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Two loop renormalization of the magnetic coupling in hot QC
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Abstract

Well above the critical temperature hot QCD is described by 3d electrostatic QCD with gauge couplinggE and Debye mas
mE . We integrate out the Debye scales to two loop accuracy and find for the gauge coupling in the resulting magn

actiong2
M = g2

E

(
1− 1

48
g2
EN

πmE
− 17

4608

( g2
EN

πmE

)2 + O
(( g2

EN

πmE

)3)).
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1. Introduction

Notable progress [1] in the standard model at h
T is due to the systematic separation of perturba
scales like the temperature, the Debye massgT and
the non-perturbative scaleg2T . It is the latter that is
three-dimensional and can be treated numerically
the lattice and has given us a wealth of information
the plasma state of the standard model and QCD it
In this Letter we will be concerned with QCD, but w
will admit for N instead of three colours.

For small gauge couplingg one can integrate ou
the integer Kaluza–Klein modes 2πnT and obtain a
static effective action,SE , with a running coupling
gE(T ). This action is three-dimensional, and its d
grees of freedom are three-dimensional Yang–M
and a massive adjoint Higgs with as mass the
bye scalegT . The scaleg2T appears as the cou
pling in the three-dimensional Yang–Mills action. T
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Debye scale can be integrated out wheng � 1. We
are then left with the magnetic actionSM . It is the
three-dimensional Yang–Mills theory which describ
physics at the magnetic scalesg2T . Its couplingg2

M

is a function of the parameters inSE and can be cal
culated perturbatively. This has up to now been d
to one loop order [4]. In this Letter we report on t
computation of the two loop effects.

2. Motivation

Our motivation stems from the need for accura
More precisely, integrating out effects of the K–
modes one obtains from the original action of QC
the superrenormalizable actionSE :

LE = Tr
( �D(A)A0

)2 + m2
E TrA2

0 + λE

(
Tr

(
A2

0

))2

+ λ̄E

(
Tr(A0)

4 − 1

2

(
TrA2

0

)2
)

(1)+ 1

2
TrF 2

ij + δLE.
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This action density describes the physics of
QCD plasma down to temperaturesT ∼ 2Tc, includ-
ing non-perturbative effects from the magnetic d
sity TrF 2

ij . These have been calculated by lattice me
ods [2]. The terms neglected,δLE , introduce an erro
of O(g4) [3]. So the parameters in this action have
evaluated up to this order.

The magnetic action takes the form

(2)LM = 1

2
TrF 2

ij + δLM

with a magnetostatic gauge couplingg2
M .

Now the neglected terms introduce an error
of O(g3), and hence the magnetic coupling has
be computed toO(g2) accuracy. The calculation i
reported on in the next section.

3. Renormalization of the magnetic gauge
coupling

The basic idea behind the effective actions Eqs.
and (2) is that one can compute with both in the reg
of momentap ∼ g2T . To know what the parameters
the latter are in terms of those of the former requi
computing two-point functions, three point function
etc. in both theories and match them. In the match
the diagrams of the pure 3d Yang–Mills theory dr
out.

Here we will follow a well-known shortcut [5] by
introducing a background fieldBi in LE :

�A = 1

gE
�B + �Q,

(3)A0 = gEQ0.

We calculate the fluctuations around the backgro
in a path integral:

exp

(
− 1

g2
M

SM(B)

)

(4)=
∫

DQ0DQi exp

(
−SE − 1

ξ
Tr(DiQi)

2
)
.

We added a general background gauge term.
resulting actionSM(B) is gauge invariant to all loop
orders and the renormalization of the coupling is id
tified from the background field two point function
a momentump = O(g2T ). This momentum is the in
frared cut-off in computing the r.h.s. of Eq. (4). Wi
dimensional regularization one finds ind dimensions,
dropping the pure Yang–Mills diagrams as mention
before:

exp

(
− 1

g2
M

SM(B)

)

= exp

(
− 1

g2
E

SM(B)

)

(5)× (
1+ (

F tr
1 + F tr

2 + · · ·)SM(B)
)
.

Here theF tr
i are the transverse parts of the backgro

two-point functionsFi as shown for the two loop cas
in Fig. 1.

Let the sum of all Feynman diagrams for the tw
point function of the background field withi loops be
Fi . Then we can write

(6)Fi = F tr
i

(
δlmp

2 − plpm

) + FL
i plpm.

The longitudinal part is zero because of gau
invariance. It is borne out by explicit calculatio
Transversality is true for alld and values of the
parameters.

The F tr
i are still depending on the paramete

ε = 3−d
2 , gE , mE , ξ , the regularization scalēµ and

the momentump. We are interested in the limit
d = 3 and p̃ = 0 where p̃ = p

mE
. In that limit

we expect because of the superrenormalizability
UV poles and theµ̄ dependence to cancel. Als
the ξ dependence should disappear. And so sho
the IR effects in the guise of inverse powers
the momentump. And indeed they do by explic
calculation, as the table in the next section shows.

This leaves us with the relation, using Eq. (5)

(7)
1

g2
M

= 1

g2
E

− F tr
1 −F tr

2 ,

with

(8)g2
EF

tr
1 = − 1

48

g2
EN

πmE

,

(9)g2
EF

tr
2 = − 19

4608

(
g2
EN

πmE

)2

.

This is the main result.
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Fig. 1. Two-loop Feynman graphs for the background two-point function.
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4. Details of the calculation

The two loop diagrams involving at least o
massive propagator are shown in Fig. 1. Also sho
(graphs 15 and 16) are the insertions, discusse
Ref. [5]. They are vital for the gauge parame
independence of our result. FORM [7] was used
algebraic manipulations and secularization of integ
with reducible numerators. The program TARCER
served to scalarize those integrals with irreduci
denominators. At that point the resultF2 is expressed
in terms of eight scalar integrals. Ford = 3, the values
of these scalar integrals are computed in Ref. [8].
the expansion of these integrals up toε, methods as
in Ref. [8] were used and results were checked w
Ref. [9].

First we checked the transversality, i.e.,FL
2 = 0.

The reader can find the result forF tr
2 in Table 1.

Individual graphs have UV and IR divergencenc
that do cancel when summed. The finite part is ind
gauge parameter independent, though the physic
irrelevantO(p2) terms are not.
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Table 1

Graph No. p2F tr
2

1 − p̃2(29+24ξ)
9216π2 + 1+ξ+ε(2+ξ−4(1+ξ) log(2))+4ε(1+ξ) log( µ̄

m )

128επ2

2 p̃2(20+6ξ)
1536π2 − 3(2+ξ−2ε(−1+ξ(−1+log(4))+log(16))+4ε(2+ξ) log( µ̄m ))

128επ2

3 p̃2(−43+12ξ)
4608π2 + 4+ε(1+ξ−16 log(2))+16ε log( µ̄m )

64επ2

4 −2−ξ
32p̃π − p̃(15+ξ)

1536π + p̃2(13+2ξ)
3072π2 − 3(1+ξ)2+4ε(−8+ξ)ξ log( µ̄

2m )+4ε(3+2ξ(7+ξ)) log( µ̄
2m )

768επ2ξ

5 p̃(15+ξ(4+ξ))
1536π − p̃2(23+12ξ)

4608π2 + 2ε+ξ+4εξ log( µ̄
2m )

128επ2

6 −3
(64eπ2)

+ 22−24(1+log( µ̄
2m ))

128π2

7
6(2+ξ)+ε(12(1+ξ)−p̃2(2+ξ))+24ε(2+ξ) log( µ̄

2m )

512επ2

8 0

9 1+2ξ
256επ2ξ

+ −2ξ−4(1+2ξ)−4(−1−2ξ)(1+log( µ̄
2m ))

256π2ξ

10 16+8ξ
256p̃π

11 0
12 0
13 0
14 0

15 − p̃(1+ξ)(4+ξ)
1536π

16 p̃(2+ξ)
768π

Sum −19p̃2
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5. Conclusions

Our main result, Eq. (9), shows that the smalln
of the corrections to the magnetic coupling do
persist in two loop order. In fact, at 2Tc the coupling
for 3 colours equals [2]g2

E = 2.7 and the 2 loop
correction is about a third of the one loop correct
(itself about 3 percent).

Our result is of importance in analyzing the pure
magnetic quantities, as the spatial Wilson loop, and
magnetic mass. In particular it is crucial in connect
the lattice results from the magnetic action to tho
obtained from the electric action, and ultimately
those of four-dimensional simulations. This will b
done in a future publication [10].
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