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Abstract

We define two finiteg-analogs of certain multiple harmonic series with an arbitrary number of free
parameters, and prove identities for thgsenalogs, expressing them in terms of multiply nested sums
involving the Gaussian binomial coefficients. Special cases of these identities—for example, with all
parameters equal to 1—have occurred in the literature. The special case with only one parameter
reduces to an identity for the divisor generating function, which has received some attention in
connection with problems in sorting theory. The general case can be viewed as a duality result,

reminiscent of the duality relation for the ordinary multiple zeta function.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction
One of the main results ifi32] is the identity
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As Uchimura showed, the series on the left-hand side of (1.1) is the limitingeaseco)
of the polynomials

Un(g) =) k¢ ] @-q)
k=1

j=k+1

which arise in sortingl/,, (1/2) is the average number of exchanges required to insert a new
element into a heap-ordered binary tree with-21 element$31]. Andrews and Uchimura
[2] later proved the finite analog

n k
q
Z]:Z . O<nez (1.2)

n (_1)k+1qk(k+l)/2[
o lma

_ gk
k=1 1-q
of (1.1) by differentiating the-Chu—Vandermonde sum. Here,

k
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is the (Gaussiang-binomial coefficient, which vanishes by convention unlesskG<n.
Subsequently, Dilchgd.6] proved the generalization
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of (1.2) by a double induction omandm, and noted that (1.4) can be viewed asanalog
of the identity

n (_1)/<+1 n\ 1
Z T )= Z T O<meZ, (1.5)

k=1 nzkizkyzZky=1

involving a finite multiple harmonic sum with unit exponents. In this paper, we provide a
generalization of (1.4) that givegjganalog of (1.5) with arbitrary positive integer exponents
on thek;. We also give @-analog of (1.5) in which the inequalities on the indices are strict.

2. Main result

Henceforth, we assuntgis real and O< ¢ < 1. Theg-analog of a non-negative integer
is

1-—gq
1—q°

n—1
(g =) q" =
k=0
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Definition 1. Let n, m ands1, s2, ..., s, be non-negative integers. Define the multiply
nested sums
m
. —S§;
Zulst .. .osmli= Y [ 4" k1", (2.2)
nzkiz-Zky =21 j=1
n
Anlst, ... sm] 1= Yo (mpftightarhre [ kl]
n>ki> ke >1
m
% l_[ q(Sj*l)kj[kj]q_S!, (2.2)
j=1
with the understanding th@y[s1, ..., s, 1= Aols1, . . . , s, ] =0, and with empty argument

lists, Z,[ 1= A,[ 1=21if n>0andm = 0. As in (1.4) and (1.5), the sums are over all
integersk; satisfying the indicated inequalities.

It will be convenient to make occasional use of the abbreviatat’ ,{s;} for the

concatenated argument sequenge. ., s,, and{s}” = Cat"’_, {s} for m >0 consecutive
copies of the argumest We can now state our main resu{t.

Theorem 1. Letn, r andas, b1, ..., a,, b, be positive integersThen
r—1 r
2, | Cati®r 4,4 20, 114 by | = 4, [an, 10, Cattay + 2,107
J= J=
Example 1. Puttingr =2,a1 = 3,b1 = 2,a2 = 1, b = 1 in Theorem 1 gives the identity
Z,[1,1,3,1] = A,[3, 1, 2], or equivalently,
j+k
nzjzksmsp>1 Wlalklglmlglply o S5 o0
y |:I’l:| q2k+17
k | k13 1m], [p1
Example 2. Puttingr =2,a1 =1,b1 =1,a2 = 1, b = 2 in Theorem 1 gives the identity
Z,[2, 2] = A,[1, 2, 1], or equivalently,
k+m

R k4L k(k+1)/2 [n] q
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—
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m

Theorem 1 has a concise reformulation in terms of involutions on sequences, or equiv-
alently, dual words in the non-commutative polynomial algeBka, y): see Section 4.
Additional consequences of Theorem 1 will be explored in the next section.



David M. Bradley / Discrete Mathematics 300 (2005) 44—-56 47

3. Special cases

For realx andy, we depart from convention and borrow the suggestive notati¢a3pf
for theg-analog of(x + y)":

n—1

x+y)p =] +ydH, O0<nez
k=0

It is easily seen that thg-binomial coefficient (1.3) has the alternative representation

1—g)"
[”}: (k 7 . 0<k<n,
kI -9y -9)

from which follow the well-known limiting results

im "= —2— im |72 (") =
n—oo | k _(1_q)l;’ g—1| k _(k>_kz(n_k)!'

Notation for limiting cases of the sums in Definition 1 are as follows.

Definition 2.

m
m —s;
Zlst, - sn) = limZ, [gglt s,} = Y [ldk",

m
Als1, ..., Sml: nleoo A, [(j:i’:llt sj]

B Z (_1)k1+lqk1(k1+1)/2 m q(ijl)kj
= - =
k> >k 21 A=q)g =1 Kld
Definition 3.
m m s
BT o —sj
Zny(s1, ..., Sm) .—;ILnl Zn [?jlt s/:|— Z l_[kj ,
Nk ks 21 j=1
m
m
N T N ka1 =S
An(S1s -, Sm) ._;linl A, [S;Zalt sj} = Z (-1 <k1> ]_[ k.
nky> o2k >1 j=1

With this notation, the following consequences of Theorem 1 are immediate.

Corollary 1. Letn,r anday, b1, ..., a,, b, be positive integers. Then
r—1 1 1
Zy (Calt{{l}“f‘ b+ 1), {4 ,br)
]=

= A, <a1, -t g}lzt{aj +1, {1}bf—1}) :
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r—1 ,
z [Caf{{l}ajlv bj + 1}1 {1}(”71, br] =A |:a]_, {1}b171’ Ca2t{a1 + 1’ {1}bjl}i| )
J= 7

Corollary 2. Letn a and b be positive integershen
Z,{Y 7, b1 = Agla, (11771 (3.1)
Proof. Putr =1 in Theorem 1. [J

Remark 1. If we putb =1 anda = m in (3.1), we find that
Z,[{1}"] = Aplm], (3.2)

whichis (1.4). As we shall sed,,[0] =1 is an easy consequence of theinomial theorem.
Since we have defined,[ ] = 1, it follows that (3.2) also holds when = 0. Concerning
the equivalent equation (1.4), this point was also noted by Dilgt&r

Remark 2. If we puta =1 andb=m in (3.1), there followsZ,,[m] = A, [{1}"], an identity
dual to (1.4) and (3.2):

n k m

q9 k141 _ki(kp+1)/2| 1 1

—_— = -1 1 , 3.3
2 iy 2, v [kllnzl k1, @

k=1 nzkyz-Zky 21

with respective limiting cases
n m
1 k1 n .
Xw= 2 () ¢
k=1 nky> e >kn >1 j=1"7
and

(_1)k1+lqk1(k1+l)/2 mn 1

o k

> =

m k R

Prodinger’s main resu[28, Theorem 1]s easily obtained from (3.3) by replacingwith

1/q. The fact that Prodinger obtained his result from (1.4) as a consequence of an inverse-
pair equivalence suggests that additional instances of our Theorem 1 may likewise be so
related. That this is indeed the case is one of the insights of the next section.

4. Duality

Here, we recast Theorem 1 in the languagéulity, a concept first formulated for mul-
tiple harmonic series if19], and subsequently generaliZ@é,12] Following a suggestion
of Hoffman[21], define an involution on the seéf of finite sequences of positive integers
as follows. Letx be the map that sends a sequenc#ito its sequence of partial sums. The
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image ofa thus consists of the strictly increasing finite sequences of positive integers, on
which we define an involutioff by

m
ﬁ(Calt tj> ={keZ 1<k<t,\{tj:1<j<m -1}, O<meZ,
j=

arranged inincreasing order. In other worlsyaps a strictly increasing sequence of positive
integerss, . . ., t, toO its set-theoretic complement in the positive integers up tand then
tackst,, onto the end of the result. Clearly, the composition of mapge is an involution

of &, and it is easy to see that Theorem 1 can be restated as

Znl51= Aulo pos] Vse S, O<neZ.

For an alternative duality reformulation, IBt= Q(x, y) denote the non-commutative
polynomial algebra over the field of rational numbers in two indeterminatesly. Let
' = by and fix a positive integan. DefineQ-linear mapsA,, andZ, only’ by

m m
~ si-1, | . s 7 si=1y | - ’
Ay qu'/ y|i=A I:(j:=a]1-: sj]’ Zy l_[x;j Y| = 2Zn I:(j:=a]1-: Sji|,
Jj=1 j=1
for any positive integers, s», ..., s,. LetJ be the automorphism dfthat switchex and
y. Define an involution of)’ by
w'=Jwax"ty Ywel. (4.1)
It is now a routine matter to show that Theorem 1 can be restated as
Zn[w] = Zl[w*] Yw ely. (4.2)

Now Prodingef28, Lemma 1]proved that for positive integer, the inverse pairs

N _ : vk k(k=1)/2 | 1
S h=Y (-1 [k]ock (4.3)
k=0 k=0

and
n n n
Z q_kka _ Z (_1)qu(k—1)/2—kn |:k:| ﬁk (44)
k=0 k=0

are equivalent. In other words, (4.3) holds for a pair of sequenges, ..., «, and

Po, B1. .., P, if and only if (4.4) does. But our Theorem 1 states that (4.3) holds for
the sequences

Slk m (Sj —1)kj

% == Z [(2]51 1_[ z

Sj
k>ho> ke 21 N0 jop Lkjlg
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wheresy, ..., s, are positive integers,<k <n, andog = i = 0. Equivalently, (4.2) holds

with w=x%1"1y ... x»=1y_ Since duality is an involution on words* =w, and Theorem

1 also gives the dual statement[w*] = Z, [w]. But this latter statement is easily seen to be
equivalent to (4.4) if we replaagby 1/¢ throughout. Thus Prodinger’s result implies that

if A,[w]=Z,[w*]is known for a particular worab, then we also know ,[w*] = Z,[w],

and vice versa. Of course, knowing only that the two statements are equivalent does not
establish their truth in any particular instances—for this we need our Theorem 1. What it
shows is that the notion of duality in the case of Theorem 1 coincides with the existence of
a certain class of inverse pair identities.

For additional duality results concerning multiple harmoapseries, sel?2]. It is in-
teresting to contrast (4.1) and (4.2) with the corresponding duality statement for multiple
zeta value$20,22], for which the relevant involution is themti-automorphism okby that
switchesx andy.

5. Proof of Theorem 1

By induction, it suffices to establish the two recurrence relationg fostated in Propo-
sitions 1 and 2, along with the base cadg$ | = A,[0]=1forO<n € Z.

Proposition 1. Let n, m, ands1, so, ..., s, be positive integerd hen

n
Anlstysz,osml =) @ 1P Arlss — Los2, sl
r=1

Proposition 2. Let n, m, andso, s3, .. ., s, be positive integerdhen

Anl0, 52,53, ..., sl =[n], Y Auls2 — L s3, ..., sl

The base cas#,[ ]=1forn > 0 is true by definition. As alluded to previously, the other
base case is an easy consequence afthieomial theorenj1,18,23]

n
(x + y)g — Z qm(m—l)/Z |:ZZ:| xn—mym_ (51)
m=0
Puttingx =1 andy = —1in (5.1), we see that if > 0, then

A,[0] = Z(_l)m+lqm(m—l)/2 [’:’J =1-(1- 1)2 =1.

m=1

Thus, it remains only to prove Propositions 1 and 2.
We shall make use of the (equivalent by symmetpPascal recurrencg3]

AR i R 4 i

and the following elementary summation formula.
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Lemma 1. Letk and n be positive integers withk n. Then

i Flr=11_ k|n

Tle—1|77 k|

r=k

Proof. Write the firstg-Pascal recurrence (5.2) in the form
x|r=1|_|r|_|r—1
k=1 |k k|’

multiply through byg*, and sum om. [

It will be helpful to introduce some further notation.

Definition 4. Letn, m, ands1, ..., s, be non-negative integers. Define
m
PR . —S;
Walst, . osmli= Y [] a9 k1,

nzkyz-Zky 21 j=1

51

with the understanding tha¥p[s1, ..., s,,] =0andW,[ ]=1if n >0 andm = 0.

Proof of Proposition 1. By Lemma 1, we have

An[slv MR Sm]

n

_ _ _ n

=Y () DR O DR W o, slg” [ k}
k=1

k=1

r= l k=1

r=1

n

=Y Il A 1= Losz el O
r=1

n
_ _ - -1
— Z (_1)k+1qk(k 1)/2+(Sl 1)k[k]q 51 Wk[SZv . Sm] Z q [r :|

— Z q r] 1 Z( 1)k+1 k(k+l)/2+(31 Z)k |: :| [k]l Ska[sZ’ .

s Sm]
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Proof of Proposition 2. By the second}-Pascal recurrence (5.2), we have

ALlO, 52, ..., 85m]

n
_ Z (— Dk HLght=1)/2

k=1

= 3 (12 {qk [n - 1] [Z 1” Wils o 0]
k=1

j|Wk[S2,..., m

n
_ kL k(k+1)/2 k1 k=2 | 7 -1
=Y (-1FtYy }Wk+§ (-1 [k_l]wk

k=1 k=1
-1 -1
ZHZ(_l)k+1qk(k+l)/2 n—11w _|_”X:(_1)qu(k+l)/2 n—1\w )
k k k ket
k=1 k=0
n—1
-1
=Wi+) (=D "“‘“)/2[” :|(Wk+1—Wk)
k=1
n—1 n—1
=Z<—1>qu<k+l>/2[ P }q“rl’(k*”[k+1];‘2Wk+1[s3,...,sm]
k=0

n
- =1 (- -
=) (-DfHigtebe [’,Z _ 1} q©2 VLK1 Wilss., .. s

n
— [n]q—l Z (_1)k+1qk(k+l)/2 I:Z] q(Sz—z)k [k]‘]I.—SQ Wk[SSa o Sm]
k=1
=[], Auls2 — Los3.....sm). O
The following consequence of Proposition 2 may be worth noting.

Corollary 3. Let n be a positive integerand let m be a non-negative integerhen
A0, {1} = [n];’”, or equivalently

Z ( 1)k+1 k(k l)/2[ } 1_[ [k ]—1 [n]—m

nEkZky> 2k > 1 j=1

6. Multiple harmonic g-series with strict inequalities

Much of the recent literature concerning multiple harmonic series has focused on sums
of the form[3-6,9-11,13,19,20,22,26]

{ornsm) = Y [, (6.1)

k1>->ky>0 j=1
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and various multiple polylogarithmic extensidis8]. Thus, it may be of interest to consider
finite g-analogs of (6.1) akin to (2.1), but in which the inequalities are strict as opposed to
weak.

Definition 5. Letn, mandss, s2, ..., s, be non-negative integers. Define
m
. —S;
Z7051, -y Sl = > [1d" ki1,
nzky>->kp 21 j=1
m
n L . —S;
Alss . osli= Y (—Dfghtarbr2 [ kl} [Ta% "1k14™,
n>ki>>ky 21 j=1

with the understanding that it > 0, thenZj [s1, ..., s,] = Ag[s1,...,s»] =0 and if
m=0,thenZ;[]=A,[]=1foralln>0.

In light of (6.1), it is clear that lim_.o limy—1Z; [s] = () if § =s1,..., 5, iS any
vector of positive integers witky > 1. Of course, there is an obvious relationship between
Z, andZ, and betweem, andA, . For example,

Z,s1=2,[s], Zuls1, s21=Z, [s1,52] + Z, [s1 + s2],
and

Zuls1, 52,831 = Z, [s1, 52, 3] + Z,] [s1 + 52, s3] + Z,] [51, 52 + 53]
+ Z, [s1+ s2+ s3]

More generallyZ, [5 ] is the sum of thosg,” [7 1, wherer is obtained frong by replacing any
number of commas by plus signs. Despite this relationship, the presence of strictinequalities
in Definition 5 does appear to complicate matters insofar as there is no simple analog of
Theorem 1 relating,” to A, . Nevertheless, there are recurrences4granalogous to the
recurrences satisfied by;,. Arguing as in Section 5, we find that

n
ATt sl =Y g Ir1 P A Is1— Los2, s,
r=1
A7 [0 52, ... sml=—A; _qls2, ..., Sm].

As a consequence, one can establish (using induction as in the proof of Corollary 3) the
following result.

Theorem 2. Let m and n be non-negative integefben(—1)" Z [{1}"]1 = A, [{1}"].

Corollary 4. Let m be a positive integefhen

ki(ka+1)/2 M q

m q k4
(=1 > = ) (D™ [ :
[kjlq (1—61)1(;1 =1 (kjlq

k1>->k,>0 j=1 k1>->k, >0

Proof. Letn — oo in Theorem 2. I
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Corollary 5. Let m and n be positive integerBhen

m

m
_ n _
Y flgte Y e ()Ts
n>ky>osky =1 j=1 n=ky>sky =1 Y4

Proof. Letg — 1in Theorem 2. (I

One can also prove Theorem 2 by differentiatingdgi@hu—Vandermonde summation as
in the Andrews—Uchimurf2] proof of (1.2):

Alternative Proof of Theorem 2. Let x be real,x # 1. Write theg-Chu—Vandermonde
sum[18,30]in the form

1—xq)! x — ¥
( ‘11 —14 Z( 1)k ghtk+D)/2 [ :| ( )k
1- C]) 1 1- q)
and differentiate both sides > 0 times with respect t®, obtaining

w L—xq)y
i DD %

S R | xq"i

_ Z( kg k(k+l)/2[ ] (r — 1)k
1-qk

k=1 9 k>ky>-->k, =0 j= 1

(6.2)

Now letx — 1 and note that the sum on the right-hand side of (6.2) vanishigs=fO0.
Thus,

(_1)}7[

n>ky>->kp =21 j= 1
k(k+1)/2

ool
/;1( | =

Finally, multiply both sides byl — ¢)" to complete the proof. [

k>ki>ky-1>0 j= 1

7. Final remarks

In [12,14,15,27,33]the multipleg-zeta function

(sj—Dk;
U5 gl =Lls1, ..., Sm] = Z a7

ky>->ky>0 j=1 [kl

is the central object of study. With the abbreviation

m
5= sj,
j=1
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we note the relationship
{[5: 91 = ¢ 22, [5: 1/,

whereZZ [5; 1/¢q] denotes the limit a8 — oo of the Z~ -function of Definition 5 withg
replaced by 1g. As noted by one of the referees, often more thangaralog is possible.
Zudilin [34] has considered the sums

2 1_[(1 qf)“

k1>->k,>0 j=1

See als$29,24,25] The reason why the particulgranalog used in this paper was chosen is
that, in addition to giving an intriguing extension of previously published refjlt$,28]
it seemed a fairly natural choice based on the ideas in the related {8otRs14,15]

Fu and Lascouxl7] have generalized (1.4) in a different direction. They proved that if
n andm are positive integers, then

a— bq i
n>k >Z>k,,, >1 ,1_[1

Cn(l—Zq/C)n n

T (- q)az — by L Z[ ]

( 1)/( 1 k(k+1)/2 nk(l qk)(a bqk)m-l-n—l

P (7.1)

Lettingc=z=1,a=0,b=—-1in(7.1) gives (1.4).
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