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Abstract

The k-Hessian equation for k � 2 is a class of fully nonlinear partial differential equation of divergence
form. A Sobolev type inequality for the k-Hessian equation was proved by the second author in 1994. In
this paper, we prove the Moser–Trudinger type inequality for the k-Hessian equation.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω be a bounded smooth domain in the Euclidean space R
n. For a function u ∈ C2(Ω),

the k-Hessian operator Sk[u] is defined by

Sk[u] = [
D2u

]
k
, (1.1)

where 1 � k � n, [A]k denotes the sum of all k × k principal minors of the matrix A. The
k-Hessian operator Sk[u] is also equal to the kth-elementary symmetric polynomial of the eigen-
values of the Hessian matrix D2u. When k = 1, it is the Laplace operator, when k = n, it is the
Monge–Ampère operator.
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The existence and a priori estimates of smooth solutions to the k-Hessian equation were first
proved in [1] and also in [10] for some cases, and were extended to more general equations in
[12,21], see also [7,8,14,24,25] for related results. The k-Hessian equation for k = 2, . . . , n − 1
can be regarded as a series of fully nonlinear partial differential equations linking the Laplace
equation to the Monge–Ampère equation, and in particular they are also of divergence form.
Therefore one may expect various variational and potential theoretic properties for these equa-
tions. There has been a lot of research in this direction indeed [2,5,13,18,19,23,27]. Due to its
variational structure, Sobolev and Moser–Trudinger type inequalities for the k-Hessian equation
are fundamental and of particular interest.

A Sobolev type inequality for the k-Hessian equation has been obtained by the second author
in [27] (and also in [3] for convex functions), which was used in [5] to study the associated
variational problems. In this paper we prove a Moser–Trudinger type inequality for the k-Hessian
equation, which occurs in the case when k = n/2. First we recall the divergence structure of the
k-Hessian operator,

Sk[u] = 1

k

∑
uijS

ij
k [u] = 1

k

∑
∂i

(
ujS

ij
k [u]), (1.2)

where ui = uxi
, uij = uxixj

, and S
ij
k [u] = ∂

∂uij
Sk[u]. The second equality is due to the fact that

the coefficients S
ij
k are divergence free,

∑
i

∂iS
ij
k [u] = 0 ∀j. (1.3)

Following [1], we say a function u ∈ C2(Ω) is k-admissible if Sj [u] � 0 for all j = 1, . . . , k.
A function is k-admissible if and only if it is subharmonic when k = 1, or convex when k = n. If
u is k-admissible, {Sij

k [u]} is positive semi-definite [1].
Denote by Φk(Ω) the set of all k-admissible functions in Ω , and by Φk

0 (Ω) the set of all
k-admissible functions vanishing on ∂Ω . The set Φk

0 (Ω) is non-empty (containing nonzero func-
tions) if and only if ∂Ω is (k − 1)-convex, namely for any point x ∈ ∂Ω , σk−1(κ(x)) > 0, where
κ(x) = (κ1(x), . . . , κn−1(x)) are the principal curvatures of ∂Ω at x [1]. In this paper we will
always assume that ∂Ω is (k − 1)-convex.

Denote

Ik(u) =
∫
Ω

(−u)Sk[u]dx = 1

k

∫
Ω

uiujS
ij
k [u], (1.4)

the associated functional, and

‖u‖Φk
0
= [

Ik(u)
] 1

k+1 , u ∈ Φk
0 . (1.5)

One easily verifies that ‖ · ‖Φk
0

is a norm in Φk
0 [27]. The following Sobolev type inequalities

were proved in [27]. For convex functions, they were first established in [3,2].
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Theorem 1.1. Let u ∈ Φk
0 (Ω).

(i) If 1 � k < n
2 , we have

‖u‖Lp+1(Ω) � C‖u‖Φk
0

∀ p + 1 ∈ [
1, k∗], (1.6)

where k∗ = n(k+1)
n−2k

, C depends only on n, k,p, and |Ω|.
(ii) If k = n

2 ,

‖u‖Lp(Ω) � C‖u‖Φk
0

(1.7)

for any p < ∞, where C depends only on n,p, and diam(Ω).
(iii) If n

2 < k � n,

‖u‖L∞(Ω) � C‖u‖Φk
0
, (1.8)

where C depends on n, k, and diam(Ω).

The exponent k∗ in (1.6) is optimal. In [27] it was proved that the best constant in (1.6) is
achieved by radially symmetric functions. For radial function u ∈ Φk

0 (BR(0)), we have

‖u‖k+1
Φk

0
=

∫
BR

(−u)Sk[u]dx = ωn−1

k

(
n − 1

k − 1

) R∫
0

rn−k
(
u′)k+1

dr. (1.9)

Therefore when p + 1 = k∗ and k < n
2 , by the classical Sobolev embedding, the best constant C

is attained when Ω = R
n by the function

u(x) = [
1 + |x|2](2k−n)/2k

. (1.10)

Moreover, when p + 1 < k∗, by Hölder’s inequality we see that the constant C depends on the
volume |Ω|. When k > n

2 , it was shown that any k-admissible function is Hölder continuous
with the optimal exponent α = 2 − n

k
[23]. Theorem 1.1 was used in [5] to study the associated

variational problems. In [22] it was also shown that for any k-admissible function u ∈ Φk
0 (Ω),

‖u‖Φl
0(Ω) � C‖u‖Φk

0 (Ω) (1.11)

where 1 � l < k � n and C is a constant depending on n, k, l, and Ω .
Note that by the compactness of the Sobolev embedding W 1,2(Ω) ↪→ Lp(Ω) for p < 2n

n−2 ,

we also have the compactness of the embedding Φk
0 (Ω) ↪→ Lp(Ω) for p < k∗ if 1 � k < n

2 , or
p < ∞ for p � n

2 . See [28] for details.
The purpose of this paper is to prove the following Moser–Trudinger type inequality for the k-

Hessian equation with k = n
2 . When n = 2, k = 1, it coincides with the special Moser–Trudinger

inequality W
1,2

(Ω) ↪→ Lϕ∗(Ω) with ϕ(t) = et2
.
0
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Theorem 1.2. Let k = n
2 . Then for any u ∈ Φk

0 (Ω),

sup

{ ∫
Ω

exp

(
α

(
u

‖u‖Φk
0

)β)
: u ∈ Φk

0 (Ω)

}
< C, (1.12)

where 0 < α � α0, 1 � β � β0,

α0 = n

[
ωn−1

k

(
n − 1

k − 1

)]2/n

, (1.13)

β0 = n + 2

n
, (1.14)

ωn is the surface area of the unit sphere in R
n+1, and C is a positive constant depending only on

n and diam(Ω).

By Theorem 1.2, the set Φk
0 (Ω) can be embedded in the Orlicz space associated with

the function exp(t(n+2)/n). Recall that for an even, convex function ϕ in R
1 satisfying

limt→∞ ϕ(t)/t = ∞, the Orlicz class Lϕ(Ω) is the set of functions satisfying∫
Ω

ϕ(u(x)) dx < ∞, and the Orlicz space associated with ϕ, Lϕ∗(Ω), is the linear hull of Lϕ(Ω)

with the norm ‖u‖Lϕ∗ (Ω) = inf{k; ∫
Ω

ϕ(u
k
) � 1}. In [20,16], Trudinger and Moser proved the

embedding W
1,n
0 (Ω) ↪→ Lϕ∗(Ω) with ϕ(t) = exp(tn/(n−1)) − 1. Trudinger proved by the Taylor

expansion that there exists a small λ > 0 such that for all u ∈ W
1,n
0 (Ω) with ‖Du‖Ln(Ω) = 1,∫

Ω

eλ|u| n
n−1

dx � C. (1.15)

Moser improved the exponent λ to the optimal one

λ = n(ωn−1)
1/(n−1). (1.16)

About the proof of Theorem 1.2, since the norm ‖ · ‖Φk
0

involves both the first and second
derivatives, the proofs for the classical Moser–Trudinger inequalities do not apply to the k-
Hessian equations. A weak version of (1.12) (namely when α > 0 is small) can be obtained
by using the Sobolev type inequality (1.7) and the Taylor expansion. But to obtain the optimal
exponent α0, we cannot use the symmetrization techniques as in Moser’s proof. The associated
symmetrization for the k-Hessian equation is not available. One of the main ingredients of the
paper is to prove a monotonicity formula (Lemma 3.1) so that the proof of (1.12) can be reduced
to radial functions.

Another difficulty in proving (1.12) is that we cannot use the variational principle directly, as
the k-Hessian equation is fully nonlinear. More precisely, we cannot prove directly that a maxi-
mizer of (1.12) satisfies the associated Euler equation, even in a very weak sense of measure [23].
We have to employ a gradient flow and establish the global existence and convergence of smooth
solutions, and show that the limit of the gradient flow at t → ∞ converges to a maximizer
of (1.12) (Theorems 4.1 and 4.2).
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The proof in this paper is inspired by that in [27] but technically the argument in this paper is
much difficult. For example, a similar gradient flow was used in [27], but the gradient flow in this
paper contains a constraint involving second derivatives, new techniques (see Remarks 4.1–4.4)
are needed to obtain the global existence of smooth solutions, which make the proof very in-
volved. A simpler and more direct proof is desirable. In a recent paper [26], Verbitsky found
a different proof of the inequalities (1.6) and (1.11). He also proved some new inequalities re-
lated to the k-Hessian equalities. His proof uses the Wolff potential estimate for the k-Hessian
equation [13], which was based on the Hessian measures developed in [23]. He also obtained the
inequality (1.12) for small α > 0 (Theorem 2.1). In [9] we also proved a new class of Sobolev
type inequalities.

This paper is arranged as follows. In Section 2 we prove (1.12) for β = β0 and a small α > 0,
using the Sobolev type inequality (1.7) and the Taylor expansion. In Section 3 we prove a mono-
tonicity formula, which reduces the inequality (1.12) to radial symmetric functions in a ball, and
obtain (1.12) from the sharp Moser–Trudinger inequality in [16]. In Section 4 we prove the global
regularity of solutions to a gradient flow of an approximation problem of the functional in (1.12).
Finally in Section 5 we use the gradient flow to prove the existence of a smooth maximizer
of (1.12).

2. Taylor expansion

In this section we prove (1.12) for β = β0 and a small α by the Taylor expansion, making use
of the Sobolev type inequality (1.7). Set

Tp(Ω) = inf
u∈Φk

0 (Ω)

‖u‖k+1
Φk

0 (Ω)
/‖u‖k+1

Lp+1(Ω)
. (2.1)

It was proved in [27] that Tp(Ω1) � Tp(Ω2) if Ω1 ⊂ Ω2, and

Tp(B1) = T ∗
p , (2.2)

where B1 is the unit ball, and

T ∗
p = inf

u∈Φk
0 (B1)

{ ‖u‖k+1
Φk

0 (B1)

‖u‖k+1
Lp+1(B1)

: u is radial

}

= inf
u∈Φk

0 (B1)

{ ∫ 1
0

1
k
ωn−1

(
n−1
k−1

)
rn−k(u′)k+1 dr

[∫ 1
0 ωn−1rn−1|u|p+1 dr](k+1)/(p+1)

}
. (2.3)

Without loss of generality, let us assume that Ω ⊂ B1(0). Then Tp(Ω) � T ∗
p . We estimate T ∗

p

as follows.

Lemma 2.1. For any p > 1, we have

∫ 1
0 |u|p+1rn−1 dr

[∫ 1
0 |u′| n+2

2 rn/2 dr] 2(p+1)
n+2

�
(

1

n
+ p + 1

n + 2

)1+ n(p+1)
n+2

e− n(p+1)
n+2 . (2.4)
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Proof. First by Hardy’s inequality (see Theorem 1.14, [17]), we have

1∫
0

|u|p+1rn−1 dr � D

(
1 + n(p + 1)

n + 2

)(
1 + n + 2

n(p + 1)

) n(p+1)
n+2

[ 1∫
0

∣∣u′∣∣ n+2
2 r

n
2 dr

] 2(p+1)
n+2

,

where

D = sup
x∈(0,1)

1∫
x

(1 − r)n−1 dr

[ x∫
0

(1 − r)−1 dr

] n(p+1)
n+2

.

By direct computation,

D = 1

n

(
p + 1

n + 2

) n(p+1)
n+2

e− n(p+1)
n+2 .

Hence we obtain (2.4). �
Now we compute, by (1.9),

∫
B1(0)

( |u|
‖u‖Φk

0

) n+2
n

j

dx =
1∫

0

ωn−1r
n−1|u| n+2

n
j dr/‖u‖

n+2
n

j

Φk
0

=
∫ 1

0 ωn−1r
n−1|u| n+2

n
j

[∫ 1
0

ωn−1
k

(
n−1
k−1

)
rn−k(u′)k+1 dr] 2j

n

.

By (2.4) with p + 1 = n+2
n

j , we obtain

∫
B1(0)

( |u|
‖u‖Φk

0

) n+2
n

j

dx � ωn−1

(
ωn−1

k

(
n − 1

k − 1

))− 2j
n
(

j + 1

n

)j+1

e−j

Hence

∫
B1(0)

exp

(
α

(
u

‖u‖Φk
0

) n+2
n

)
dx = ωn−1

1∫
0

rn−1
∞∑

j=1

αj

j !
( |u|

‖u‖Φk
0

) n+2
n

j

� ωn−1

∞∑
j=1

αj

(
ωn−1

k

(
n − 1

k − 1

))− 2
n
j(

j + 1

n

)1+j
e−j

j !

� C

∞∑
αj

(
ωn−1

k

(
n − 1

k − 1

))− 2
n
j

.

j=1
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When the constant α < (
ωn−1

k

(
n−1
k−1

)
)

2
n , the right-hand side is bounded. Recall that Tp(Ω) � T ∗

p .
We have thus proved the following weak form of Theorem 1.2.

Theorem 2.1. Let k = n
2 . Then for any u ∈ Φk

0 (Ω),

sup

{ ∫
Ω

exp

(
α

(
u

‖u‖Φk
0

) n+2
n

)
: u ∈ Φk

0 (Ω)

}
< C (2.5)

if α < (
ωn−1

k

(
n−1
k−1

)
)

2
n , where C depends only on n and the diameter of Ω .

3. A monotonicity formula

Denote

F(t) = Fα,β(t) = eα|t |β −
k−1∑
j=1

αj

j ! |t |
jβ =

∞∑
j=k

αj

j ! |t |
jβ,

f (t) = fα,β(t) =
∞∑

j=k

jβαj

j ! |t |jβ−1,

where α > 0, β � 1 are constants. To prove Theorem 1.2, it suffices to prove

Y(Ω) := sup

{ ∫
Ω

F

(
u

‖u‖Φk
0

)
: u ∈ Φk

0 (Ω)

}
< C (3.1)

for α = α0, β = β0. We wish to reduce (3.1) to radial functions. Our purpose is to prove the
monotonicity formula

Y(Ω1) � Y(Ω2) (3.2)

for any bounded k-convex domains Ω1,Ω2 ⊂ R
n with Ω1 ⊂ Ω2.

For any integer m � k, denote

Fm(t) = Fα,β,m(t) =
m∑

j=k

αj

j ! |t |
jβ,

fm(t) = fα,β,m(t) =
m∑

j=k

jβαj

j ! |t |jβ−1,

and

Ym(Ω) = Yα,β,m(Ω) = sup

{ ∫
Fm

(
u

‖u‖Φk
0

)
: u ∈ Φk

0 (Ω)

}
< C. (3.3)
Ω
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By (1.7), Ym(Ω) is well defined and finite. The following monotonicity is crucial for the proof
of Theorem 1.2. Our proof uses the existence of maximizers of (3.3), which will be established
in the next section.

Lemma 3.1. For any m � k, α > 0, and β � 1, there holds

Ym(Ω1) � Ym(Ω2) (3.4)

provided Ω1 ⊂ Ω2. Sending m → ∞ we obtain (3.2).

Proof. Assume to the contrary that (3.4) does not hold. Then there exist Ω2 ⊃ Ω1, Ω2 �= Ω1,
such that Ym(Ω2) < Ym(Ω1). Let u be a smooth maximizer of (3.3) with Ω = Ω1 (the existence
of u is proved in Theorem 4.1). By multiplying a constant we assume that∫

Ω1

(−u)Sk[u]dx = 1.

Then u satisfies the equation

Sk[u] = λfm(u)

with

λ

∫
(−u)fm(u) = 1.

Let ϕ be a k-admissible solution to

Sk[ϕ] = Sk[u] in Ω2,

ϕ = 0 on ∂Ω2, (3.5)

where we let the right-hand side Sk[u] = 0 in Ω2 − Ω1 and use the notion of weak solutions
in [23]. Noting that ϕ � 0 on ∂Ω1, by the comparison principle, we have ϕ � u in Ω1. We also
have ∫

Ω2

Fm

(
ϕ

‖ϕ‖Φk
0 (Ω2)

)
� Ym(Ω2) < Ym(Ω1), (3.6)

where the first inequality is by definition and the second one is by assumption. Denote

Φ(ψ) =
m∑

j=k

αj

j !

∫
Ω2

|ψ |jβ

[∫
Ω2

(−ψ)Sk[u]] jβ
k+1

, (3.7)

then (as u = 0 in Ω2 − Ω1)

Φ(u) =
m∑

j=1

αj

j !

∫
Ω2

|u|jβ

[∫ (−u)S [u]] jβ
k+1

= Ym(Ω1).
Ω2 k



1982 G.-J. Tian, X.-J. Wang / Journal of Functional Analysis 259 (2010) 1974–2002
We will prove that

d

dt
Φ

(
u + t (ϕ − u)

)∣∣
t=0 � 0, (3.8)

d2

dt2
Φ

(
u + t (ϕ − u)

)
� 0 ∀t ∈ (0,1). (3.9)

Suppose (3.8) and (3.9) hold, then we have Φ(u) � Φ(ϕ), which, together with (3.6), leads to

Ym(Ω1) = Φ(u) � Φ(ϕ) < Ym(Ω1),

we reach a contradiction, so (3.4) must holds.
First we verify (3.8). By direct computation, and observing that ϕ � u � 0,

d

dt
Φ

(
u + t (ϕ − u)

)∣∣
t=0 =

m∑
j=k

αj

j !
{∫

Ω2
jβ|u + t (ϕ − u)|jβ−1(u − ϕ)dx

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]] jβ
k+1

− jβ

k + 1

∫
Ω2

|u + t (ϕ − u)|jβ dx
∫
Ω2

(u − ϕ)Sk[u]dx

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]dx] jβ
k+1 +1

}∣∣∣∣
t=0

=
m∑

j=k

αj

j !
{∫

Ω1
jβ|u|jβ−1(u − ϕ)dx

[∫
Ω1

(−u)Sk[u]] jβ
k+1

− jβ

k + 1

∫
Ω1

|u|jβ dx
∫
Ω2

(u − ϕ)Sk[u]dx

[∫
Ω1

(−u)Sk[u]dx] jβ
k+1 +1

}
.

Recall that
∫
Ω1

(−u)Sk[u]dx = 1, and Sk[u] = λfm(u) with λ
∫
(−u)fm(u) = 1. We have

d

dt
Φ

(
u + t (ϕ − u)

)∣∣
t=0 =

∫
Ω1

fm(u)(u − ϕ) − 1

k + 1

∫
Ω1

fm(u)|u|
∫
Ω2

(u − ϕ)Sk[u]

=
∫
Ω1

fm(u)(u − ϕ) − 1

k + 1

∫
Ω1

fm(u)|u|
∫
Ω1

(u − ϕ)λfm(u)

=
(

1 − 1

k + 1

)∫
Ω1

(u − ϕ)fm(u)dx � 0.

Next we verify (3.9). Denote

Φj(t) =
∫
Ω2

|u + t (ϕ − u)|jβ

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]] jβ
k+1

.

It suffices to show that Φj satisfies (3.9) for every k � j � m. Set p + 1 = jβ for some fixed j .
Then



G.-J. Tian, X.-J. Wang / Journal of Functional Analysis 259 (2010) 1974–2002 1983
d

dt
Φj (t) = (p + 1)

∫
Ω2

|u + t (ϕ − u)|p(u − ϕ)dx

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]] p+1
k+1

− p + 1

k + 1

∫
Ω2

|u + t (ϕ − u)|p+1 dx
∫
Ω2

(u − ϕ)Sk[u]dx

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]] p+1
k+1 +1

d2

dt2
Φj(t) = p(p + 1)

∫
Ω2

|u + t (ϕ − u)|p−1(u − ϕ)2 dx

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]] p+1
k+1

− 2(p + 1)2

k + 1

∫
Ω2

|u + t (ϕ − u)|p(u − ϕ)dx
∫
Ω2

(u − ϕ)Sk[u]dx

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]] p+1
k+1 +1

+ p + 1

k + 1

(
p + 1

k + 1
+ 1

)∫
Ω2

|u + t (ϕ − u)|p+1 dx[∫
Ω2

(u − ϕ)Sk[u]dx]2

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]] p+1
k+1 +2

=: (p + 1)G(t)

[∫
Ω2

(−(u + t (ϕ − u))Sk[u]] p+1
k+1 +2

.

Denote

a(t) =
∫
Ω2

∣∣u + t (ϕ − u)
∣∣Sk[u],

b(t) =
∫
Ω2

(u − ϕ)Sk[u].

Then

G(t) = pa2(t)

∫
Ω2

∣∣u + t (ϕ − u)2
∣∣p−1

(u − ϕ)2

− 2(p + 1)

k + 1
a(t)b(t)

∫
Ω2

∣∣u + t (ϕ − u)
∣∣p(u − ϕ)

+ 1

k + 1

(
p + 1

k + 1
+ 1

)
b2(t)

∫
Ω2

∣∣u + t (ϕ − u)
∣∣p+1

.

Observe that when k = 1, ‖u‖Φk
0

= ‖u‖
W

1,2
0

and the monotonicity inequality is obvious. Hence

we may assume k � 2, so that pk � (kβ − 1)k � 1 (recall that p + 1 = jβ � kβ). Therefore√
p

k + 1

(
p + 1

k + 1
+ 1

)
=

√
p2 + 2p + pk

k + 1
� p + 1

k + 1
.

By the Cauchy inequality,
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pa2
∣∣u + t (ϕ − u)

∣∣p−1
(u − ϕ)2 + 1

k + 1

(
p + 1

k + 1
+ 1

)
b2

∣∣u + t (ϕ − u)
∣∣p+1

� 2ab

√
p

k + 1

(
p + 1

k + 1
+ 1

)∣∣u + t (ϕ − u)
∣∣p(u − ϕ)

= 2ab
p + 1

k + 1

∣∣u + t (ϕ − u)
∣∣p(u − ϕ).

Therefore we obtain G(t) � 0 and thus (3.9) holds. �
Lemma 3.2. Denote

Y ∗
m(BR) = sup

{ ∫
BR

Fm

(
u

‖u‖Φk
0

)
: u ∈ Φk

0 (BR) is radial

}
,

Y ∗(BR) = sup

{ ∫
BR

F

(
u

‖u‖Φk
0

)
: u ∈ Φk

0 (BR) is radial

}
,

where BR is a ball of radius R with center at 0. Then

Ym(BR) = Y ∗
m(BR),

Y (BR) = Y ∗(BR). (3.10)

Proof. Obviously Y ∗
m(BR) � Ym(BR). By Theorem 4.1, Ym(BR) is attained by a k-admissible

function u ∈ Φk
0 (BR) which satisfies the equation

Sk[u] = λfm(u) in BR,

u = 0 on ∂BR.

By Aleksandrov’s moving plane method, we conclude that u is a radial function. Hence
Ym(BR) � Y ∗

m(BR). Sending m → ∞ and using monotone convergence theorem, we obtain the
second inequality in (3.10). �

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let R > 0 such that Ω ⊂ BR . By the monotonicity formula (3.4),

Ym(Ω) = sup

{ ∫
Ω

Fm

(
u

‖u‖Φk
0

)
dx: u ∈ Φk

0 (Ω)

}
,

� sup

{ ∫
Fm

(
u

‖u‖Φk
0

)
dx: u ∈ Φk

0 (BR)

}
= Ym(BR),
BR
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where k = n
2 . By Lemma 3.2, the supremum on the right-hand side is attained by a radial function

u ∈ Φk
0 (BR),

Ym(BR) =
∫
BR

Fm

(
u

‖u‖Φk
0

)
dx.

Since u is radial,

∫
BR

Fm(u)dx = ωn−1

R∫
0

rn−1Fm(u)dr,

∫
BR

(−u)Sk[u]dx = ωn−1

k

(
n − 1

k − 1

) R∫
0

r
n
2 |u′| n

2 +1 dr

(
k = n

2

)
.

We introduce a new variable s = r
2n

n+2 and set v(s) = u(s
n+2
2n ). Then

R∫
0

r
n
2
∣∣u′(r)

∣∣ n
2 +1

dr =
(

2n

n + 2

) n
2

R̂∫
0

s
n
2
∣∣v′(s)

∣∣ n
2 +1

ds, (3.11)

R∫
0

rn−1Fm(u)dr = n + 2

2n

R̂∫
0

s
n
2 Fm(v)ds, (3.12)

where R̂ = R
2n

n+2 . Now we regard v as a radial function of y ∈ R
n
2 +1 with |y| = s. Then

∥∥u(x)
∥∥k+1

Φk
0 (BR)

= ωn−1

k

(
n − 1

k − 1

)(
2n

n + 2

) n
2

R̂∫
0

s
n
2
∣∣v′(s)

∣∣ n
2 +1

ds

= ωn−1

kωn/2

(
n − 1

k − 1

)(
2n

n + 2

) n
2 ‖Dv‖k+1

Lk+1(B
R̂
)
.

Hence ∥∥u(x)
∥∥

Φk
0 (BR)

= c0‖Dv‖Lk+1(B
R̂
),

where

c0 =
[

ωn−1

kωn/2

(
n − 1

k − 1

)(
2n

n + 2

) n
2
] 1

k+1

.

By (3.12) we have
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∫
BR

Fm

(
u

‖u‖Φk
0

)
dx = ωn−1

R∫
0

rn−1Fm

(
u

‖u‖Φk
0

)
dr

= n + 2

2n
ωn−1

R̂∫
0

s
n
2 Fm

(
v

‖u‖Φk
0

)
ds

= n + 2

2n

ωn−1

ωn
2

∫
B

R̂

Fm

(
v

c0‖Dv‖Lk+1(B
R̂
)

)
dy

� n + 2

2n

ωn−1

ωn
2

∫
B

R̂

exp

{
α

c
β

0

( |v|
‖Dv‖

L
n
2 +1

(B
R̂
)

)β}
dy.

By the Moser–Trudinger inequality (1.15) and (1.16) in the space R
n
2 +1, we see that

Ym(BR) � C

for some C > 0 independent of m if

β � β0 = n + 2

n
,

α

c
β

0

�
(

n

2
+ 1

)
(ωn/2)

2/n,

i.e.,

α �
(

n

2
+ 1

)
(ωn/2)

2/nc
β

0 = n

[
ωn−1

k

(
n − 1

k − 1

)] 2
n = α0.

This completes the proof. �
Remark 3.1. It is easy to verify that the exponent β0 = n+2

n
is optimal, and when β = β0, the

exponent α0 is also optimal. Indeed, a truncation of the function u(x) = log |x| shows that the
exponents in the Moser–Trudinger inequality are optimal. As the function is k-admissible, it also
implies the exponents in (1.12) are optimal.

4. Gradient flow

In this section we prove that for any fixed m � k, k = n
2 , there is a maximizer of (3.3) which

satisfies the associated Euler equation. By using the Hessian measure in [23], it is easy to prove
that there is a (nonsmooth) maximizer of (3.3), but we are unable to show that the maximizer
satisfies the associated Euler equation. Here we use the gradient flow method to obtain a smooth
maximizer. Let fm and Fm be as in Section 3. For simplicity, we omit the subscript m.
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Theorem 4.1. Let k = n
2 and Ω be a (k − 1)-convex domain with smooth boundary. There exists

a smooth maximizer u∗ ∈ Φk
0 (Ω) of

Y = sup
{
J (u): u ∈ Φk

0 (Ω)
}

(4.1)

which satisfies the equation

Sk

[
u∗] = λf

(
u∗),∥∥u∗∥∥ = 1,

λ =
[ ∫

Ω

f
(
u∗)∣∣u∗∣∣dx

]−1

, (4.2)

where ‖u‖ = ‖u‖Φk
0 (Ω), and (F = Fm for a fixed m � k)

J (u) =
∫
Ω

F

( |u|
‖u‖

)
.

We will introduce a gradient flow to prove Theorem 4.1. There are different gradient flows
for the maximizers of (4.1). One is to keep the norm ‖u‖ ≡ 1 constant, see Remark 4.1 below.
Here we introduce a different one. Instead of the functional J in (4.1), we consider a modified
one with a constraint η,

Yδ,η = sup
{
Jδ,η(u): u ∈ Φk

0 (Ω)
}
, (4.3)

where δ ∈ (0,1] is a small constant,

Jδ,η(u) =
∫
Ω

Fδ

( |u|
η(‖u‖)

)
,

Fδ(t) = Fm(t) + δ|t |, (4.4)

and

η(t) = et−1

is a uniformly convex function. Since η(t) � t and η(t) = t only at t = 1, a maximizer u of
Jδ,η necessarily satisfies ‖u‖ = 1 and is also a maximizer of J (when δ = 0). Conversely, if u is
a maximizer of J , then u/‖u‖ is a maximizer of Jδ,η (when δ = 0). See Lemma 4.1 below. The
purpose of introducing the constant δ is such that the associated Euler equation is non-degenerate.
By the Sobolev type inequality (1.7),

0 < Y � Yδ,η � Y + Cδ < ∞,

where the constant C is the one in (1.7) with p = 1.
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To get a gradient flow, let u(·, t) be a k-admissible function with parameter t . Differentiating
the functional Jδ,η to get

d

dt
Jδ,η

(
u(·, t)) =

∫
Ω

fδ

( |u|
η

)[−ut

η
− uη′

η2‖u‖k

∫
utSk[u]

]

=
(∫ [

Sk[u] −
(

η‖u‖k∫
(−u)η′fδ(

|u|
η

)

)
fδ

( |u|
η

)]
ut

)∫
(−u)η′fδ(

|u|
η

)

η2 ‖u‖k
,

= 1

ηλ

∫ [
Sk[u] − λfδ

( |u|
η

)]
ut dx,

where η = η(‖u‖) and (noticing that η′(t) = η(t))

λ = λ(t) = ‖u‖k∫
(−u)fδ(

|u|
η

)
.

Then for any monotone increasing function μ, if u(x, t) is a solution of

ut = μ
(
Sk[u]) − μ

(
λ(t)fδ

(
u

η

))
in Ω × [0,∞),

u = 0 on ∂Ω × [0,∞),

u = u0 on Ω × {t = 0}, (4.5)

we have

d

dt
Jδ,η

(
u(·, t)) � 0. (4.6)

In this section we choose the function μ such that μ ∈ C∞(0,∞), μ′(t) > 0, μ is concave, and

μ(t) =
{

log t when t < 1
100 ,

t1/q when t � 1,
(4.7)

where q = mβ0 (β0 = n+2
n

).

Remark 4.1. To derive a gradient flow which keeps ‖u(·, t)‖ constant, let η(t) ≡ t and w(·, t) =
u(·,t)
‖u‖ . Then

d

dt
J
(
w(·, t)) = d

dt
J
(
u(·, t)) = 1

λ̃(t)

∫
Ω

[
Sk[w] − λ̃(t)f (w)

] ut

‖u‖ dx,

where λ̃ = [∫
Ω

(−w)fδ(w)dx]−1. Hence for any monotone increasing function μ,

ut = μ
(
Sk[w]) − μ

(
λ̃(t)f (w)

)
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is an ascent gradient flow. Noting that

wt = ut

‖u‖ − u

‖u‖k+2

∫
Ω

(−ut )Sk[u],

we obtain an ascent gradient flow

wt = {
μ

(
Sk[w]) − μ

(
λ̃(t)f (w)

)} + w

∫
Sk[w][μ(

Sk[w]) − μ
(
λ̃(t)f (w)

)]
, (4.8)

which keeps ‖w‖ ≡ 1. However it seems the a priori estimates for the flow (4.8) is difficult.
For example, our estimate for sup |ut | (Lemma 4.2) and the estimate for higher order derivatives
(Theorem 4.2) do not apply to (4.8).

Remark 4.2. Instead of the flow (4.8) which keeps the norm ‖w(·, t)‖Φk
0

invariant, in this section
we consider the flow (4.5). A trick is to introduce the auxiliary function η such that a maximizer
of (4.4) must satisfies ‖u‖Φk

0
= 1, as shown in Lemma 4.1 below.

For the parabolic equation (4.5), we say a function u(x, t) is k-admissible if for any time t ,
u(·, t) is k-admissible.

Choose an initial function u0 ∈ Φk
0 (Ω) such that Jδ,η(u0) > Yδ,η − ε, for some small ε > 0.

By modifying u0 slightly (see [5,27,28]), we may assume that u0 satisfies the compatibility
condition

Sk[u] = λ(t)fδ

(
u

η

)
on ∂Ω × {t = 0}.

Let u be a smooth k-admissible solution to initial-boundary value problem (4.5). By the mono-
tonicity (4.6),

Jδ,η

(
u(·, t)) > Yδ,η − ε

for all t > 0. First we show

Lemma 4.1. Denote

Θ∗(ε) = sup
{‖u‖: u ∈ Φk

0 (Ω), Jδ,η(u) � Yδ,η − ε
}
,

Θ∗(ε) = inf
{‖u‖: u ∈ Φk

0 (Ω), Jδ,η(u) � Yδ,η − ε
}
.

Then

Θ∗(ε),Θ∗(ε) → 1 as ε → 0.
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Proof. Let g(t) = t
η(t)

= te1−t . Then g(t) < g(1) = 1 for any t �= 1. For any t > 0, t �= 1 and

any u ∈ Φk
0 (Ω) with ‖u‖ = t , we have

Jδ,η(u) =
∫
Ω

Fδ,η

(
u

η(‖u‖)
)

=
∫
Ω

Fδ,η

(
g(t)

u

‖u‖
)

.

By the Taylor expansion F(t) = ∑m
j=k

αj

j ! |t |βj , we obtain

Jδ,η(u) � g(t)

∫
Ω

Fδ,η

(
u

‖u‖
)

.

Therefore

sup
{
Jδ,η(u): u ∈ Φk

0 (Ω), ‖u‖ = t
}

� g(t)Yδ,η.

Lemma 4.1 follows immediately. �
By Lemma 4.1, we can choose ε > 0 small such that the solution u satisfies

1

2
�

∥∥u(·, t)∥∥ � 3

2
,

e−1/2 � η
(‖u‖) � e1/2, (4.9)

for all t > 0.
Next, observe that∫

Ω

|u|
η

fδ

(
u

η

)
dx �

∫
Ω

Fδ

(
u

η

)
dx � Yδ,η − ε � Y − ε. (4.10)

By the Sobolev type inequality (1.7) we also have∫
Ω

|u|fδ

(
u

η

)
dx � C.

Hence

C1 � λ(t) � C2. (4.11)

In the above, the constants C may depend on m and δ, but do not depend on MT . We denote

MT = supQT

∣∣u(x, t)
∣∣,

UT = supQT
|ut |,

and QT = Ω × (0, T ].



G.-J. Tian, X.-J. Wang / Journal of Functional Analysis 259 (2010) 1974–2002 1991
As a preliminary to the estimates for ut , we first compute d
dt

‖u(·, t)‖ and d
dt

λ(t). We have

∫
Ω

utSk[u](x, t) dx =
∫
Ω

ut

(
Sk[u](x, t) − λ(t)fδ

(
u

η

))
dx + λ(t)

∫
Ω

fδ

(
u

η

)
ut dx

= ψ(t) + λ(t)

∫
Ω

fδ

(
u

η

)
ut dx,

where we denote

ψ(t) =
∫
Ω

ut

(
Sk[u](x, t) − λ(t)fδ

(
u

η

))
dx � 0.

Denote Ψ (t) = ∫ t

0 ψ(t). Noting that ψ(t) = λ(t)η d
dt

Jδ,η(u(·, t)), we have Ψ (t) � C.
By (4.9) and the Sobolev type inequality (1.7),∣∣∣∣ ∫

Ω

fδ

(
u

η

)
ut dx

∣∣∣∣ � CUT ,

∣∣∣∣ ∫
Ω

|u|fδ

(
u

η

)
ut dx

∣∣∣∣ � CUT ,

∣∣∣∣ ∫
Ω

|u|2f ′
δ

(
u

η

)
dx

∣∣∣∣ � C, (4.12)

where C depends on m,δ. Hence∣∣∣∣ ∫
Ω

utSk[u](x, t) dx

∣∣∣∣ � C
(
ψ(t) + UT

)
.

Therefore ∣∣∣∣ d

dt

∥∥u(·, t)∥∥∣∣∣∣ � ‖u‖−k

∣∣∣∣ ∫
Ω

(−ut )Sk[u]dx

∣∣∣∣
� C

(
ψ(t) + UT

)
.

It follows

|ηt | =
∣∣∣∣ d

dt
η
(∥∥u(·, t)∥∥)∣∣∣∣ � C

(
ψ(t) + UT

)
(4.13)

for a different C, depending on m but not on MT .
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Next we compute d
dt

λ(t). Recall that

λ(t) = ‖u‖k∫
(−u)fδ(

|u|
η

)
.

We have

λ′(t)
λ(t)

= k

‖u‖
d

dt

∥∥u(·, t)∥∥ −
∫

d
dt

[(−u)fδ(
u
η
)]∫

(−u)fδ(
u
η
)

= k

‖u‖
d

dt

∥∥u(·, t)∥∥ +
∫

fδ(
u
η
)ut∫

(−u)fδ(
u
η
)

−
∫ |u|f ′

δ(
u
η
)ut

η
∫
(−u)fδ(

u
η
)

−
∫ |u|2f ′

δ(
u
η
)‖u‖t

η
∫
(−u)fδ(

u
η
)

.

In the last integral we have used η′ = η. By our previous estimates (4.10)–(4.13) and by the
Sobolev type inequality (1.7), we obtain∣∣λ′(t)

∣∣ � C
(
ψ(t) + UT

)
. (4.14)

With the above preparation, we can compute furthermore

d

dt
μ

(
λ(t)fδ

(
u

η

))
= μ′

{
λ′fδ + λf ′

δ

η2
(utη − uηt )

}
,

where C−1 � λ, η � C. Note that when t � 1, μ(t) = t1/q with q = mβ0. Hence when
λ(t)fδ(

u
η
) � 1, ∣∣μ′λ′fδ

∣∣ � C(1 + MT )
(
ψ(t) + UT

)
,∣∣∣∣μ′ λf ′

δ

η2
(utη)

∣∣∣∣ � CUT ,∣∣∣∣μ′ λf ′
δ

η2
(uηt )

∣∣∣∣ � C(1 + MT )
(
ψ(t) + UT

)
.

We obtain ∣∣∣∣ d

dt
μ

(
λ(t)fδ

(
u

η

))∣∣∣∣ � c∗(1 + MT )
(
ψ(t) + UT

)
, (4.15)

where c∗ depends on m,n, δ,Ω but not on T . When t > 0 is small, μ(t) = log(t). Note that
fδ � δ > 0. Hence when λ(t)fδ(

u
η
) � 1, μ′ � C and we also obtain estimate (4.15). Therefore

(4.15) holds for any u.

Lemma 4.2. Let u ∈ C4(QT ) ∩ C3(QT ) be a k-admissible solution of (4.5) satisfying (4.9).
Then ∃C > 0, which depends on n,m, δ,Ω , and the initial function u0, but is independent of T ,
such that ∣∣ut (x, t)

∣∣ � C
(
1 + M2

T

)
. (4.16)
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Proof. First we prove

inf
QT

ut � −C(1 + MT ) − C(1 + MT )U
1
2
T . (4.17)

Let

G(x, t) = ut

M − u
+ c∗Ψ (t)

where M = 2MT + 1, the constant c∗ > 0 is given in (4.15), and Ψ is defined before (4.12),
Ψ ′ = ψ . Let G(x0, t0) = infQT

G(x, t) and ut (x
∗, t∗) = infQT

ut (x, t), then from G(x0, t0) �
G(x∗, t∗) and Yδ,η � Jδ,η(u) � Yδ,η − ε it follows that

ut

(
x∗, t∗

)
� 3ut (x0, t0) − C(1 + MT ). (4.18)

If G attains its minimum at the parabolic boundary ∂∗QT , we have ut � −C for some C > 0
depending on the initial value u0. Hence we may assume G attains its minimum at some interior
point (x0, t0) of QT . We may also assume ut � 0 at (x0, t0). Then at (x0, t0), Gt � 0, Gj = 0 for
1 � j � n and matrix {Gij (x0, t0)} � 0, namely

utt + u2
t

M − u
+ c∗(M − u)ψ(t) � 0, (4.19)

utj + utuj

M − u
= 0 for 1 � j � n,{

uijt + utuij

M − u

}
� 0. (4.20)

Differentiating Eq. (4.5) in t gives

utt = d

dt
μ

(
Sk[u]) − d

dt
μ

(
λ(t)fδ

(
u

η

))
. (4.21)

From (4.20) we have at (x0, t0)

d

dt
μ

(
Sk[u]) = μ′(Sk[u])Sij

k [u]uijt � −μ′(Sk[u])kSk[u]ut

M − u
� 0, (4.22)

where S
ij
k [u] = ∂

∂uij
Sk[u] and we have used the relation

∑
i,j

S
ij
k [u]uij = kSk[u].

From (4.19), (4.21) and (4.22), we obtain at (x0, t0),
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u2
t

M − u
� −utt − c∗(M − u)ψ(t)

= − d

dt
μ

(
Sk[u]) + d

dt
μ

(
λ(t)fδ

(
u

η

))
− c∗(M − u)ψ(t)

� d

dt
μ

(
λ(t)fδ

(
u

η

))
− c∗(M − u)ψ(t).

By (4.15) we have

u2
t

M − u
� C(1 + MT )UT .

We obtain (4.17) from (4.18).

Next we prove

sup
QT

ut � C(1 + MT ) + C(1 + MT )U
1
2
T . (4.23)

Similarly as above, let

G(x, t) = ut

M + u
− c∗Ψ (t).

If G attains its maximum on the parabolic boundary ∂∗QT , then ut � C for some C > 0 depend-
ing only on the initial value u0. So we may assume that G attains its maximum at some point
(x0, t0) in QT and ut (x0, t0) � 0. Let ut (x

∗, t∗) = supQT
ut . Then as above,

ut

(
x∗, t∗

)
� 3ut (x0, t0) + C(1 + MT ). (4.24)

At (x0, t0) we have Gt � 0,Gj = 0 for 1 � j � n and matrix {Gij (x0, t0)} � 0, namely

utt − u2
t

M + u
− c∗(M + u)ψ(t) � 0,

utj − utuj

M + u
= 0 for 1 � j � n,{

uijt − utuij

M + u

}
� 0. (4.25)

Hence by (4.21),

u2
t

M + u
� utt − c∗(M + u)ψ(t)

= d
μ

(
Sk[u]) − d

μ

(
λ(t)fδ

(
u

))
− c∗(M + u)ψ(t). (4.26)
dt dt η
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If Sk[u] � 1, by Eq. (4.5), estimate (4.11), and noting that fδ � δ, we have

ut � μ(1) − μ

(
λ(t)fδ

(
u

η

))
� μ(1) − μ

(
λ(t)δ

)
� C,

we are through. If Sk[u] � 1, we have μ′(Sk[u]) = 1
q
(Sk[u]) 1

q
−1 and therefore we obtain by

(4.25) and (4.5), at (x0, t0),

d

dt
μ

(
Sk[u]) = μ′(Sk[u])Sij

k uij t

� μ′(Sk[u])utS
ij
k uij

M + u

= 1

q

(
Sk[u]) 1

q
−1 kutSk[u]

M + u

= kut

q(M + u)

(
Sk[u]) 1

q

= kut

q(M + u)

[
ut + μ

(
λ(t)fδ

(
u

η

))]
. (4.27)

By our choice q = mβ0, μ(λ(t)fδ(
u
η
)) is of linear growth in u. Hence by (4.11),

1

M + u
μ

(
λ(t)fδ

(
u

η

))
� C.

Therefore we obtain from (4.26)(
1 − k

q

)
u2

t

M + u
� Cut − d

dt
μ

(
λ(t)fδ

(
u

η

))
− c∗(M + u)ψ(t).

Using (4.15) again, we obtain

q − k

q

u2
t

M + u
� C(1 + MT )UT ,

and as above, (4.23) follows from (4.24).
Combining (4.17) and (4.23) we obtain

UT � C(1 + MT ) + C(1 + MT )U
1/2
T .

Hence UT � C(1 + M2
T ) for a different C. �

Remark 4.3. The proof of Lemma 4.2 is inspired by the argument in [4,5,27]. But to control the
terms arising in computing d

dt
λ(‖u(·, t)‖) and d

dt
η(‖u(·, t)‖), we have to change the auxiliary

function G by adding c∗Ψ (t) to it, making use of the boundedness of Yδ,η and (4.6).
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Lemma 4.3. Let u ∈ C4(QT )∩C3(QT ) be a k-admissible solution satisfying (4.9). Then ∃C > 0,
which depends on n,m, δ,Ω , and the initial function u0, but is independent of T , such that

sup
QT

∣∣Du(x, t)
∣∣ � C

(
1 + M

2q
k

T

)
, (4.28)

where Du is the derivative of u in x.

Lemma 4.3 can be obtained in a similar way as in [5], see Theorem 5.1 of [5]. Note that
in Eq. (4.5), λ and η are functions of t . They do not give us any trouble for the estimation of
supQT

|Du|. We omit the details here. We remark that in the case k < n
2 in [5], a precise power

of MT is required for the L∞ estimate for u. In this paper, we consider the case k = n
2 only. Any

positive power of MT in (4.28) is sufficient for the L∞ estimate below.
From the gradient estimate, we obtain the estimate for supQT

|u(·, t)|, uniformly in t .

Lemma 4.4. Let u ∈ C4(QT ) ∩ C3(QT ) be a solution of (4.5) satisfying (4.9). Then ∃C > 0,
which depends on n,m, δ,Ω , and the initial function u0, but is independent of T , such that

sup
QT

∣∣u(x, t)
∣∣ � C. (4.29)

Proof. Suppose |u| attains its maximum at (x0, t0). By the gradient estimate (4.28), we have
B(x0, ρ) ⊂ Ω (ρ = MT

2CM
2q
k

) and

∣∣u(x, t0)
∣∣ � 1

2
MT for |x − x0| < ρ.

Therefore ∫
Ω

|u|r �
∫

B(x0,ρ)

|u|r � CM
r+(1− 2q

k
)n

T = CMT

if we choose r = n(
2q
k

− 1) + 1. By (4.9) and the Sobolev type inequality (1.7),∥∥u(·, t0)
∥∥

Lr(Ω)
� C‖u‖Φk

0
� C.

Hence (4.29) is proved. �
Lemma 4.5. Let u ∈ C4(QT ) ∩ C3(QT ) be a k-admissible solution of (4.5) satisfying (4.9).
Then ∃C > 0, which depends on n,m, δ,Ω , and the initial function u0, but is independent of T ,
such that

sup
QT

(∣∣D2
xu(x, t)

∣∣ + ∣∣∂tu(x, t)
∣∣) � C. (4.30)

Proof. By Lemmas 4.3 and 4.4, sup(|u| + |Du|) is bounded. The estimate for ∂tu was already
established in Lemma 4.2. The estimate for D2

xu is similar to that in [5], as the function λ,η are
independent of the variable x. We omit the details of the proof here. �
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Theorem 4.2. Let u ∈ C∞(QT ) be a k-admissible solution of (4.5) satisfying (4.9). Then ∃C > 0,
which depends on n,m,k, l, δ and Ω , and the initial function u0 ∈ C∞(Ω , but is independent
of T , such that

‖u‖
C

k,l
x,t (QT )

� C. (4.31)

Proof. Multiplying both sides of (4.5) by Sk[u] and then integrating over Ω , by Lemma 4.5 we
obtain ∣∣∣∣ ∫

Ω

utSk[u]dx

∣∣∣∣ � C.

Since

d

dt
‖u‖k+1

Φk
0

= (k + 1)

∫
Ω

−utSk[u]dx,

by (4.9) we see that ‖u(·, t)‖Φk
0

is uniformly Lipschitz in t . Hence λ and η in (4.5) are uniformly
Lipschitz in t . Note that by (4.30), Eq. (4.5) is uniformly parabolic. Hence by the regularity
theory of Krylov it follows

‖u‖
C

2+α,1+ α
2

x,t

� C. (4.32)

Estimate (4.32) then implies that λ and η are uniformly C1,α smooth in t . By iteration we obtain
(4.31) for any k, l � 2. �
Remark 4.4. By estimate (4.30), Eq. (4.5) becomes uniformly parabolic. However, since the
norm ‖u‖Φk

0
involves second derivatives, (4.30) does not imply λ and η are Hölder or Lipschitz

continuous, and we cannot apply Krylov’s regularity theory [11] to get higher regularity directly.
We were stuck at the point for long time. We did find a proof of the interior C

2+α,1+α/2
x,t estimate

for the more general parabolic equation

ut = F
(
D2u,Du,u, x

) − f

(
x,u,Du,

∫
G

)
, (4.33)

where G = G(D2u,Du,u, x) is a constraint involving second derivatives. But at the moment
we were not able to prove the boundary estimate and the higher regularity for Eq. (4.32). Most
recently we realized that for Eq. (4.5), ‖u(·, t)‖Φk

0
is indeed Lipschitz, which implies the global

regularity immediately, as shown above.

5. Proof of Theorem 4.1

With the global regularity, Theorem 4.2, we are in position to prove Theorem 4.1. First we
prove the local existence of solutions to the initial boundary value problem (4.5).
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Lemma 5.1. Suppose the initial function u0 ∈ C4+α(Ω)∩Φk
0 (Ω) (α ∈ (0,1)), satisfies the com-

patibility condition at ∂Ω × {t = 0}. Then for T > 0 small, there is a unique local solution
u ∈ C

4+α,2+α/2
x,t (QT ) to the problem (4.5).

There are several papers dealing with fully nonlinear parabolic equations with constraints
involving the second derivatives, but in most papers the proof of the local existence is very vague.
A natural idea is to introduce the mapping in the standard Banach space B := C

4+α,2+α/2
x,t (QT )

such that for any v ∈ B , u = M(v) is the solution of

ut = μ
(
Sk[u]) − μ

(
λv(t)fδ

(
v

ηv

))
in QT ,

u = 0 on ∂Ω × [0,∞),

u = u0 on Ω × {t = 0}, (5.1)

where λv and ηv are the functions in (4.5) with u replaced by v. But since λ and η are integrals
involving second derivatives, we cannot prove the mapping M is precompact or contractive if
we work in the space B . In other words, the usual methods for the local existence of solutions to
parabolic equations do not apply to fully nonlinear equations with constraints involving second
derivatives.

Our trick here is to introduce the Banach space

B∗ = {
u,ux,uxx ∈ C

2+α,1+α/2
x,t (QT )

}
(5.2)

equipped with the usual norm for u,ux,uxx in C
2+α,1+α/2
x,t (QT ) [15]. We will prove the mapping

M is contractive for sufficiently small T > 0. Therefore the local existence of solutions follows
from the contraction mapping theorem. Note that in the a priori estimates in Section 4, we assume
the initial function u0 satisfies Jδ,η(u0) > Yδ,η − ε. But for local existence, this assumption is not
needed.

Proof. To prove the local existence we use the contraction mapping theorem for the mapping
M in the ball

B∗
r (u0) = {

u ∈ B∗: ‖u − u0‖B∗ < r
}
, (5.3)

where r > 0 is a small constant, and u0 is regarded as a function in B∗. For any v ∈ B∗
r (u0), let

u = M(v). As in Section 4 we can establish the global regularity for u, namely

‖u‖
C

4+α,2+α/2
x,t (QT )

� C (5.4)

for some C depending on ‖f̃ (v)‖
C

2+α,1+α/2
x,t (QT )

, which is uniformly bounded when v ∈ B∗
r (u0),

where

f̃ (v) = μ

(
λv(t)fδ

(
v

))
.

ηv
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Note that the global regularity implies ‖u(·, t)‖Φk
0

= ‖u0‖Φk
0

+ o(1) as t → 0, and for T > 0

small, u = M(v) ∈ B∗
r (u0).

Estimate (5.4) is not enough such that the mapping M is contractive. But we can raise the
regularity of u in x, since the function f̃ has better smooth condition in x than in t . Differentiate
Eq. (5.1) in x, we get

(uxi
)t = L[uxi

] − ∂xi
f̃ , (5.5)

where L is the linearized operator of μ(Sk[u]), which is uniformly elliptic due to the esti-
mate (5.4). The least and largest eigenvalues of L depend only on the estimate (5.4). Hence
by the regularity theory of linear parabolic equations [11],

‖uxi
‖
C

4+α,2+α/2
x,t (QT )

� C. (5.6)

Differentiating (5.1) in x again, we obtain estimate for ‖uxixj
‖
C

4+α,2+α/2
x,t (QT )

.

We show that the mapping M is contractive when T > 0 is small. For any given v1, v2 ∈
B∗

r (u0), let u1 = M(v1) and u2 = M(u2) be the corresponding solutions to (5.1). Then by the a
priori estimate (5.4), u1 − u2 satisfies a linear, uniformly parabolic equation

∂t (u1 − u2) = L̂[u1 − u2] − (
f̃ (v1) − f̃ (v2)

)
. (5.7)

One can easily verify that ∣∣f̃ (v1) − f̃ (v2)
∣∣ � C1‖v1 − v2‖B∗ .

On the other hand, by constructing proper sub and super solutions, we have

sup
QT

|u1 − u2| � C2T ‖v1 − v2‖B∗ . (5.8)

Here the constants C1,C2 may look like depending on u and v. But since v ∈ B∗
r (u0) and by

the estimate (5.4), C1,C2 are uniformly bounded with an upper bound depending on r and C in
(5.4) but independent of u and v. Similarly to (5.6) we have the estimate∥∥(u1 − u2)xi

∥∥
C

4+α,2+α/2
x,t (QT )

� C‖v1 − v2‖B∗ . (5.9)

Hence ∥∥(u1 − u2)xxx

∥∥
C

2+α,1+α/2
x,t (QT )

� C‖v1 − v2‖B∗ .

By the interpolation,∥∥(u1 − u2)xx

∥∥
C

2+α,1+α/2
x,t (QT )

� C
∥∥(u1 − u2)xxx

∥∥2/3

C
2+α,1+α/2
x,t (QT )

‖u1 − u2‖1/3

C
2+α,1+α/2
x,t (QT )

.

Similarly to (5.9) we have

‖u1 − u2‖ 4+α,2+α/2 � C‖v1 − v2‖B∗ .

Cx,t (QT )
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Hence by (5.8) and the interpolation again,

‖u1 − u2‖C
2+α,1+α/2
x,t (QT )

� CT σ ‖v1 − v2‖B∗

for some σ > 0. We obtain∥∥(u1 − u2)xx

∥∥
C

2+α,1+α/2
x,t (QT )

� C3T
σ/3‖v1 − v2‖B∗ . (5.10)

Therefore when T > 0 is small, we obtain the existence of a local solution by the contraction
mapping theorem. �

By the local existence and the global estimate (4.31), the solution u to (5.1) exists on the
maximal time [0,∞). Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. By the global estimate (4.31) and since d
dt

Jδ,η(u(·, t)) � 0, Yδ,η − ε �
Jδ,η(u) � Yδ,η, we have

d

dt
Jδ,η

(
u(·, t)) → 0

uniformly as t → ∞. Hence ∥∥∥∥Sk

[
u(·, t)] − λ(t)fδ

(
u

η

)∥∥∥∥
C3(Ω)

→ 0

as t → ∞. Choosing a subsequence tj such that ‖u(·, tj )‖ and λ(tj ) converge, we conclude that
u(·, tj ) converges to a smooth solution u = uε,δ,η of

Sk[u] = λfδ

(
u

η

)
in Ω,

u = 0 on ∂Ω, (5.11)

and u satisfies by (4.29) the uniform estimate

sup
Ω

∣∣u(x)
∣∣ � C, (5.12)

where λ is given in (4.5). Note that the solution depends on the choice of the initial function u0
and so also depends on ε.

We claim that the constant C in (5.12) is independent of ε. Indeed, similarly to (4.28) we can
establish a gradient estimate |Du| � C(1 + supΩ |u|)2q/k for some constant C independent of ε,
then apply the proof of Lemma 4.4 to obtain (5.12).

By the monotonicity formula (4.6), we have

Yδ,η − ε � Jδ,η(uε,δ,η) � Yδ,η.
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For fixed δ > 0, by the uniform estimate (5.12) and global regularity of solutions to the k-Hessian
equation [1,27], we may assume that uε,δ,η converges in C3(Ω) as ε → 0 to a solution uδ,η of
(5.11) with ε = 0, which satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

‖uδ,η‖Φk
0
= 1 (by Lemma 4.1),

Jδ,η(uδ,η) = Yδ,η,

λ =
[ ∫

Ω

fδ(uδ,η)|uδ,η|dx

]−1

.

(5.13)

Note that when ‖u‖Φk
0

= 1, η(‖u‖) = ‖u‖ = 1. Hence Eq. (5.11) and the quantities in (5.13) are
independent of η. So let us drop the subscript η below.

Now for fixed m, recall that F(t) = ∑m
j=k

αj

j ! |t |jβ and Fδ(t) = F(t) + δ|t |. We have

Fδ(t) � tfδ(t) � mβFδ(t).

Hence

[mβYδ]−1 � λ � [Yδ]−1.

By the Sobolev type inequality (1.7), we have Yδ → Y as δ → 0, where Y is given in (4.1).
By the a priori estimates in [1], see also [27], we have

‖uδ‖C1,1(Ω) � C (5.14)

for some C > 0 independent of δ ∈ (0,1). Therefore in any subdomain Ω ′ ⊂⊂ Ω , by (5.13),
(5.14) and the subharmonicity of uδ , there is a constant C = CΩ ′ independent of δ ∈ (0,1)

such that uδ � −C in Ω ′. Hence Eq. (5.11) is non-degenerate, uniformly in δ, in Ω ′. By Evans
and Krylov’s regularity theory for fully nonlinear, uniformly elliptic equation [6], we obtain the
interior estimate for high order derivatives, namely ‖uδ‖C3(Ω ′) � C1(Ω

′). See also the interior
estimates in [5]. Therefore by passing to a subsequence we assume that uδ → u∗ as δ → 0.
Then u∗ ∈ C3(Ω) ∩ C1,1(Ω) is a maximizer of (4.1) and satisfies the Euler equation (4.2). This
completes the proof. �
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