A~ ~J is non-empty 
by the preceding remark. 

Case 2: ~t is a limit ordinal. Then G is rayless. Let J~[I]<~.  Suppose that A~)=0. 
Then, for every fl<~, there is ap~A~P)~D(G~O)). The set {aa: f l<~} is then infnite. By 
Lemma 5.3, there exists a non-empty finite set Fj of vertices of G, and a cofinal subset 
Fj  of • such that, for every fl, y~Fj ,  any apar-path of G meets Fj .  W.l.o.g. we can 
suppose that every vertex of Fj  belongs to an aaar-geodesic for some fl, y~F', and for 
every cofinal subset F '  of Fj .  Thus, Fj~_ V(Ata a)) for every fl<ct. Hence Fj~_ V(G~)). 
Therefore At ~) ~ 0. 

(a2) For  ~ = d(G), (Al~))i~t is then a family of < x-wise non-disjoint convex sets in 
G t~) such that ~ A I  ~) =0.  Thus, for any ieI, IAI~)I ~> x and thus AI ~) is not a simplex by 
the assumption on G and the fact that IAjnAI~)I/> x for everyjeI .  Hence, the base G t~) 
of G is not a simplex, a contradiction with the hypothesis that G is collapsible. 

(b) Suppose now that G is subretract-collapsible but not retract-collapsible. Let 
H be a retract-collapsible tree-extension of G such that d(H)=sd(G).  Clearly, any 
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subset of V(G) which is convex in G is also convex in H, and conversely. Besides any 
infinite simplex of H is a simplex of G. The result is then a consequence of (a). 

Furthermore,  using Theorem 4.1, we get immediately h ÷ (G)= ~o + (G). [] 

Corollary 5.5. I f  G is a rayless or a bounded ball-Helly graph, or if it is a rayless chordal 
graph, then h + (G)=  09 + (G). 

This is a consequence of 5.4 and of 3.2 or 3.5, respectively. 
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