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Abstract

We define two finiteq-analogs of certain multiple harmonic series with an arbitrary number of free
parameters, and prove identities for theseq-analogs, expressing them in terms ofmultiply nested sums
involving the Gaussian binomial coefficients. Special cases of these identities—for example, with all
parameters equal to 1—have occurred in the literature. The special case with only one parameter
reduces to an identity for the divisor generating function, which has received some attention in
connection with problems in sorting theory. The general case can be viewed as a duality result,
reminiscent of the duality relation for the ordinary multiple zeta function.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main results in[32] is the identity

∞∑
k=1

(−1)k+1qk(k+1)/2

(1− q)(1− q2) · · · (1− qk−1)(1− qk)2
=

∞∑
k=1

qk

1− qk
, |q| <1. (1.1)
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As Uchimura showed, the series on the left-hand side of (1.1) is the limiting case(n → ∞)

of the polynomials

Un(q) :=
n∑

k=1

kqk
n∏

j=k+1

(1− qj )

which arise in sorting:Un(1/2) is the average number of exchanges required to insert a new
element into a heap-ordered binary tree with 2n − 1 elements[31]. Andrews and Uchimura
[2] later proved the finite analog

n∑
k=1

(−1)k+1qk(k+1)/2

1− qk

[
n

k

]
=

n∑
k=1

qk

1− qk
, 0< n ∈ Z, (1.2)

of (1.1) by differentiating theq-Chu–Vandermonde sum. Here,

[
n

k

]
:=

k∏
j=1

1− qn−k+j

1− qj
(1.3)

is the (Gaussian)q-binomial coefficient, which vanishes by convention unless 0�k�n.
Subsequently, Dilcher[16] proved the generalization

n∑
k=1

(−1)k+1qk(k+1)/2+(m−1)k

(1− qk)m

[
n

k

]
=

n∑
k1=1

qk1

1− qk1

k1∑
k2=1

qk2

1− qk2

· · ·
km−1∑
km=1

qkm

1− qkm
(1.4)

of (1.2) by a double induction onn andm, and noted that (1.4) can be viewed as aq-analog
of the identity

n∑
k=1

(−1)k+1

km

(
n

k

)
=

∑
n�k1�k2� ···�km �1

1

k1k2 · · · km

, 0< m ∈ Z, (1.5)

involving a finite multiple harmonic sum with unit exponents. In this paper, we provide a
generalization of (1.4) that gives aq-analog of (1.5)with arbitrary positive integer exponents
on thekj .We also give aq-analog of (1.5) in which the inequalities on the indices are strict.

2. Main result

Henceforth, we assumeq is real and 0< q <1. Theq-analog of a non-negative integern
is

[n]q :=
n−1∑
k=0

qk = 1− qn

1− q
.
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Definition 1. Let n, m and s1, s2, . . . , sm be non-negative integers. Define the multiply
nested sums

Zn[s1, . . . , sm] :=
∑

n�k1� ···�km �1

m∏
j=1

qkj [kj ]−sj
q , (2.1)

An[s1, . . . , sm] :=
∑

n�k1� ···�km �1

(−1)k1+1qk1(k1+1)/2
[

n

k1

]

×
m∏

j=1

q(sj −1)kj [kj ]−sj
q , (2.2)

with the understanding thatZ0[s1, . . . , sm]=A0[s1, . . . , sm]=0, and with empty argument
lists,Zn[ ] = An[ ] = 1 if n >0 andm = 0. As in (1.4) and (1.5), the sums are over all
integerskj satisfying the indicated inequalities.

It will be convenient to make occasional use of the abbreviationsCatmj=1{sj } for the
concatenated argument sequences1, . . . , sm and{s}m = Catmj=1{s} for m�0 consecutive
copies of the arguments. We can now state our main result.

Theorem 1. Letn, r anda1, b1, . . . , ar , br be positive integers. Then

Zn

[
r−1
Cat
j=1

{{1}aj −1, bj + 1}, {1}ar−1, br

]
= An

[
a1, {1}b1−1,

r

Cat
j=2

{aj + 1, {1}bj −1}
]
.

Example 1. Puttingr = 2, a1 = 3, b1 = 2, a2 = 1, b2 = 1 in Theorem 1 gives the identity
Zn[1,1,3,1] = An[3,1,2], or equivalently,

∑
n� j �k �m�p�1

qj+k+m+p

[j ]q [k]q [m]3q [p]q
=

∑
n�k �m�p�1

(−1)k+1qk(k+1)/2

×
[
n

k

]
q2k+p

[k]3q [m]q [p]2q
.

Example 2. Puttingr = 2, a1 = 1, b1 = 1, a2 = 1, b2 = 2 in Theorem 1 gives the identity
Zn[2,2] = An[1,2,1], or equivalently,

∑
n�k �m�1

qk+m

[k]2q [m]2q
=

∑
n�k �m�p�1

(−1)k+1qk(k+1)/2
[
n

k

]
qm

[k]q [m]2q [p]q
.

Theorem 1 has a concise reformulation in terms of involutions on sequences, or equiv-
alently, dual words in the non-commutative polynomial algebraQ〈x, y〉: see Section 4.
Additional consequences of Theorem 1 will be explored in the next section.
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3. Special cases

For realx andy, we depart from convention and borrow the suggestive notation of[23]
for theq-analog of(x + y)n:

(x + y)nq :=
n−1∏
k=0

(x + yqk), 0�n ∈ Z.

It is easily seen that theq-binomial coefficient (1.3) has the alternative representation[
n

k

]
= (1− q)nq

(1− q)kq(1− q)n−k
q

, 0�k�n,

from which follow the well-known limiting results

lim
n→∞

[
n

k

]
= 1

(1− q)kq
, lim

q→1

[
n

k

]
=

(
n

k

)
= n!

k!(n − k)! .

Notation for limiting cases of the sums in Definition 1 are as follows.

Definition 2.

Z[s1, . . . , sm] := lim
n→∞ Zn

[
m

Cat
j=1

sj

]
=

∑
k1� ···�km �1

m∏
j=1

qkj [kj ]−sj
q ,

A[s1, . . . , sm] := lim
n→∞ An

[
m

Cat
j=1

sj

]

=
∑

k1� ···�km �1

(−1)k1+1qk1(k1+1)/2

(1− q)k1q

m∏
j=1

q(sj −1)kj

[kj ]sjq
.

Definition 3.

Zn(s1, . . . , sm) := lim
q→1

Zn

[
m

Cat
j=1

sj

]
=

∑
n�k1� ···�km �1

m∏
j=1

k
−sj
j ,

An(s1, . . . , sm) := lim
q→1

An

[
m

Cat
j=1

sj

]
=

∑
n�k1� ···�km �1

(−1)k1+1
(

n

k1

) m∏
j=1

k
−sj
j .

With this notation, the following consequences of Theorem 1 are immediate.

Corollary 1. Letn, r anda1, b1, . . . , ar , br be positive integers. Then

Zn

(
r−1
Cat
j=1

{{1}aj −1, bj + 1}, {1}ar−1, br

)

= An

(
a1, {1}b1−1,

r

Cat
j=2

{aj + 1, {1}bj −1}
)
,
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Z

[
r−1
Cat
j=1

{{1}aj −1, bj + 1}, {1}ar−1, br

]
= A

[
a1, {1}b1−1,

r

Cat
j=2

{aj + 1, {1}bj −1}
]
.

Corollary 2. Let n, a and b be positive integers. Then

Zn[{1}a−1, b] = An[a, {1}b−1]. (3.1)

Proof. Putr = 1 in Theorem 1. �

Remark 1. If we putb = 1 anda = m in (3.1), we find that

Zn[{1}m] = An[m], (3.2)

which is (1.4).As we shall see,An[0]=1 is an easy consequence of theq-binomial theorem.
Since we have definedZn[ ] = 1, it follows that (3.2) also holds whenm = 0. Concerning
the equivalent equation (1.4), this point was also noted by Dilcher[16].

Remark 2. If we puta =1 andb=m in (3.1), there followsZn[m]=An[{1}m], an identity
dual to (1.4) and (3.2):

n∑
k=1

qk

[k]mq
=

∑
n�k1� ···�km �1

(−1)k1+1qk1(k1+1)/2
[

n

k1

] m∏
j=1

1

[kj ]q , (3.3)

with respective limiting cases

n∑
k=1

1

km
=

∑
n�k1� ···�km �1

(−1)k1+1
(

n

k1

) m∏
j=1

1

kj

and

∞∑
k=1

qk

[k]mq
=

∑
k1� ···�km �1

(−1)k1+1qk1(k1+1)/2

(1− q)k1q

m∏
j=1

1

[kj ]q .

Prodinger’s main result[28, Theorem 1]is easily obtained from (3.3) by replacingq with
1/q. The fact that Prodinger obtained his result from (1.4) as a consequence of an inverse-
pair equivalence suggests that additional instances of our Theorem 1 may likewise be so
related. That this is indeed the case is one of the insights of the next section.

4. Duality

Here, we recast Theorem 1 in the language ofduality, a concept first formulated for mul-
tiple harmonic series in[19], and subsequently generalized[26,12]. Following a suggestion
of Hoffman[21], define an involution on the setS of finite sequences of positive integers
as follows. Let� be the map that sends a sequence inS to its sequence of partial sums. The
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image of� thus consists of the strictly increasing finite sequences of positive integers, on
which we define an involution� by

�
(

m

Cat
j=1

tj

)
= {k ∈ Z : 1�k� tm}\{tj : 1�j �m − 1}, 0< m ∈ Z,

arranged in increasingorder. In otherwords,�mapsastrictly increasingsequenceof positive
integerst1, . . . , tm to its set-theoretic complement in the positive integers up totm, and then
tackstm onto the end of the result. Clearly, the composition of maps�−1�� is an involution
ofS, and it is easy to see that Theorem 1 can be restated as

Zn[�s ] = An[�−1���s] ∀�s ∈ S, 0< n ∈ Z.
For an alternative duality reformulation, leth = Q〈x, y〉 denote the non-commutative

polynomial algebra over the field of rational numbers in two indeterminatesx andy. Let
h′ = hy and fix a positive integern. DefineQ-linear mapŝAn andẐn onh

′ by

Ân


 m∏

j=1

xsj −1y


 := An

[
m

Cat
j=1

sj

]
, Ẑn


 m∏

j=1

xsj −1y


 := Zn

[
m

Cat
j=1

sj

]
,

for any positive integerss1, s2, . . . , sm. LetJ be the automorphism ofh that switchesx and
y. Define an involution ofh′ by

w∗ = (Jw)x−1y ∀w ∈ h′. (4.1)

It is now a routine matter to show that Theorem 1 can be restated as

Ân[w] = Ẑn[w∗] ∀w ∈ h′. (4.2)

Now Prodinger[28, Lemma 1]proved that for positive integern, the inverse pairs

n∑
k=0

�k =
n∑

k=0

(−1)kqk(k−1)/2
[
n

k

]
�k (4.3)

and
n∑

k=0

q−k�k =
n∑

k=0

(−1)kqk(k−1)/2−kn

[
n

k

]
�k (4.4)

are equivalent. In other words, (4.3) holds for a pair of sequences�0, �1, . . . , �n and
�0,�1, . . . ,�n if and only if (4.4) does. But our Theorem 1 states that (4.3) holds for
the sequences

�k = −
∑

k �k2� ···�km �1

qs1k

[k]s1q
m∏

j=2

q(sj −1)kj

[kj ]sjq
,

�k =
∑

k �k2� ···�km �1

qk

[k]s1q
m∏

j=2

qkj

[kj ]sjq
,
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wheres1, . . . , sm are positive integers, 1�k�n, and�0=�0=0. Equivalently, (4.2) holds
withw=xs1−1y · · · xsm−1y. Since duality is an involution onwords,w∗∗=w, andTheorem
1 also gives the dual statementAn[w∗]=Zn[w]. But this latter statement is easily seen to be
equivalent to (4.4) if we replaceq by 1/q throughout. Thus Prodinger’s result implies that
if An[w] = Zn[w∗] is known for a particular wordw, then we also knowAn[w∗] = Zn[w],
and vice versa. Of course, knowing only that the two statements are equivalent does not
establish their truth in any particular instances—for this we need our Theorem 1. What it
shows is that the notion of duality in the case of Theorem 1 coincides with the existence of
a certain class of inverse pair identities.
For additional duality results concerning multiple harmonicq-series, see[12]. It is in-

teresting to contrast (4.1) and (4.2) with the corresponding duality statement for multiple
zeta values[20,22], for which the relevant involution is theanti-automorphism ofxhy that
switchesx andy.

5. Proof of Theorem 1

By induction, it suffices to establish the two recurrence relations forAn stated in Propo-
sitions 1 and 2, along with the base casesAn[ ] = An[0] = 1 for 0< n ∈ Z.

Proposition 1. Let n,m, ands1, s2, . . . , sm be positive integers. Then

An[s1, s2, . . . , sm] =
n∑

r=1

qr [r]−1
q Ar [s1 − 1, s2, . . . , sm].

Proposition 2. Let n,m, ands2, s3, . . . , sm be positive integers. Then

An[0, s2, s3, . . . , sm] = [n]−1
q An[s2 − 1, s3, . . . , sm].

The base caseAn[ ]=1 forn >0 is true by definition.As alluded to previously, the other
base case is an easy consequence of theq-binomial theorem[1,18,23]

(x + y)nq =
n∑

m=0

qm(m−1)/2
[

n

m

]
xn−mym. (5.1)

Puttingx = 1 andy = −1 in (5.1), we see that ifn >0, then

An[0] =
n∑

m=1

(−1)m+1qm(m−1)/2
[

n

m

]
= 1− (1− 1)nq = 1.

Thus, it remains only to prove Propositions 1 and 2.
We shall make use of the (equivalent by symmetry)q-Pascal recurrences[23][

r

k

]
=

[
r − 1

k

]
+ qr−k

[
r − 1
k − 1

]
,

[
r

k

]
= qk

[
r − 1

k

]
+

[
r − 1
k − 1

]
(5.2)

and the following elementary summation formula.
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Lemma 1. Let k and n be positive integers withk�n. Then

n∑
r=k

qr

[
r − 1
k − 1

]
= qk

[
n

k

]
.

Proof. Write the firstq-Pascal recurrence (5.2) in the form

qr−k

[
r − 1
k − 1

]
=

[
r

k

]
−

[
r − 1

k

]
,

multiply through byqk, and sum onr. �

It will be helpful to introduce some further notation.

Definition 4. Let n,m, ands1, . . . , sm be non-negative integers. Define

Wn[s1, . . . , sm] :=
∑

n�k1� ···�km �1

m∏
j=1

q(sj −1)kj [kj ]−sj
q ,

with the understanding thatW0[s1, . . . , sm] = 0 andWn[ ] = 1 if n >0 andm = 0.

Proof of Proposition 1. By Lemma 1, we have

An[s1, . . . , sm]

=
n∑

k=1

(−1)k+1qk(k−1)/2+(s1−1)k[k]−s1
q Wk[s2, . . . , sm]qk

[
n

k

]

=
n∑

k=1

(−1)k+1qk(k−1)/2+(s1−1)k[k]−s1
q Wk[s2, . . . , sm]

n∑
r=k

qr

[
r − 1
k − 1

]

=
n∑

r=1

qr
r∑

k=1

(−1)k+1qk(k−1)/2+(s1−1)k
[

r − 1
k − 1

]
[k]−s1

q Wk[s2, . . . , sm]

=
n∑

r=1

qr [r]−1
q

r∑
k=1

(−1)k+1qk(k+1)/2+(s1−2)k
[

r

k

]
[k]1−s1

q Wk[s2, . . . , sm]

=
n∑

r=1

qr [r]−1
q Ar [s1 − 1, s2, . . . , sm]. �
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Proof of Proposition 2. By the secondq-Pascal recurrence (5.2), we have

An[0, s2, . . . , sm]

=
n∑

k=1

(−1)k+1qk(k−1)/2
[
n

k

]
Wk[s2, . . . , sm]

=
n∑

k=1

(−1)k+1qk(k−1)/2
{
qk

[
n − 1

k

]
+

[
n − 1
k − 1

]}
Wk[s2, . . . , sm]

=
n∑

k=1

(−1)k+1qk(k+1)/2
[
n − 1

k

]
Wk +

n∑
k=1

(−1)k+1qk(k−1)/2
[
n − 1
k − 1

]
Wk

=
n−1∑
k=1

(−1)k+1qk(k+1)/2
[
n − 1

k

]
Wk +

n−1∑
k=0

(−1)kqk(k+1)/2
[
n − 1

k

]
Wk+1

= W1 +
n−1∑
k=1

(−1)kqk(k+1)/2
[
n − 1

k

]
(Wk+1 − Wk)

=
n−1∑
k=0

(−1)kqk(k+1)/2
[
n − 1

k

]
q(s2−1)(k+1) [k + 1]−s2

q Wk+1[s3, . . . , sm]

=
n∑

k=1

(−1)k+1qk(k−1)/2
[
n − 1
k − 1

]
q(s2−1)k [k]−s2

q Wk[s3, . . . , sm]

= [n]−1
q

n∑
k=1

(−1)k+1qk(k+1)/2
[
n

k

]
q(s2−2)k [k]1−s2

q Wk[s3, . . . , sm]

= [n]−1
q An[s2 − 1, s3, . . . , sm]. �

The following consequence of Proposition 2 may be worth noting.

Corollary 3. Let n be a positive integer, and let m be a non-negative integer. Then
An[0, {1}m] = [n]−m

q , or equivalently,

∑
n�k �k1� ···�km �1

(−1)k+1qk(k−1)/2
[
n

k

] m∏
j=1

[kj ]−1
q = [n]−m

q .

6. Multiple harmonic q-series with strict inequalities

Much of the recent literature concerning multiple harmonic series has focused on sums
of the form[3–6,9–11,13,19,20,22,26]

�(s1, . . . , sm) :=
∑

k1>···>km>0

m∏
j=1

k
−sj
j (6.1)
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and variousmultiple polylogarithmic extensions[7,8]. Thus, itmay beof interest to consider
finite q-analogs of (6.1) akin to (2.1), but in which the inequalities are strict as opposed to
weak.

Definition 5. Let n,mands1, s2, . . . , sm be non-negative integers. Define

Z>
n [s1, . . . , sm] :=

∑
n�k1>···>km �1

m∏
j=1

qkj [kj ]−sj
q ,

A>
n [s1, . . . , sm] :=

∑
n�k1>···>km �1

(−1)k1qk1(k1+1)/2
[

n

k1

] m∏
j=1

q(sj −1)kj [kj ]−sj
q ,

with the understanding that ifm >0, thenZ>
0 [s1, . . . , sm] = A>

0 [s1, . . . , sm] = 0 and if
m = 0, thenZ>

n [] = A>
n [] = 1 for all n�0.

In light of (6.1), it is clear that limn→∞ limq→1Z>
n [�s] = �(�s) if �s = s1, . . . , sm is any

vector of positive integers withs1>1. Of course, there is an obvious relationship between
Zn andZ>

n and betweenAn andA>
n . For example,

Zn[s] = Z>
n [s], Zn[s1, s2] = Z>

n [s1, s2] + Z>
n [s1 + s2],

and

Zn[s1, s2, s3] = Z>
n [s1, s2, s3] + Z>

n [s1 + s2, s3] + Z>
n [s1, s2 + s3]

+ Z>
n [s1 + s2 + s3].

More generally,Zn[�s ] is the sumof thoseZ>
n [�t ], where�t is obtained from�s by replacing any

number of commasby plus signs.Despite this relationship, the presence of strict inequalities
in Definition 5 does appear to complicate matters insofar as there is no simple analog of
Theorem 1 relatingZ>

n toA>
n . Nevertheless, there are recurrences forA>

n analogous to the
recurrences satisfied byAn. Arguing as in Section 5, we find that

A>
n [s1, . . . , sm] =

n∑
r=1

qr [r]−1
q A>

r [s1 − 1, s2, . . . , sm],

A>
n [0, s2, . . . , sm] = −A>

n−1[s2, . . . , sm].
As a consequence, one can establish (using induction as in the proof of Corollary 3) the
following result.

Theorem 2. Let m and n be non-negative integers. Then(−1)mZ>
n [{1}m] = A>

n [{1}m].

Corollary 4. Let m be a positive integer. Then

(−1)m
∑

k1>···>km>0

m∏
j=1

qkj

[kj ]q =
∑

k1>···>km>0

(−1)k1
qk1(k1+1)/2

(1− q)k1q

m∏
j=1

1

[kj ]q .

Proof. Let n → ∞ in Theorem 2. �
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Corollary 5. Let m and n be positive integers. Then

(−1)m
∑

n�k1>···>km �1

m∏
j=1

k−1
j =

∑
n�k1>···>km �1

(−1)k1
(

n

k1

) m∏
j=1

k−1
j .

Proof. Let q → 1 in Theorem 2. �

One can also prove Theorem 2 by differentiating theq-Chu–Vandermonde summation as
in the Andrews–Uchimura[2] proof of (1.2):

Alternative Proof of Theorem 2. Let x be real,x �= 1. Write theq-Chu–Vandermonde
sum[18,30] in the form

(1− xq)nq

(1− q)nq
= 1+

n∑
k=1

(−1)kqk(k+1)/2
[
n

k

]
(x − 1)kq
(1− q)kq

and differentiate both sidesm >0 times with respect tox, obtaining

(−1)m
(1− xq)nq

(1− q)nq

∑
n�k1>···>km �1

m∏
j=1

qkj

1− xqkj

=
n∑

k=1

(−1)kqk(k+1)/2
[
n

k

]
(x − 1)kq
(1− q)kq

∑
k>k1>···>km �0

m∏
j=1

1

x − qkj
. (6.2)

Now let x → 1 and note that the sum on the right-hand side of (6.2) vanishes ifkm >0.
Thus,

(−1)m
∑

n�k1>···>km �1

m∏
j=1

qkj

1− qkj

=
n∑

k=1

(−1)k
[
n

k

]
qk(k+1)/2

1− qk

∑
k>k1···>km−1>0

m−1∏
j=1

1

1− qkj
.

Finally, multiply both sides by(1− q)m to complete the proof. �

7. Final remarks

In [12,14,15,27,33], the multipleq-zeta function

�[�s; q] = �[s1, . . . , sm] :=
∑

k1>···>km>0

m∏
j=1

q(sj −1)kj

[kj ]sjq
is the central object of study. With the abbreviation

|�s| :=
m∑

j=1

sj ,
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we note the relationship

�[�s; q] = q |�s|Z>∞[�s;1/q],
whereZ>∞[�s;1/q] denotes the limit asn → ∞ of theZ>

n -function of Definition 5 withq
replaced by 1/q. As noted by one of the referees, often more than oneq-analog is possible.
Zudilin [34] has considered the sums

∑
k1>···>km>0

m∏
j=1

qkj sj

(1− qkj )sj
.

See also[29,24,25]. The reasonwhy the particularq-analog used in this paper was chosen is
that, in addition to giving an intriguing extension of previously published results[2,16,28],
it seemed a fairly natural choice based on the ideas in the related works[8,12,14,15].
Fu and Lascoux[17] have generalized (1.4) in a different direction. They proved that if

n andmare positive integers, then

∑
n�k1� ···�km �1

m∏
j=1

a − bqkj

c − zqkj

= cn(1− zq/c)nq

(1− q)nq(az − bc)n−1

n∑
k=1

[
n

k

]

× (−1)k−1qk(k+1)/2−nk(1− qk)(a − bqk)m+n−1

(c − zqk)m+1 . (7.1)

Letting c = z = 1, a = 0, b = −1 in (7.1) gives (1.4).
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