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1. Introduction

Let H be a Hilbert space with Riesz basis {fj}∞j=1, and let {gj}∞j=1 be a sequence of vectors in H. If

there exists a constant λ ∈ [0, 1) such that∥∥∥∑
cj(fj − gj)

∥∥∥ � λ
∥∥∥∑

cjfj

∥∥∥ (1)

for all finite sequences {cj} of scalars, then {gj}∞j=1 is also a Riesz basis for H. This result is the well-

known classical Paley–Wiener Theorem on perturbation of Riesz bases in Hilbert spaces [14]. Note
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that condition (1) implies that there exists a bounded invertible operator T such that Tfi = gi (see

[16]). Therefore, this observation enables us to investigate the perturbation of bases and frames

from the operator perturbation point of view (see [3,4]). In the last decade, several authors have

generalized the Paley–Wiener perturbation theorem to the perturbation of frames in Hilbert spaces

(see [2–5]). The most general result of these was the following obtained by Casazza and Christensen

[3].

Theorem 1.1 [3]. Let {xj}j∈J be a frame for a Hilbert space H with frame bounds C and D. Assume that

{yj}j∈J is a sequence of H and that there exist λ1, λ2,μ � 0 such that max

{
λ1 + μ√

C
, λ2

}
< 1. Suppose

one of the following conditions holds for any finite scalar sequence {cj} and every x ∈ H. Then {yj}j∈J is

also a frame for H.

(i)
(∑

j∈J |〈x, xj − yj〉|2
) 1

2 � λ1

(∑
j∈J |〈x, xj〉|2

) 1
2 + λ2

(∑
j∈J |〈x, yj〉|2

) 1
2 + μ‖x‖;

(ii)
∥∥∥∑n

j=1 cj(xj − yj)
∥∥∥ � λ1

∥∥∥∑n
j=1 cjxj

∥∥∥ + λ2

∥∥∥∑n
j=1 cjyj

∥∥∥ + μ
(∑n

j=1 |cj|2
) 1

2 .

Moreover, if {xj}j∈J is a Riesz basis for H and {yj}j∈J satisfies (ii), then {yj}j∈J is also a Riesz basis for H.

Frames for Hilbert spaces have natural generalizations in Hilbert C∗-modules that are generaliza-

tions of Hilbert spaces by allowing the inner product to take values in a more general C∗-algebra
than C (see Definition 2.1). Note that the theory of Hilbert C∗-modules is quite different from that

of Hilbert spaces. Unlike Hilbert space cases, not every closed submodule of a Hilbert C∗-module is

complemented.Moreover, thewell-knownRiesz representation theorem for continuous functionals in

Hilbert spacesdoesnothold inHilbertC∗-modules,which implies thatnot all bounded linear operators

on Hilbert C∗-modules are adjointable. It should also be remarked that, due to the complexity of the

C∗-algebras involved in the Hilbert C∗-modules and the fact that some useful techniques available

in Hilbert spaces are either absent or unknown in Hilbert C∗-modules, these are many essential

differences between Hilbert space frames and Hilbert C∗-module frames. To name a few: in Hilbert

spaces every Riesz basis has a unique dualwhich is also a Riesz basis. But in Hilbert C∗-modules, due to

the existence of zero-divisors, not all Riesz bases have unique duals, and not every dual is a Riesz basis

(see [9]). Also, there could exist a nonzero element a in the underlying C∗-algebra such that axj = 0

for each vector xj in a modular Riesz basis {xj}j∈J (see Remark 3.6) which never occurs in Hilbert

spaces. One of the striking differences is the recent result of Hanfeng Li who proved that not every

Hilbert C∗-module admits a frame [13]. This shows that the famous Kasparov stabilization theorem

for countably generated Hilbert C∗-modules can not be extended to arbitrary Hilbert C∗-modules. We

refer to [7–9,12] for more discussions on some essential differences between Hilbert space frames and

Hilbert C∗-modular frames.

In this paperwe examine the perturbation of frames andRiesz bases inHilbert C∗-modules.Wewill

show that while the Casazza–Christensen general perturbation theorem (Theorem 1.1) for frames in

Hilbert spaces remains valid for Hilbert C∗-modular frames (Theorem 3.2), the perturbation theory for

Riesz bases (under the similar perturbation condition of Theorem 1.1) no longer holds for Riesz bases

in Hilbert C∗-modules (Example 3.4). We obtain a necessary and sufficient condition under which

the perturbation (under Casazza–Christensen’s perturbation condition) of a Hilbert C∗-modular Riesz

basis remains to be a Riesz basis (Theorem 3.5).

2. Preliminaries

We first recall some definitions and results about Hilbert C∗-modules, frames and Riesz bases in

Hilbert C∗-modules.



748 D. Han et al. / Linear Algebra and its Applications 431 (2009) 746–759

Definition 2.1. Let A be a C∗-algebra and H be a (left) A-module. Suppose that the linear structures

given on A and H are compatible, i.e. λ(ax) = a(λx) for every λ ∈ C, a ∈ A and x ∈ H. Assume that

there exists a mapping 〈·, ·〉 : H × H → A with the following properties:

(i) 〈x, x〉 � 0 for every x ∈ H,

(ii) 〈x, x〉 = 0 if and only if x = 0,

(iii) 〈x, y〉 = 〈y, x〉∗ for every x, y ∈ H,

(iv) 〈ax, y〉 = a〈x, y〉 for every a ∈ A, and every x, y ∈ H,

(v) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 for every x, y, z ∈ H.

Then the pair {H, 〈·, ·〉} is called a (left-) pre-Hilbert A-module. The map 〈·, ·〉 is said to be an A-

valued inner product. If the pre-Hilbert A-module {H, 〈·, ·〉} is complete with respect to the induced

norm ‖x‖ = ‖〈x, x〉‖ 1
2 , then it is called a Hilbert A-module.

Definition 2.2 [8]. Let A be a unital C∗-algebra and J be a finite or countable index set. A (countable

or finite) sequence {xj}j∈J of elements in a Hilbert A-module H is said to be a (standard) frame for H
if there exist two constants C,D > 0 such that the frame inequality

C〈x, x〉 �
∑
j∈J

〈x, xj〉〈xj , x〉 �D〈x, x〉

holds for every x ∈ H, where the sum in the middle of the inequality is convergent in norm. The

numbers C and D are called frame bounds. The sequence {xj}j∈J is called a (standard) Bessel sequence

with Bessel bound D if we only require the right-hand side of the frame inequality.

Definition 2.3 [8]. A frame {xj}j∈J for a Hilbert A-module H is said to be a (standard) Riesz basis for H
if it satisfies:

(i) xj /= 0 for all j;

(ii) if an A-linear combination
∑

j∈S ajxj with coefficients {aj : j ∈ S} ⊆ A and S ⊆ J is equal to

zero, then every summand ajxj is zero.

In this paper we focus on finitely and countably generated Hilbert C∗-modules over unital C∗-
algebraA. AHilbertA-moduleH is (algebraically)finitely generated if there exists afinite set {x1, . . . , xn}⊆ H such that every element x ∈ H can be expressed as an A-linear combination x = ∑n

i=1 aixi, ai ∈
A. A Hilbert A-module H is countably generated if there exists a countable set {xi} ⊆ H such that H
equals the norm-closure of the linear span (over C and A) of this set.

From the definition of frames (resp. Bessel sequences) in Hilbert C∗-modules, it is clear that we

need to compare positive elements in the underlying C∗-algebra in order to test whether a sequence is

a frame (resp. Bessel sequence) or not. This usually is not a trivial task. The following characterization

of modular Bessel sequences and frames, which was obtained independently by Arambašić [1] and

Jing [11], enables us to verify whether a sequence is a modular frame (resp. Bessel sequence) in terms

of norms. It also allows us to characterize modular frames from the operator theory point of view, and

it is needed in proving our main results of this paper.

Proposition 2.4 [11]. Let H be a finitely or countably generated Hilbert A-module H over a unital C∗-
algebra A and {xj}j∈J ⊆ H a sequence. Then

(i) {xj}j∈J is a Bessel sequence of H with Bessel bound D if and only if∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥ �D‖x‖2

for all x ∈ H.
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(ii) {xj}j∈J is a frame of H with frame bounds C and D if and only if

C‖x‖2 �

∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥ �D‖x‖2

for all x ∈ H.

Wenowintroducea fewmorenotations. For aunitalC∗-algebraA, let l2(A)be theHilbertA-module

defined by

l2(A) =
⎧⎨
⎩{aj}j∈J ⊆ A : ∑

j∈J

aja
∗
j converges in ‖ · ‖

⎫⎬
⎭ .

Let {ej}∞j=1 denote the standard orthonormal basis of l2(A), where ej takes value 1A at j and 0A
everywhere else. For any Bessel sequence {xj}j∈J of a finitely or countably generated HilbertA-module

H, the associated analysis operator TX : H → l2(A) is defined by

TXx = ∑
j∈J

〈x, xj〉ej , x ∈ H.

Note that the analysis operator TX is adjointable and fulfills T∗
X ej = xj for all j. The operator SX : H → H

defined by

SXx = T∗
X TXx = ∑

j∈J

〈x, xj〉xj

is called the frame operator.

In [9] we obtained the following characterization for Riesz bases in Hilbert C∗-modules.

Theorem 2.5 [9]. Let {xj}j∈J be a frame for a finitely or countably generated Hilbert C∗-module H. Then
{xj}j∈J is a Riesz basis if and only if the range space of its analysis operator TX is Pn-invariant for each n,

where Pn is the projection on l2(A) that maps each element to its nth component.

Following the definition of Riesz bases in Hilbert C∗-modules, to test whether a frame {xj}j∈J is a

Riesz basis, one needs to show that if
∑

j∈J cjxj = 0 for some sequence {cj}j∈J ⊆ A, then cjxj = 0 for

each j. The following result allows us to consider the sequence {cj}j∈J only in l2(A).

Proposition 2.6 [9]. Suppose that {xj}j∈J is a frame of H, then {xj}j∈J is a Riesz basis if and only if

(i) xj /= 0 for each j ∈ J;
(ii) if

∑
j∈J cjxj = 0 for some sequence {cj}j∈J ∈ l2(A), then cjxj = 0 for each j ∈ J.

In the following we give some characterizations of Bessel sequences, frames and Riesz bases in

Hilbert C∗-modules from the operator-theoretic point of view. Note that these results are just mod-

ifications of their analogues in the Hilbert space setting and the proofs follow the similar line of

reasonings as those in Hilbert spaces (see Theorems 3.2.3, 5.5.1, and Lemma 5.5.4 in [6]).

We begin with the following lemma which is due to Heuser [10]. Heuser only considered the

l2(C)-sequence case, but his proof also works in a more general setting.

Lemma 2.7. Let A be a C∗-algebra and {cj}j∈J a sequence in A. If
∑

j∈J cjξ
∗
j converges for all {ξj}j∈J ∈

l2(A), then {cj}j∈J ∈ l2(A).
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Proof. We define a sequence of operators Fn and an operator F by

Fn({ξj}) =
n∑

j=1

cjξ
∗
j and F({ξj}) =

∞∑
j=1

cjξ
∗
j ∀{ξj} ∈ l2(A).

Observe that

‖Fn({ξj})‖2 =
∥∥∥∥∥∥

n∑
j=1

cjξ
∗
j

∥∥∥∥∥∥
2

�

∥∥∥∥∥∥
n∑

j=1

cjc
∗
j

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

n∑
j=1

ξjξ
∗
j

∥∥∥∥∥∥ � ‖{cj}‖2 ·
∥∥∥∥∥∥

n∑
j=1

ξjξ
∗
j

∥∥∥∥∥∥ .

It follows that Fn is bounded for each n. Clearly, Fn → F pointwise as n → ∞, so F is bounded by the

Uniform Boundedness Theorem. Therefore ‖F({ξj})‖ � ‖F‖ · ‖{ξj}‖ for each {ξj} ∈ l2(A).
Now fix n, and let

ξj =
{
c∗j , if 1� j � n;
0, otherwise.

Then {ξj} ∈ l2(A).
We compute∥∥∥∥∥∥

n∑
j=1

cjc
∗
j

∥∥∥∥∥∥ =
∥∥∥∥∥∥

n∑
j=1

cjξj

∥∥∥∥∥∥ � ‖F‖ · ‖{ξj}‖

= ‖F‖ ·
∥∥∥∥∥∥

∞∑
j=1

ξjξ
∗
j

∥∥∥∥∥∥
1
2

= ‖F‖ ·
∥∥∥∥∥∥

n∑
j=1

ξjξ
∗
j

∥∥∥∥∥∥
1
2

= ‖F‖ ·
∥∥∥∥∥∥

n∑
j=1

cjc
∗
j

∥∥∥∥∥∥
1
2

.

Therefore
∥∥∥∑n

j=1 cjc
∗
j

∥∥∥ 1
2 � ‖F‖, and hence {cj} ∈ l2(A). �

The following is elementary and well known in Hilbert space setting, and will be used in the next

section. We include a proof for completeness.

Proposition 2.8. Let {xj}j∈J be a sequence of a finitely or countably generated Hilbert A-module H over a

unital C∗-algebra A. We define an operator U : l2(A) → H by

U{cj}j∈J = ∑
j∈J

cjxj.

Then

(i) {xj}j∈J is a Bessel sequence with Bessel bound D if and only if operator U is a well-defined bounded

operator from l2(A) into H with ‖U‖ �
√

D.
Moreover, {xj}j∈J is a frame if and only if U is a bounded operator from l2(A) onto H.

(ii) {xj}j∈J is a frame of H with bounds C and D if and only if span{xj : j ∈ J} = H and operator U is

bounded and satisfies√
C‖{cj}‖ � ‖U{cj}‖ �

√
D‖{cj}‖ ∀{cj} ∈ (Ker U)⊥. (2)

Furthermore, {xj}j∈J is a Riesz basis with unique dual frame if and only if span{xj : j ∈ J} = H
and there exist C ,D� 0 such that√

C‖{cj}‖ � ‖U{cj}‖ �
√

D‖{cj}‖ ∀{cj}j∈J ∈ l2(A).
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Proof. (i) We first consider the case of Bessel sequences.

“⇒”. Suppose that {xj}j∈J is a Bessel sequence with bound D. We first show that U is well-defined.

For arbitrary n > m, we have∥∥∥∥∥∥
n∑

j=1

cjxj −
m∑
j=1

cjxj

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥

n∑
j=m+1

cjxj

∥∥∥∥∥∥
2

= sup
‖x‖=1

∥∥∥∥∥∥
〈

n∑
j=m+1

cjxj , x

〉∥∥∥∥∥∥
2

= sup
‖x‖=1

∥∥∥∥∥∥
n∑

j=m+1

cj〈xj , x〉
∥∥∥∥∥∥
2

� sup
‖x‖=1

∥∥∥∥∥∥
n∑

j=m+1

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥ ·

∥∥∥∥∥∥
n∑

j=m+1

cjc
∗
j

∥∥∥∥∥∥
�D

∥∥∥∥∥∥
n∑

j=m+1

cjc
∗
j

∥∥∥∥∥∥ ,

which implies that
∑

j∈J cjxj converges. Therefore U is well-defined.

For the boundedness of U, since

‖U{cj}‖2 = sup
‖x‖=1

‖〈U{cj}, x〉‖2 = sup
‖x‖=1

∥∥∥∥∥∥
∑
j∈J

cj〈xj , x〉
∥∥∥∥∥∥
2

� sup
‖x‖=1

∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥ ·

∥∥∥∥∥∥
∑
j∈J

cjc
∗
j

∥∥∥∥∥∥
�D

∥∥∥∥∥∥
∑
j∈J

cjc
∗
j

∥∥∥∥∥∥ = D‖{cj}‖2,

we have that ‖U‖ �
√

D.

“⇐”. For arbitrary x ∈ H and {cj}j∈J ∈ l2(A), we have

〈x,U{cj}〉 =
〈
x,

∑
j∈J

cjxj

〉
= ∑

j∈J

〈x, xj〉c∗j . (3)

By Lemma 2.7, we see that {〈x, xj〉}j∈J ∈ l2(A). From (3), we get

〈x,U{cj}〉 = 〈{〈x, xj〉}, {cj}〉,
which implies that U is adjointable and U∗x = {〈x, xj〉}j∈J. Observe that∥∥∥∥∥∥

∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥ = ‖U∗x‖2 � ‖U∗‖2 · ‖x‖2 = ‖U‖2 · ‖x‖2 �D‖x‖2.

Hence, from Proposition 2.4, {xj}j∈J is a Bessel sequence.

For the case of modular frames, we only need to show that if U is bounded and onto then {xj}j∈J is

a frame. We already know that {xj}j∈J is a Bessel sequence. Let D be the Bessel bound of {xj}j∈J. Note

that for each x ∈ H, we have

x = UU∗(UU∗)−1x = ∑
j∈J

〈(UU∗)−1x, xj〉xj.
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So we get

‖x‖4 = ‖〈x, x〉‖2 =
∥∥∥∥∥∥
∑
j∈J

〈(UU∗)−1x, xj〉〈xj , x〉
∥∥∥∥∥∥
2

�

∥∥∥∥∥∥
∑
j∈J

〈(UU∗)−1x, xj〉〈xj , (UU∗)−1x〉
∥∥∥∥∥∥ ·

∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥

� D‖〈(UU∗)−1x, (UU∗)−1x〉‖ ·
∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥

= D‖(UU∗)−1x‖2 ·
∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥

� D‖(UU∗)−1‖2 · ‖x‖2 ·
∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥ ,

which leads to the lower bound in the frame inequality, that is

1

D‖(UU∗)−1‖2
‖x‖2 �

∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥ .

(ii) We only prove the case of frames, and the case of Riesz bases follows easily.

“⇒”. Suppose first that {xj}j∈J is a frame. Let S be the frame operator of {xj}j∈J. Then we have

S = UU∗. By (i), it is enough to show that√
C‖{cj}‖ � ‖U{cj}‖

holds for all {cj} ∈ (Ker U)⊥. Since {xj}j∈J is a frame, it follows that Rang(U∗) is closed. Therefore we

have

(Ker U)⊥ = Rang(U∗) = Rang(U∗).
As a sequence, (Ker U)⊥ = {{〈x, xj〉}j∈J : x ∈ H}. Now for any x ∈ H, we have∥∥∥∥∥∥

∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥
2

= ‖〈Sx, x〉‖2 � ‖Sx‖2 · ‖x‖2

�‖Sx‖2 · 1

C

∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥ .

Therefore C
∥∥∥∑

j∈J〈x, xj〉〈xj , x〉
∥∥∥ � ‖Sx‖2 = ‖UU∗x‖ = ‖U{〈x, xj〉}‖2, as desired.

“⇐”. To show that {xj}j∈J is a frame, by (i), it suffices to show that Rang(U) = H. Since span{xj :
j ∈ J} ⊆ Rang(U), it only needs to prove that Rang(U) is closed. Suppose that {un} ⊆ Rang(U) and

un → u as n → ∞. Then we can find {vn} ⊆ (Ker U)⊥ such that Uvn = un. It follows from inequality

(2) that {vn} is a Cauchy sequence. Suppose that vn → v as n → ∞. Therefore un = Uvn → Uv = u

as n → ∞. This completes the proof. �

3. Perturbation of frames and Riesz bases

Our first result of this paper is to show that the Casazza–Christensen’s perturbation theorem of

Hilbert space frames still holds for Hilbert C∗-module frames. Although the proof is based on modi-

fication of the proof in [3], we include the proof for the sake of completeness. We need the following
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lemma due to Casazza and Christensen [3]. It is a generalization of the classical result that an operator

U on a Banach space is invertible if ‖I − U‖ < 1.

Lemma3.1 [3]. LetX beaBanach space,andU : X → X a linear operator.Assume that there exist constants

λ1, λ2 ∈ (0, 1) such that

‖Ux − x‖ � λ1‖x‖ + λ2‖Ux‖ ∀x ∈ X.

Then U is bounded and invertible with

‖U‖ �
1 + λ1

1 − λ2

and ‖U−1‖ �
1 + λ2

1 − λ1

.

Theorem 3.2. Let H be a finitely or countably generated Hilbert A-module H over a unital C∗-algebra A,

and {xj}j∈J be a frame for H with frame bounds C and D. Suppose that {yj}j∈J is a sequence of H and that

there exist λ1, λ2,μ � 0 such thatmax

{
λ1 + μ√

C
, λ2

}
< 1. Then {yj}j∈J is also a frame for H with frame

bounds(
(1 − λ1)

√
C − μ

1 + λ2

)2

and

(
(1 + λ1)

√
D + μ

1 − λ2

)2

,

if one of the following conditions is fulfilled for any finite sequence {cj}nj=1 ⊆ A and all x ∈ H :
∥∥∥∥∥∥
∑
j∈J

〈x, xj − yj〉〈xj − yj , x〉
∥∥∥∥∥∥

1
2

� λ1

∥∥∥∥∥∥
∑
j∈J

〈x, xj〉〈xj , x〉
∥∥∥∥∥∥

1
2

(4)

+ λ2

∥∥∥∥∥∥
∑
j∈J

〈x, yj〉〈yj , x〉
∥∥∥∥∥∥

1
2

+ μ‖x‖;

or ∥∥∥∥∥∥
n∑

j=1

cj(xj − yj)

∥∥∥∥∥∥ � λ1

∥∥∥∥∥∥
n∑

j=1

cjxj

∥∥∥∥∥∥ + λ2

∥∥∥∥∥∥
n∑

j=1

cjyj

∥∥∥∥∥∥ + μ

∥∥∥∥∥∥
n∑

j=1

cjc
∗
j

∥∥∥∥∥∥
1
2

. (5)

Proof. Let TX and SX denote the analysis operator and frame operator of {xj}, respectively.
Assume first that condition (4) holds for all x ∈ H. We define an operator TY : H → l2(A) by

TYx = ∑
j∈J

〈x, yj〉ej.

Then condition (4) turns to be

‖TXx − TYx‖ � λ1‖TXx‖ + λ2‖TYx‖ + μ‖x‖.
On one hand we have

(1 − λ2)‖TYx‖ �(1 + λ1)‖TXx‖ + μ‖x‖,
which implies that

‖TYx‖ �
1

1 − λ2

[(1 + λ1)‖TXx‖ + μ‖x‖] �
(1 + λ1)

√
D + μ

1 − λ2

‖x‖.

Therefore {yj}j∈J is a Bessel sequence with the Bessel bound

(
(1+λ1)

√
D+μ

1−λ2

)2

. On the other hand, we

also have
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(1 − λ1)‖TXx‖ − μ‖x‖ �(1 + λ2)‖TYx‖.
Therefore

‖TYx‖ �
1

1 + λ2

[(1 − λ1)‖TXx‖ − μ‖x‖] �
(1 − λ1)

√
C − μ

1 + λ2

‖x‖,
which implies that {yj}j∈J is a frame.

Suppose now that condition (5) holds. Then for each {cj}j∈J ∈ l2(A) we have that∥∥∥∥∥∥
n∑

j=1

cjyj

∥∥∥∥∥∥ �
1

1 − λ2

⎡
⎢⎣(1 + λ1)

∥∥∥∥∥∥
n∑

j=1

cjxj

∥∥∥∥∥∥ + μ

∥∥∥∥∥∥
n∑

j=1

cjc
∗
j

∥∥∥∥∥∥
1
2

⎤
⎥⎦ ,

which yields that∥∥∥∥∥∥
n∑

j=1

cjyj

∥∥∥∥∥∥ �
1

1 − λ2

⎡
⎢⎣(1 + λ1)

∥∥∥∥∥∥
∞∑
j=1

cjxj

∥∥∥∥∥∥ + μ

∥∥∥∥∥∥
∞∑
j=1

cjc
∗
j

∥∥∥∥∥∥
1
2

⎤
⎥⎦ .

Furthermore, we obtain∥∥∥∥∥∥
∞∑
j=1

cjyj

∥∥∥∥∥∥ �
1

1 − λ2

⎡
⎢⎣(1 + λ1)

∥∥∥∥∥∥
∞∑
j=1

cjxj

∥∥∥∥∥∥ + μ

∥∥∥∥∥∥
∞∑
j=1

cjc
∗
j

∥∥∥∥∥∥
1
2

⎤
⎥⎦ .

Therefore we can define a bounded operator U : H → l2(A) by

U{cj} = ∑
j∈J

cjyj ,

which satisfying

‖U{cj}‖ �
1

1 − λ2

[
(1 + λ1)‖T∗

X {cj}‖ + μ‖{cj}‖]
�

(1 + λ1)
√

D + μ

1 − λ2

‖{cj}‖.

By Proposition 2.8, {yj}j∈J is a Bessel sequence with Bessel bound

(
(1+λ1)

√
D+μ

1−λ2

)2

.

Note that for each {cj}j∈J ∈ l2(A) we also have∥∥∥∥∥∥
∑
j∈J

cj(xj − yj)

∥∥∥∥∥∥ � λ1

∥∥∥∥∥∥
∑
j∈J

cjxj

∥∥∥∥∥∥ + λ2

∥∥∥∥∥∥
∑
j∈J

cjyj

∥∥∥∥∥∥ + μ

∥∥∥∥∥∥
∑
j∈J

cjc
∗
j

∥∥∥∥∥∥
1
2

.

Then for each x ∈ H, letting {cj} = TXS
−1
X x, we get

‖x − UTXS
−1
X x‖ � λ1‖x‖ + λ2‖UTXS−1

X x‖ + μ‖TXS−1
X x‖

� λ1‖x‖ + μ√
C
‖x‖ + λ2‖UTXS−1

X x‖.

By Lemma 3.1, UTXS
−1
X is invertible and we also have

‖UTXS−1
X ‖ �

1 + λ1 + μ√
C

1 − λ2

and ‖(UTXS−1
X )−1‖ �

1 + λ2

1 −
(
λ1 + μ√

C

) .

Now for arbitrary x ∈ H, we get

x = UTXS
−1
X

(
UTXS

−1
X

)−1
x = ∑

j∈J

〈(
UTXS

−1
X

)−1
x, S−1

X xj

〉
yj.
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Therefore

‖x‖4 = ‖〈x, x〉‖2

=
∥∥∥∥∥∥
∑
j∈J

〈(UTXS−1
X )−1x, S−1

X xj〉〈yj , x〉
∥∥∥∥∥∥
2

�

∥∥∥∥∥∥
∑
j∈J

〈
(UTXS

−1
X )−1x, S−1

X xj

〉 〈
S−1
X xj , (UTXS

−1
X )−1x

〉∥∥∥∥∥∥ ·
∥∥∥∥∥∥
∑
j∈J

〈x, yj〉〈yj , x〉
∥∥∥∥∥∥

�
1

C
‖〈(UTXS−1

X )−1x, (UTXS
−1
X )−1x〉‖ ·

∥∥∥∥∥∥
∑
j∈J

〈x, yj〉〈yj , x〉
∥∥∥∥∥∥

�
1

C

⎛
⎜⎜⎝ 1 + λ2

1 −
(
λ1 + μ√

C

)
⎞
⎟⎟⎠

2

‖x‖2 ·
∥∥∥∥∥∥
∑
j∈J

〈x, yj〉〈yj , x〉
∥∥∥∥∥∥ ,

where in the second inequality we apply the fact that
{
S
−1
X xj

}
j∈J

is a frame with frame bounds 1
D
and

1
C
. Hence we have obtained the claimed lower frame bound condition:

(
(1 − λ1)

√
C − μ

1 + λ2

)2

‖x‖2 �

∥∥∥∥∥∥
∑
j∈J

〈x, yj〉〈yj , x〉
∥∥∥∥∥∥ . �

With regard to the extension to Riesz bases part of Theorem 1.1, we first point out that if μ = 0 in

the condition (5) of Theorem 3.2, then {yj}j∈J is a Riesz basis provided that {xj}j∈J is a Riesz basis.

Theorem 3.3. Let H be a finitely or countably generated Hilbert A-module H over a unital C∗-algebra A
and {xj}j∈J be a Riesz basis for H. Suppose that {yj}j∈J is a sequence of H and there exist λ1, λ2 ∈ [0, 1). If∥∥∥∥∥∥

∑
j∈J

cj(xj − yj)

∥∥∥∥∥∥ � λ1

∥∥∥∥∥∥
∑
j∈J

cjxj

∥∥∥∥∥∥ + λ2

∥∥∥∥∥∥
∑
j∈J

cjyj

∥∥∥∥∥∥ (6)

holds for all finite sequence {cj}nj=1 ⊆ A, then {yj}j∈J is also a Riesz basis.

Proof. We first claim that yj /= 0 for each j. Assume to the contrary that there exists j0 such that

yj0 = 0. Choose {cj} = ej0 , then we have

‖xj0‖ � λ1‖xj0‖,
which implies that xj0 = 0, a contradiction. By Theorem 3.2, we see that {yj}j∈J is also a frame of H.

Let us denote the analysis operators of {xj}j∈J and {yj}j∈J by TX and TY , respectively. In order to show

that {yj}j∈J is a Riesz basis, it suffices to show that Rang(TX) = Rang(TY ).
If {cj} ∈ Ker T∗

X , then we have

‖T∗
Y {cj}‖ � λ2‖T∗

Y {cj}‖,
which leads to {cj} ∈ Ker T∗

Y . In the same manner we can show that Ker T∗
Y ⊆ Ker T∗

X , and so Ker T∗
X =

Ker T∗
Y . It follows from Proposition 2.8 that both Rang

(
T∗
X

)
and Rang

(
T∗
Y

)
are closed, and hence both

Rang(TX) and Rang(TY ) are closed. Now applying Theorem 15.3.8 in [15] we see that Rang(TX) =
Rang(TY ), as claimed. Thus, by Theorem 2.5, we can infer that {yj} is also a Riesz basis of H. �
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The following is an example showing the analogue of the second part of Theorem 1.1 in Hilbert

C∗-modules is no longer true in general for Hilbert C∗-module Riesz bases.

Example 3.4. Let l∞ be the set of all bounded complex-valued sequences. For any u = {uj}j∈N and

v = {vj}j∈N in l∞, we define

uv = {ujvj}j∈N, u∗ = {ūj}j∈N and ‖u‖ = max
j∈N

|uj|.
Then A = {l∞, ‖ · ‖} is a C∗-algebra.

Let H = c0 be the set of all sequences converging to zero. For any u, v ∈ H we define

〈u, v〉 = uv∗ = {ujv̄j}j∈N.

Then H is a Hilbert A-module.

For each j, let xj = ej . Obviously, {xj}j∈N is a Parseval Riesz basis of H.

Now let

yj =
{
e1 + e2 if j = 1, 2;
ej if j /= 1, 2,

and λ1 = 1
8
, λ2 = 15

16
and μ = 3

4
.

Then one can check that condition (5) in Theorem 3.2 is satisfied. But {yj}j∈J is not a Riesz basis.

We obtain the following necessary and sufficient condition under which every perturbation {yj}j∈J

of a Riesz basis {xj}j∈J is also a Riesz basis in Hilbert C∗-modules.

Theorem 3.5. Suppose that {xj}j∈J is a Riesz basis of H with frame bounds C and D, where H is a finitely

or countably generated Hilbert A-module over a unital C∗-algebra A. Assume that there exist λ1, λ2 � 0

and μ > 0 such that

max

{
λ1 + μ√

C
, λ2

}
< 1.

Then the following are equivalent:
(i) Every sequence {yj}j∈J in H satisfying the following perturbation condition is again a Riesz basis:∥∥∥∥∥∥

n∑
j=1

cj(xj − yj)

∥∥∥∥∥∥ � λ1

∥∥∥∥∥∥
n∑

j=1

cjxj

∥∥∥∥∥∥ + λ2

∥∥∥∥∥∥
n∑

j=1

cjyj

∥∥∥∥∥∥ + μ

∥∥∥∥∥∥
n∑

j=1

cjc
∗
j

∥∥∥∥∥∥
1
2

(7)

for any c1, c2, . . . , cn ∈ A.
(ii) Ker T∗

X = l2(B), where TX is the analysis operator of {xj}j∈J and B = {a ∈ A : aH = {0}}.
In case that the above equivalent conditions are satisfied,wealso haveKer T∗

Y = Ker T∗
X andRang(TY ) =

Rang(TX), where TY is the analysis operator of {yj}j∈J.

Proof. From Theorem 3.2 and its proof we can infer that {yj}j∈J is a frame and satisfies the condition∥∥∥∥∥∥
∑
j∈J

cj(xj − yj)

∥∥∥∥∥∥ � λ1

∥∥∥∥∥∥
∑
j∈J

cjxj

∥∥∥∥∥∥ + λ2

∥∥∥∥∥∥
∑
j∈J

cjyj

∥∥∥∥∥∥ + μ

∥∥∥∥∥∥
∑
j∈J

cjc
∗
j

∥∥∥∥∥∥
1
2

for all {cj} ∈ l2(A).
“(i) ⇒ (ii)”. Suppose first that any sequence {yj}j∈J satisfying condition (7) is a Riesz basis. We

now show that Ker T∗
X = l2(B). Obviously, l2(B) ⊆ Ker T∗

X . Now pick an arbitrary {aj}j∈J ∈ Ker T∗
X . We

need to prove that ajH = {0} for each j. Assume to the contrary that there exists j0 ∈ J such that

aj0H /= {0}. We have two cases:
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Case 1. There exists j1 ∈ J such that aj0xj1 /= 0.

ChooseM > 0 such that
‖xj1‖
M

� μ. Consider sequence {zj}j∈J given by

zj =
{
xj0 − 1

M
xj1 , if j = j0;

xj , otherwise.

One can check that {zj}j∈J satisfies condition (7). Now let {cj} be a sequence such that

cj =
⎧⎨
⎩
Maj0 , if j = j0;
aj0 , if j = j1;
aj , otherwise.

Observe that∑
j∈J

cjzj = ∑
j∈J

ajxj = 0.

But

cj0zj0 = −aj0xj1 /= 0.

Thus {zj}j∈J is not a Riesz basis, a contradiction.

Case 2. aj0xj = 0 for all j ∈ J.

We pick z ∈ H such that aj0z /= 0, and N > 0 such that
√

2
N

‖z‖ � μ. Consider a sequence {zj}j∈J

defined by

zj =
⎧⎪⎨
⎪⎩
x1 + 1

N
z, if j = 1;

x2 − 1
N
z, if j = 2;

xj , otherwise.

Note that {zj}j∈J also satisfies condition (7). By letting cj = aj0 for all j, we have∑
j∈J

cjzj = ∑
j∈J

aj0xj = 0.

But

c1z1 = −c2z2 = aj0

N
z /= 0,

which contradicts the fact that {zj}j∈J is a Riesz basis.

“(ii) ⇒ (i)”. Suppose now thatKer T∗
X = l2(B) and {yj}j∈J is an arbitrary sequence satisfying condi-

tion (7). By Proposition 2.6, we consider any sequence {aj} ∈ l2(A) such that
∑

j∈J ajyj = 0. We claim

that {aj} ∈ l2(B). Assume to the contrary that {aj} /∈ l2(B). By Theorem 15.3.8 in [15] we have

l2(A) = Ker T∗
X ⊕ (

Ker T∗
X

)⊥ = l2(B) ⊕ (l2(B))⊥.

Thus {aj} has a unique decomposition

{aj} =
{
a
(1)
j

}
⊕

{
a
(2)
j

}
,

where
{
a
(1)
j

}
∈ l2(B) and

{
a
(2)
j

}
is a nonzero sequence in (l2(B))⊥. So we have∥∥∥∥∥∥

∑
j∈J

ajyj

∥∥∥∥∥∥ =
∥∥∥∥∥∥
∑
j∈J

(a
(1)
j + a

(2)
j )yj

∥∥∥∥∥∥ =
∥∥∥∥∥∥
∑
j∈J

a
(2)
j yj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j∈J

a
(2)
j xj −

∑
j∈J

a
(2)
j (xj − yj)

∥∥∥∥∥∥
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�

∥∥∥∥∥∥
∑
j∈J

a
(2)
j xj

∥∥∥∥∥∥ −
∥∥∥∥∥∥
∑
j∈J

a
(2)
j (xj − yj)

∥∥∥∥∥∥
�

∥∥∥∥∥∥
∑
j∈J

a
(2)
j xj

∥∥∥∥∥∥ − λ1

∥∥∥∥∥∥
∑
j∈J

a
(2)
j xj

∥∥∥∥∥∥ − λ2

∥∥∥∥∥∥
∑
j∈J

a
(2)
j yj

∥∥∥∥∥∥ − μ
∥∥∥{

a
(2)
j

}∥∥∥

= (1 − λ1)

∥∥∥∥∥∥
∑
j∈J

a
(2)
j xj

∥∥∥∥∥∥ − λ2

∥∥∥∥∥∥
∑
j∈J

a
(2)
j yj

∥∥∥∥∥∥ − μ
∥∥∥{

a
(2)
j

}∥∥∥

�
[
(1 − λ1)

√
C
] ∥∥∥{

a
(2)
j

}∥∥∥ − λ2

∥∥∥∥∥∥
∑
j∈J

a
(2)
j yj

∥∥∥∥∥∥ − μ
∥∥∥{

a
(2)
j

}∥∥∥

=
[
(1 − λ1)

√
C − μ

] ∥∥∥{
a
(2)
j

}∥∥∥ − λ2

∥∥∥∥∥∥
∑
j∈J

a
(2)
j yj

∥∥∥∥∥∥ ,

where in the last inequality we apply Proposition 2.8 (ii).

Hence

0 =
∥∥∥∥∥∥
∑
j∈J

a
(2)
j yj

∥∥∥∥∥∥ �
(1 − λ1)

√
C − μ

1 + λ2

‖
{
a
(2)
j

}
‖,

and therefore a
(2)
j = 0 for each j, a contradiction. Thus we can infer that Ker T∗

Y = l2(B).

To show that {yj}j∈J is a Riesz basis, it remains to show that yj /= 0 for each j. Assume to the contrary

that yj0 = 0 for some jo ∈ J. For any a ∈ A, let

cj =
{
a, if j = j0;
0, otherwise.

Then
∑

j∈J cjyj = 0, i.e. {cj}j∈J ∈ Ker T∗
Y . Since Ker T∗

X = Ker T∗
Y , we see that axj0 = 0 for any a ∈ A.

Therefore xj0 = 0 which leads to a contradiction with the assumption that {xj}j∈J is a Riesz basis. This

completes the proof. �

Remark 3.6. Case 2 in the above proof states that there may exist an element a ∈ A such that axj = 0

for all j but aH /= {0}, where {xj}j∈J is a Riesz basis of a Hilbert A-module H. Though this never occurs

in Hilbert spaces, it may happen in Hilbert C∗-modules. For example, we consider the C∗-algebra
A = M2×2(C) of all 2 × 2 complex matrices. Let H = A and for any x, y ∈ H define

〈x, y〉 = xy∗.
Then H is a Hilbert A-module. Choose

x1 =
(

1 0

−1 0

)
and x2 =

(
0 1

0 −1

)
.

One can check that {x1, x2} is a Riesz basis of H. Pick

a =
(
1 1

1 1

)
.

Then we have

ax1 = ax2 =
(
0 0

0 0

)
.

But, it is obvious that

aH /=
{(

0 0

0 0

)}
.
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Remark 3.7. Finally we remark that all the above results remain valid if we replace the conditions

(4)–(7) by the corresponding conditions stated in the forms without norms. For example, we can drop

the norms in (5) by writing as the following:

⎛
⎝〈

n∑
j=1

cj(xj − yj),
n∑

j=1

cj(xj − yj)

〉⎞
⎠

1
2

�λ1

⎛
⎝〈

n∑
j=1

cjxj ,

n∑
j=1

cjxj

〉⎞
⎠

1
2

+ λ2

⎛
⎝〈

n∑
j=1

cjyj ,

n∑
j=1

cjyj

〉⎞
⎠

1
2

+ μ

⎛
⎝ n∑

j=1

cjc
∗
j

⎞
⎠

1
2

.
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