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Mutations in FBXL4, Encoding
a Mitochondrial Protein, Cause Early-Onset
Mitochondrial Encephalomyopathy

Xiaowu Gai,1,21 Daniele Ghezzi,2,21 Mark A. Johnson,3,21 Caroline A. Biagosch,4,5,21

Hanan E. Shamseldin,6,21 Tobias B. Haack,4,5,21 Aurelio Reyes,3 Mai Tsukikawa,7 Claire A. Sheldon,7

Satish Srinivasan,8 Matteo Gorza,4,5 Laura S. Kremer,4,5 Thomas Wieland,4,5 Tim M. Strom,4,5

Erzsebet Polyak,7 Emily Place,7,9 Mark Consugar,10 Julian Ostrovsky,8 Sara Vidoni,3 Alan J. Robinson,3

Lee-Jun Wong,10 Neal Sondheimer,7 Mustafa A. Salih,11 Emtethal Al-Jishi,12 Christopher P. Raab,13

Charles Bean,13 Francesca Furlan,14 Rossella Parini,14 Costanza Lamperti,2 Johannes A. Mayr,15

Vassiliki Konstantopoulou,16 Martina Huemer,17 Eric A. Pierce,9,18 Thomas Meitinger,4,5

Peter Freisinger,19,22 Wolfgang Sperl,15,22 Holger Prokisch,4,5,22 Fowzan S. Alkuraya,6,20,22,*
Marni J. Falk,7,22 and Massimo Zeviani2,3,22,*

Whole-exome sequencing and autozygosity mapping studies, independently performed in subjects with defective combinedmitochon-

drial OXPHOS-enzyme deficiencies, identified a total of nine disease-segregating FBXL4 mutations in seven unrelated mitochondrial

disease families, composed of six singletons and three siblings. All subjects manifested early-onset lactic acidemia, hypotonia, and devel-

opmental delay caused by severe encephalomyopathy consistently associated with progressive cerebral atrophy and variable involve-

ment of the white matter, deep gray nuclei, and brainstem structures. A wide range of other multisystem features were variably seen,

including dysmorphism, skeletal abnormalities, poor growth, gastrointestinal dysmotility, renal tubular acidosis, seizures, and episodic

metabolic failure. Mitochondrial respiratory chain deficiency was present in muscle or fibroblasts of all tested individuals, together with

markedly reduced oxygen consumption rate and hyperfragmentation of the mitochondrial network in cultured cells. In muscle and

fibroblasts from several subjects, substantially decreased mtDNA content was observed. FBXL4 is a member of the F-box family of pro-

teins, some of which are involved in phosphorylation-dependent ubiquitination and/or G protein receptor coupling. We also demon-

strate that FBXL4 is targeted to mitochondria and localizes in the intermembrane space, where it participates in an approximately

400 kDa protein complex. These data strongly support a role for FBXL4 in controlling bioenergetic homeostasis and mtDNA mainte-

nance. FBXL4 mutations are a recurrent cause of mitochondrial encephalomyopathy onset in early infancy.
Introduction

Mitochondrial respiratory chain (MRC) disorders are a

large and diverse group of genetically determinedmultisys-

temic conditions characterized by faulty mitochondrial

oxidative phosphorylation (OXPHOS). Because OXPHOS

depends on a dual contribution of mitochondrial and

nuclear genes, mitochondrial disease can be caused by

mutations in either mtDNA or nuclear DNA genes.

Although numerous disease-associated mutations have

been identified in the 37 mtDNA-encoded genes, most
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are in fact rooted within the nuclear genome, particularly

in nuclear genes encoding mitochondria-targeted pro-

teins.1 The mitochondrial proteome is currently estimated

to consist of approximately 1,300–1,500 members.2 Bio-

informatically predicted and experimentally verified mito-

chondrial genes have been collated in publicly available

compilations, e.g., Mitocarta or MitoP2, which represent

an estimated 85% of the actual mitochondrial prote-

ome.3,4 Clinical-molecular investigations through linkage

analysis in large or consanguineous pedigrees have long

contributed to the identification of several variants causing
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mitochondrial diseases, 96% of which encode mitochon-

dria-localized proteins.5 More recently, massively parallel-

based exome-sequencing approaches have facilitated

identification of mitochondrial disease-associated muta-

tions in simplex cases.5,6 These studies have provided

substantial insight into the constituents of the mitochon-

drial proteome as well as into mechanisms of organelle

bioenergetics and homeostasis.7 Likewise, studies on mito-

chondrial disease cases have allowed attribution of an

OXPHOS-related role to anonymous gene entries, whose

function was previously unknown or uncertain.8

Here, we harness a combined approach of whole-exome

sequencing and autozygosity mapping to discover a

humanmitochondrial disease, caused bymutations within

FBXL4 (MIM 605654) that encodes the F-box and leucine-

rich repeat 4 protein. FBXL4 missense and/or nonsense

recessive mutations were found in nine children from

seven unrelated kindreds who presented with lactic acide-

mia, congenital hypotonia, and a peculiar, slowly progres-

sive mitochondrial encephalomyopathy characterized by

atrophy of the brain hemispheres and leukodystrophy.

Our subjects alsomanifest a varying constellation of multi-

systemic involvement such as facial dysmorphism, renal

tubular acidosis, seizures, skeletal abnormalities, and other

developmental features. Functional studies clearly demon-

strate that FBXL4 is a mitochondrial protein, necessary for

OXPHOS proficiency and, possibly, mtDNA maintenance.
Material and Methods

Molecular Studies
Total genomic DNA was extracted by standard methods from

peripheral blood lymphocytes, muscle biopsies, or skin fibroblasts

(QIAamp DNA Mini Kit, QIAGEN). PCR-based quantification of

mtDNA content against a standard, single-copy autosomal gene

(encoding RNaseP, Actin, or COX4I1) and sequencing of the entire

mtDNA were performed essentially as previously described.9,10

Total RNA was isolated from cell pellets with the RNeasy Mini

Kit (QIAGEN) and reverse transcribed to cDNA with the High

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) or

GoTaq 2-Step qRT-PCR System (Promega), according to manufac-

turer recommendations. FBXL4 expression in DNase-treated

cDNA samples was determined by reverse-transcription quantita-

tive PCR (qPCR) either with TaqMan probes or with specific

FBXL4 amplicons and SYBR-green chemistry (Table S1 available

online).
Autozygosity Mapping and Linkage Analysis
DNA was processed for genome-wide SNP genotyping with the

Axiom platform (Affymetrix), according to the manufacturer’s

instructions. Resulting genotypes were interrogated for runs of

homozygosity (ROH) with autoSNPa.11 ROH that are >2 Mb and

span >107 SNPs were used as surrogates of autozygosity. Candi-

date disease ROH was defined based on exclusive sharing between

the affected individuals. Statistical confirmation of the candidate

disease ROH was achieved by running multipoint linkage analysis

via the Allegro algorithm in the easyLINKAGE package.12 Com-

bined LOD score >3 was considered significant.
The American
Whole-Exome Sequencing Analysis
In-solution targeted enrichment of exonic sequences from index

cases and also both parents in the case of subject 5 was performed

with the 50Mb SureSelect Human All Exon kit from Agilent. The

library was subsequently sequenced on a HiSeq2000 or HiSeq2500

(Illumina). For index cases, read alignment to the human genome

assembly hg19 (UCSC Genome Browser) was done with BWA

(v.0.6.2) and yielded between 9 and 12 Gb of sequence data corre-

sponding to an average fold coverage between 96 and 154 with

>92% of the target region being covered >203 (Table S2).

Single-nucleotide variants and small insertions and deletions

were detected with SAMtools. To extract rare potentially disease-

causing variants, we excluded variants present with a frequency

>0.1% in 2,250 exomes. Assuming a recessive model of inheri-

tance, we next selected genes predicted to carry either homozy-

gous or compound heterozygous variants, yielding 11, 82, and 7

candidates in subjects 6, 7, and 8, respectively. For subject 5,

analyzed together with her parents, exome data sets were analyzed

as previously described.13 Custom scripts were used to identify

candidate variants that fit a recessive genetic model, revealing

five genes with rare, compound heterozygous nonsynonymous

variants with biparental inheritance. Variants were determined

to be rare based on no more than 10 occurrences in both 536 in-

ternal exomes and 1,055 exomes from the Exome Sequencing

Project (dbGaP ID: phs000288.v1.p1).

For subject 9, nucleotide sequence analysis of the seven

coding exons and exon-intron boundaries of FBXL4 (NC_

000006.11, NM_012160.3) was performed with suitable primers

(Table S1).
Biocomputational Analyses
Prediction softwares used for pathogenicity prediction of amino

acid changes were Polyphen2, SIFT, and Pmut. Prediction soft-

wares used for mitochondrial targeting or subcellular localization

were Mitoprot, TargetP, WoLF-PSORT, and MitoMiner.

A three-dimensional structure of the F-box and leucine-rich

regions of FBXL4 was built based on the structures of the family

members FBXL314 and SKP215 by using the MODELER compara-

tive protein modeling program.16 The protein sequences of

human FBXL4, FBXL3, and SKP2 were aligned manually with

Jalview.17 The MODELER program was used to produce 50

comparative models of FBXL3 from this sequence alignment

and the structures of FBXL3 and SKP2. The model with the lowest

score of the MODELER objective function was taken as the repre-

sentative model. The structures of the comparative models were

examined and figures produced with the PyMOLmolecular visual-

ization system (The PyMOL Molecular Graphics System, v.1.4.1,

Schrodinger, LLC).
Cell Cultures
Human embryonic kidney (HEK293T) cells and skin fibroblasts

were cultured in 1 g/l glucose DMEM (Gibco) supplemented

with 20% FBS, 1% uridine, 1% L-glutamine, and 0.2% sodium

pyruvate. Cells were grown to confluence in T75 flasks in a 37�C
incubator with 5%CO2 and 100%humidity. For DNA/RNA extrac-

tion and immunoblot analysis, fibroblast pellets were prepared,

as previously described.18 For visualization of the mitochon-

drial network, the mitochondrial fluorescent dye MitoTracker

RedCMXRos (Invitrogen) and the nuclear dye Hoechst33342

(Sigma) were added to the culture media at final concentrations

of 50 nM and 160 nM, respectively. Cells were incubated under
Journal of Human Genetics 93, 482–495, September 5, 2013 483



normal culture conditions for 30 min and then analyzed by fluo-

rescence microscopy (Nikon-CARV2 system).

HEK293T cells were transfected with Lipofectamine 2000

(Invitrogen) with recombinant FBXL4 cDNAs and inducible stable

cell lines were established with suitable selectable markers.
FACS-Based Mitochondrial Membrane Potential and

Mitochondria Content Analysis
Cells were collected in HBSS, counted, and resuspended in HBSS,

to obtain 20–200 3 103 cells per sample, as previously re-

ported.19 Each sample was loaded with either 50 nM MitoTracker

Green (MTG) or 20 nM TetraMethylRhodamine, Ethyl ester

(TMRE) at 37�C for 30 min. Duplicate measurements were per-

formed and unloaded control samples were run in parallel. Fluo-

rescence activated cell sorting (FACS) was performed with Accuri

C6 flow cytometer (BD Biosciencess) equipped with a 488 nm laser

with 530/30 nm emission for MTG and 585/42 nm emission for

TMRE. A total of 10,000 events were recorded and background-

subtracted geometric means of MTG or TMRE were calculated as

percent change relative to same-day controls.
Histology and Biochemistry
Cryostatic cross sections of skeletal muscle biopsies were used for

histological and histochemical studies, according to standard

techniques.20 Gomori trichrome staining, NADH dehydrogenase,

and cytochrome c oxidase (COX) activities were performed as pre-

viously described.21 MRC enzyme activities were measured by

standard spectrophotometric techniques in both muscle homoge-

nate and digitonin-treated cultured skin fibroblasts.22 Maximum

respiration rate (MRR) and extracellular acidification rate were

measured in a SeaHorse FX-96 apparatus (Bioscience).23
Molecular Biology/Vectorology
FBXL4, FBXL4HA-C (C-term), and FBXL4HA-N (N-term) cDNAs were

generated by PCR with adapted ends (50 end NotI, 30 end XhoI)

and cloned by TOPO cloning (Invitrogen). Sequence-verified

clones were cut with NotI/XhoI and subcloned into the

pcDNA5/FRT/TO MCS. Mutant constructs were made with the

QuikChange site-directed mutagenesis kit (Stratagene), with

primers listed in Table S1. The FBXL4 ORF was cloned into the

lentiviral expression vector pLenti6.3. The pLenti6.3/V5-TOPO

vector system (Invitrogen) was used for the lentivirus-mediated

expression of FBXL4 in skin fibroblast cell lines.24 Two constructs

were used: the wild-type sequence of FBXL4 (FBXLwt) and as a

control a construct with the c.617G>T (p.Arg206Leu) variant

(FBXLmut). This mutation accidently occurred during PCR

amplification and is next to the identified mutation c.614T>C

(p.Ile205Thr) in individual 8, the only one not affecting the

leucine-rich repeats.
Immunofluorescence Studies
Stably transfected HEK293T cells were grown on collagen-coated

glass coverslips and induction of transgene expression was carried

out with 5 ng/ml doxycycline for 24 hr. After fixation and perme-

abilization, cells were incubated with anti-HA (Roche Diagnostics)

antibody, followed by a fluorescently labeled secondary antibody

(Alexa Fluor 488, Invitrogen). Coverslips were mounted in

ProLong Gold antifade reagent containing 40,6-diamidino-2-

phenylindole dihydrochloride (DAPI; Invitrogen). Images were

acquired with a A1R-A1 Nikon N-SIM confocal microscope.
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In Vitro Import
35S-methionine-labeled proteins were generated from amplified

cDNAs with a TNT Quick Coupled Transcription/Translation sys-

tem (Promega). Labeled proteins were incubated with freshly pre-

pared mouse liver mitochondria for 30 min at 37�C25 with or

without 40 mg/ml trypsin, valinomycin, and 0.1% Triton X-100.

Products were resolved on 10% or 12% Bis-TrisNuPAGE SDS-

PAGE gels (Invitrogen). After the run, the gels were dried and

exposed to phosphorscreens for 1–5 days and scanned with a

Typhoon phosphorimager (GE Healthcare).

Cell Fractionation
Nuclear, cytosolic, and mitochondrial fractions from FBXL4HA-C

stably transfected HEK293T cells after 5 ng/ml doxycycline induc-

tion for 24 hr were prepared as previously described. In brief, after

cell homogenization in hypotonic buffer, nuclei were isolated

from the low-speed centrifugation pellet.26 Mitochondria and

cytosol were isolated from the supernatant by high-speed centrifu-

gation.27 Submitochondrial localization of FBXL4 was carried out

in stably transfected HEK293Tcells after 0 or 5 ng/ml induction for

24 hr. Sucrose-gradient-purified mitochondria27 were resuspended

in 20 mM HEPES (pH 7.8), 70 mM sucrose, 210 mM mannitol,

2 mM EDTA (1 mg/ml) and left untreated, treated with trypsin

(25 ng/ml) for 30 min at room temperature or treated with in-

creasing concentrations of digitonin (75, 150, 300, and 600 ng/

ml) for 10 min at 4�C, followed by trypsin treatment, as above.

Standard methods were used for the preparation of mitochondrial

enriched/postmitochondrial fractions and after suborganellar

(soluble and membrane) separation from mouse liver.28

Immunoblot Analyses
Samples containing 50–100 mg protein were separated by 12% or

4%–15% gradient SDS-polyacrylamide gels (NuPAGE, Invitrogen),

transferred to nitrocellulose membranes, and incubated with

suitable antibodies. Immune-visualization was carried out by

chemiluminescence-based ECL kit (GE Healthcare). For Blue

Native Gel Electrophoresis (BNGE), 106 HEK293T FBXL4HA-C cells

were induced by doxycycline (2 ng/ml) for 48 hr and mitochon-

dria harvested by differential centrifugation.27 Mitochondria

were lysed in 1% digitonin, 13 NativePAGE sample buffer

(Invitrogen). Samples were adjusted to 2 mM MgCl2 and treated

with Benzonase (50 units) for 1 hr on ice. Lysates were then centri-

fuged for 30 min at 20,000 3 g at 4�C. Protein complexes were

resolved by NativePAGE 3%–12% Bis-Tris gels (Invitrogen) and

transferred to PVDF in the presence of bicarbonate transfer buffer

(10 mM NaHCO3, 3 mM Na2CO3). Immunoblot analysis was per-

formed as reported above.
Results

Clinical Findings

Numerous clinical research centers from Europe, Saudi

Arabia, and the US independently achieved and subse-

quently shared results from linkage and next-generation

sequencing (NGS) exome analysis on families and

singleton cases characterized by mitochondrial encephalo-

myopathy. All studies were completed according to local

approval of the Institutional Review Board. Informed con-

sent for participation in this study was obtained from the

parents of all investigated subjects, in agreement with
er 5, 2013



the Declaration of Helsinki and approved by the ethical

committees of the centers participating in this study,

where biological samples were obtained. As a result of

this collaborative effort, we identified nine cases harboring

recessive mutations in one gene, FBXL4.

Several children had preterm assisted delivery because of

small weight or reduced fetal movements. At birth or

immediately after birth, most children showed lactic

acidosis, sometimes associated with hyperammonemia

and signs of renal tubular acidosis. All displayed severe psy-

chomotor delay with hypotonia, failure to thrive, and

swallowing difficulty sometimes complicated by gastroin-

testinal dysmotility, requiring nasogastric tube feeding or

PEG. Arrest and regression of neurological development

was generally severe, although protracted and slowly pro-

gressive in most cases. However, three children died in

infancy owing to metabolic decompensation during inter-

current infections, and most of those that have reached

late childhood are nonverbal, are unable to sit autono-

mously, show muscle wasting and severe truncal ataxia,

and, in several cases, suffer of epileptic seizures and/or

choreoathetoid movements. Facial dysmorphisms and/or

other developmental malformations (e.g., hypospadias,

pectus excavatum) were frequent but not invariably pre-

sent. The brain MRI features are dominated by supratento-

rial, global brain atrophy, thin corpus callosum, and

altered signals in the white matter, but inconsistent

involvement of the deep gray nuclei (basal ganglia and

thalami) and infratentorial structures. The muscle biopsy

showed variable signs of mitochondrial involvement

(e.g., low COX reaction but no ragged red fibers), and var-

iable but consistent decrease of theMRC complex activities

was detected in both muscle and cultured fibroblasts. The

mtDNA sequence analysis failed to reveal pathogenic

mutations in all cases, but variable decrease of mtDNA

amount was a consistent feature in both muscle and fibro-

blasts, often accompanied by reduced specific activity of

citrate synthase. A clinical, biochemical, and molecular

genetic synopsis is summarized in Table 1, and a more

detailed outline is presented in Table S3. The pedigrees

are shown in Figure 1A. The frequency of main clinical

features is reported in Table S4 and detailed biochemical re-

sults are displayed in Table S5. Prototypical MRI findings in

several subjects are shown in Figure 1B, and facial dysmor-

phisms and malformations detected in some of the sub-

jects are illustrated in Figure 1C, with additional images

of facial and body features, brain MRI, and muscle

morphology displayed in Figure S1.

Subject 1 (S1), a boy previously reported elsewhere,6 was

born to healthy first-cousin parents from southern Saudi

Arabia, after uneventful full-term pregnancy. Severe lactic

acidosis and renal tubular acidosis (RTA) were diagnosed

at 4 months of age, associated with severe global develop-

mental delay and eventually psychomotor stagnation.

Major feeding difficulties required PEG. Presently aged 4

years old (yo), he is an emaciated child with severe dysto-

nia and cranio-facial dysmorphism (Figure 1C). Subject 2
The American
(S2) was the first child from healthy first-cousin parents

of Arabian origin (Central Province of Saudi Arabia).

Only scant records are available for this child, who died

at the age of 4 years with severe lactic acidosis. His younger

brother is subject 3 (S3), who is now 9 yo. He shows inter-

mittently elevated plasma lactate and severe cognitive

impairment (IQ 50) and exercise intolerance, with subtle

facial dysmorphism but no microcephaly. Subject 4 (S4)

is a 6-month-old younger brother of subjects 2 and 3. His

delivery was complicated by neonatal depression and

persistent, severe lactic acidosis. He had one clinical seizure

and is currently on AED. Parents refused muscle and skin

biopsy. His growth parameters and facial appearance are

normal. Subject 5 (S5) is a 9 yo girl, the only child from

nonconsanguineous parents of European origin. She was

born at the 39th week, small for gestational age (2,410 g).

Apgar scores were 7–9. She has chronic lactic acidosis

and RTA, global developmental delay (she is nonverbal)

with truncal hypotonia, ataxia, and choreoathetoid move-

ments, neutropenia, frequent infections, and severe GI

dysmotility and swallowing difficulty, requiring PEG. She

had several generalized seizures. She has dismorphic fea-

tures of face and limb malformations (Figures 1A and

S1A), with moderate microcephaly; her BMI is 17.4. Sub-

ject 6 (S6), the first child of European parents, was born

at the 38th week, small for gestational age (2,375 g), had

micrognathia, supernumerary bilateral nipples, and mild

hypospadias. Apgar scores were 9–10. He had a perinatal

metabolic crisis with hypoglycemia, hypotonia, and lactic

acidosis (19 mM [pH 7.11], BE �24), with high plasma

ammonia (363mg%; n.v.< 80) and ketonuria. At 4months

he showed gastro-esophageal reflux and swallowing diffi-

culty requiring nasogastric tube feeding. His head circum-

ference remained between 3rd and 10th centile. Severe

psychomotor delay and muscle wasting with ventilatory

insufficiency required a positive expiratory pressure

mask. He died at 16 months of acutely progressive enceph-

alopathy during an intercurrent infection. Subject 7 (S7)

was born at term as the first child of healthy first-degree

cousins of Arabic origin (from Bahrain). Prenatal ultra-

sound revealed growth retardation and dilated lateral ven-

tricles. His birth weight was 2,400 g (3rd percentile). Apgar

score was 8–10. Clinical examination showed low-set ears,

hypospadias, and undescended testes. At day 9, elevated

plasma lactate (9 mM) and ammonia (125 mM) was re-

ported. Because he did not thrive, nasogastric tube feeding

was started but he continued to grow poorly, with frequent

vomiting and gastro-esophageal reflux. At 9 months his

growth parameters were <3rd percentile. He showed mild

pectus excavatum (Figure 1C), muscle wasting, severe

hypotonia, no head control, and severe psychomotor

delay; repeatedly elevated plasma lactate and ammonia;

slightly increased liver enzymes; and a microcytic anemia

with high ferritine. At age 3 years he is bedridden with

severe truncal hypotonia and severe muscle wasting. He

is nonverbal. Subject 8 (S8) was born by caesarean section

at 37th week, small for gestational age (1,850 g, <3rd
Journal of Human Genetics 93, 482–495, September 5, 2013 485



Table 1. Clinical Summary Overview

Affected Subject ID # 1 2 3 4 5 6 7 8 9

FBXL4 mutation(s) c.[1703G>C;
1703G>C],
p.[Gly568Ala;
Gly568Ala]

c.[1444C>T;
1444C>T],
p.[Arg482Trp;
Arg482Trp]

c.[1444C>T;
1444C>T],
p.[Arg482Trp;
Arg482Trp]

c.[1444C>T;
1444C>T],
p.[Arg482Trp;
Arg482Trp]

c.[1790A>C;
1067del],
p.[Gln597Pro;
Gly356fs]

c.[1694A>G;
1694A>G],
p.[Asp565Gly;
Asp565Gly]

c.[1652T>A;
1652T>A],
p.[Ile551Asn;
Ile551Asn]

c.[614T>C; 106A>T],
p.[Ile205Thr; Arg36Stop]

c.[1229C>T;
1229C>T],
p.[Ser410Phe;
Ser410Phe]

Age at presentation 4 months at birth 4 months ND 1 month at birth 9 months at birth at birth

Age at last evaluation 4 years 4 years 9 years ND 8 years 16 months 3 years 3 years 2 years

Deceased � þ � � � þ � � þ

Birth weighta <10th ND <10th ND <10th <3rd <3rd <3rd <3rd

Last measured weighta <3rd 10th 50th ND 42nd <3rd (2 months) <3rd 3rd 25th

Developmental delay þ þ þ þ þ þ þ þ þ

Dysmorphic facies þ � � � þ þ/� (micrognathia) þ þ �

Lactic acidemia þ þ þ þ þ þ þ þ þ

Cerebral atrophy þ ND þ ND þ � þ þ þ

Brainstem and basal
ganglia lesions

þ ND � ND þ/� � � þ þ

White matter lesions þ ND ND ND þ þ þ þ þ

Hypotonia þ þ þ þ þ þ þ þ þ

Seizures � � þ/� þ þ þ þ þ þ

Ataxia þ � � � þ NA þ NA �

Dystonia, choreoathetosis þ � � � þ � � þ -

Swallowing dysfunction þ ND þ � þ þ þ þ þ

Failure to thrive þ ND � � � þ þ þ þ

MRC in muscle ND ND ND ND multiple def. low CI multiple def. multiple def. multiple def.

MRC in fibros multiple def. normal normal ND normal normal ND ND ND

Abbreviations are as follows: ND, not done or not available; NA, not applicable; MRC, mitochondrial respiratory chain complex activities; CI, complex I.
aValues as percentile.
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Figure 1. Pedigrees and Clinical Features
(A) Pedigrees. Black symbols designate affected subjects. Families and subjects are numbered according to the main text.
(B) BrainMRI. Panels 1 and 2 are subject 1 at 2 years of age; panels 3 and 4 are subject 5 at 4 years of age; and panels 5 and 6 are subject 7 at
9months of age. Panels 1 and 2: T1-weighted sagittal interhemispheric (#1) and T2-weighted transverse (#2) sequences, displaying a thin
corpus callosum, severe supratentorial brain atrophy, abnormal signals in the white matter, especially in subcortical areas, and bilateral
lesions of the putamina and subthalamic region. The putaminal lesions contain scattered areas of reduced intensity possibly correspond-
ing to calcifications. The cisternal spaces are increased. A subaracnoid cyst is visible in the occipital region. Panels 3 and 4: T2-weighted
sagittal (#3) and coronal (#4) sequences displaying severe supratentorial brain atrophy and leukodystrophic changes; the infratentorial
structures, including the cerebellum, are relatively spared, in spite of marked enlargement of the cisternal spaces. Panels 5 and 6: T2-
weighted sagittal (#5) and transverse (#6) sequences displaying severe supratentorial brain atrophy and leukodystrophic changes; the
basal nuclei, thalami, and infratentorial structures, including the cerebellum, are relatively spared.
(C) Panel 1: Subject 1 at 4 years of age; panel 2: subject 5 at 8 years of age; panel 3: subject 7 at 14 months of age. Note the facial dys-
morphisms in #1 (dolichocephaly, protruded ears, narrow elongated face, and everted lower lip) and #2 (including smooth and hypo-
tonic facies, mild synophrys, luxurious eyelashes, thick and arched eyebrows, bilateral epicanthal folds, thick lower lip with finely
demarcated upper vermilion border) and pectus excavatum in #3.
percentile) to nonconsanguineous European parents. Her

Apgar score was 8–9. She showed severe muscular hypoto-

nia and failure to thrive. Echocardiography revealed left

ventricular heart hypertrophy. Lactate was elevated (5–

12 mM). Dysmorphisms included malformed ears, saddle

nose, facial hypoplasia with micro-ophthalmy, long phil-

trum, and downward slanted eyelids. At the age of 3 years

she has developed bilateral cataract and horizontal

nystagmus and shows failure to thrive and a global psycho-

motor and developmental delay. Her body weight is

10.15 kg (3rd percentile), body length 94 cm (25th percen-

tile), and head circumference 48.6 cm (25th percentile).

Subject 9 (S9) was born at the 35th week after an uncompli-

cated twin pregnancy from first-cousin Turkish parents.

His twin brother is healthy. During the neonatal period,

persistent lactic acidosis (3–10 mM) was associated with
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significant generalized muscular hypotonia. In the fol-

lowing months the child developed persistent lactic

acidosis and motor and cognitive development stopped.

At age 2 years he presented with reduced head control

and was unable to sit unassisted and had profound gener-

alized muscular hypotonia, severe psychomotor delay,

absence of verbal skills, and episodes of absence with no

seizures. He died at 2 1/2 years of an intercurrent infection.

A Mitochondrial Encephalomyopathy Syndrome

Maps to 6q16.1 and Is Caused by Recessive Mutations

in FBXL4

Autozygosity mapping on a simplex case (S1, Figure 1A)

showed several autozygous intervals. One, located on

6q16, overlapped with a single autozygous interval that

was exclusively shared by the three affected siblings of a
Journal of Human Genetics 93, 482–495, September 5, 2013 487



Figure 2. FBXL4 Gene, cDNA, and Protein
(A) Genomic structure of FBXL4 with coding (blue) and noncoding (white) exons.
(B) FBXL4 cDNA (NM_012160.3) with nucleotide changes identified in this study.
(C) FBXL4 protein with amino acid changes identified in this study. Functional domains of FBXL4 are in color. Abbreviation: MTS, mito-
chondrial targeting sequence. Red arrows indicatemutations that cause the premature truncation of FBXL4, therefore predicting the loss
of its function.
multiplex consanguineous family (subjects 2–4, family 2,

Figure 1A) having clinical features consistent with mito-

chondrial encephalopathy. Combined linkage analysis of

these two families revealed a single significant linkage

peak with LOD of 3.67 that spanned FBXL4 (Figure S2).

Consistent with the different geographic origins of these

two families in Saudi Arabia, the haplotypes in the candi-

date interval were different. In order to identify the causal

variants, the index in each family underwent exome

sequencing followed by variant filtration. In each index

case, a single homozygous change in FBXL4 (c.1703G>C

[p.Gly568Ala] in the simplex case, c.1444C>T

[p.Arg482Trp] in the multiplex case) survived the various

filters within the linkage peak (Figures 2 and S2). None of

these mutations was present in 242 Saudi exomes. When

exome variants in the simplex case were reanalyzed based

on all autozygous intervals and not just on the candidate

disease interval, c.1703G>C was the only variant that

survived filtration. These data indicated that the mito-

chondrial encephalopathy in these two unrelated Saudi

kindreds linked to 6q16.1 and strongly supported of

FBXL4 variants as the responsible genetic cause for the

disease.

Disease-segregating mutations in FBXL4 were indepen-

dently found by exome sequencing of four additional pedi-

atric individuals with MRC deficiencies who were recruited

and analyzed at different clinical centers (subject 5–8, fam-

ilies 3–6 in Figure 1A). Individual exome-sequencing anal-
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ysis resulted in candidate recessive gene lists of 5, 11, 82,

and 7 genes each having two rare variants, for subjects 5,

6, 7, and 8, respectively. Only the long list of subject 7 con-

tained a gene coding for a knownmitochondrial protein;24

however, they included homozygous missense mutations

in FBXL4 in two samples: c.1694A>G (p.Asp565Gly) in

subject 6 and c.1652T>A (p.Ile551Asn) in subject 7. Sub-

jects 5 and 8 were compound heterozygous carrying both

a nonsense mutation together with a missense variant.

Subject 5 harbored a c.1067del (p.Gly356Alafs*15)

nonsense mutation in the maternal FBXL4 allele and a

c.1790A>C (p.Gln597Pro) missense mutation in the

paternal FBXL4 allele; in subject 8, (c.[614T>C; 106A>T],

p.[Ile205Thr; Arg36*]) the nonsense variant affected the

maternal allele. An additional homozygous mutation

(c.1229C>T [p.Ser410Phe]) was found in a further simplex

cases, subject 9 (family 7, Figure 1A), by selective FBXL4

sequencing in a cohort of clinically/biochemically suitable

subjects (Figures 2 and S3). None of the variants was found

in 4,500 in-house European control chromosomes or

in >8,000 alleles from Americans of European descent

(Exome Variant Server), nor did any control sample harbor

two rare variants in FBXL4. The missense changes each

involved evolutionarily conserved amino acid residues,

most affecting leucine-rich repeats (Figures 2 and S3). Suit-

able prediction software packages assigned high scores for

pathogenicity to each mutation (data available upon

request). Because the p.Gly568Ala is due to a c.1703G>C
er 5, 2013



Figure 3. Molecular, Biochemical, and Morphological Studies in FBXL4 Mutant Muscle and Fibroblasts
(A) Quantification of mtDNA amount in muscle (ms) and fibroblasts (fbs) from available subjects (S). For subject 9, DNAs from two
different muscle biopsies were analyzed (S9*, 13 days of age; S9**, 13 months of age). The bars represent the percentage of mtDNA
normalized to nuclear DNA in FBXL4 mutant subjects, compared to the mean value of controls (dotted line, 100%; range of control
values: 60%–160% for muscle, 70%–145% for fibroblasts). Data are represented as mean 5 SD.
(B) Representative images of mitochondrial morphology in fibroblasts, showing filamentous (control, Ct) or fragmented (subjects 5 and
6) mitochondrial networks. Cells were stained with MitoTracker-Red CMX-Ros (Invitrogen) and Hoechst, a blue nuclear dye, 50 nM for
30 min. Scale bars represent 10 mm.
(C) Reductions in mitochondrial mass and mitochondrial membrane potential in mutant fibroblasts (subject 5), as indicated by reduc-
tions in MitoTracker Green (MTG) and TMRE fluorescence, respectively. The bars represent relative fluorescence values, compared to
same-day measurements obtained in control fibroblasts. Fibroblasts were loaded with MTG (50 nM) or TMRE (20 nM) for 30 min at
37�C and fluorescence values determined by FACS analysis (Accuri C6). An asterisk (*) indicates statistically significant reductions in
TMRE fluorescence values (p ¼ 0.0009, one-way ANOVA, n ¼ 10). A cross (y) indicates a trend toward a significant reduction in MTG
fluoresecence (p ¼ 0.053, one-way ANOVA; n ¼ 8). Data are represented as mean 5 SD.
(D) Oxygen consumption rate (OCR) of nontransduced and transduced fibroblast cell lines. Fibroblasts from subject 7 (S7) and
controls (NDHFneo, LONZA) were transduced with FBXL4wt- and FBXL4mut-expressing construct. OCR was determined as rotenone-
sensitive respiration rate of uncoupled mitochondria (n > 7 each) and increased significantly (p < 0.001, t test) after expression of
FBXL4wt only. Data are represented as mean 5 SD.
change affecting the first nucleotide of the last exon, a

potential splicing defect was hypothesized for the muta-

tion in subject 1: although the retrotranscribed cDNA

analysis failed to show an aberrant transcript,6 the quanti-

fication of FBXL4 transcripts by qRT-PCR revealed

decreased FBXL4 cDNA amount by approximately 50%

of the control level that was probably due to instability

of the aberrant spliced forms. A reduction in FBXL4 levels

was also found in subject 5 fibroblasts, which carry one

allele with a missense mutation and one allele with a

frameshift variant, probably resulting from mRNA decay

of the transcripts carrying a nonsense codon. The cellular

content of the FBXL4 transcript was normal in two other

cases studied (subjects 6 and 7) that carry only missense

mutations (results not shown).
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Defective OXPHOS Is Associated with FBXL4

Mutations

Biochemical assays performed on clinical and/or research

basis in muscle and/or fibroblasts obtained from several

subjects confirmed the deleterious effect of FBXL4 muta-

tions on mitochondrial bioenergetics. Muscle homoge-

nates or isolated mitochondria from subjects with FBXL4

mutations showed variably decreased activity of MRC

complexes (Table S5). Likewise, the mtDNA content was

consistently, albeit variably, lower than controls in both

muscle and fibroblasts of all tested samples (Figure 3A).

Cultured skin fibroblasts had reduced maximal oxygen

consumption rate (Table S5). Staining with MitoTracker

Red, a mitochondrion-specific fluorescent marker, showed

marked fragmentation of the mitochondrial network in S5
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and S6 cell lines (Figure 3B) and a decrease in mitochon-

drial mass, as revealed by low citrate synthase (S6) or stain-

ing with MitoTracker Green (MTG) fluorescence (S5), was

observed. In S6 cell lines, we found a consistent, significant

(40%) reduction of themitochondrial membrane potential

(DJ), as demonstrated by a membrane-potential-depen-

dent mitochondrial fluorochrome, TMRE (Figure 3C).

FBXL4 Mutations Are Pathogenic

In order to prove the pathogenicity of identified FBXL4

mutations, we tested the biochemical rescue of OXPHOS-

defective skin fibroblast cell lines from S7 after lentiviral-

mediated expression of FBXL4wt cDNA by using the

p.Lenti6.3/V5-TOPO vector system. In addition, we tested

the activity of a mutated FBXL4 allele affecting the neigh-

boring amino acid of the only mutation outside the

conserved leucine-rich repeat domain for which no struc-

tural or functional information was available. OXPHOS

activity was measured as rotenone-sensitive uncoupled

oxygen consumption rate by the Seahorse system. Expres-

sion of FBXL4wt in S7 fibroblasts led to a significant

increase of oxygen consumption rate (Figure 3D). Because

expression of the FBXL4wt re-established rotenone-sensi-

tive respiration to low normal levels, we further tested

the functional activity of the mutated FBXL4 allele. The

low oxygen consumption rate found in naive S7 cells

(38% of controls) were even further reduced after expres-

sion of FBXL4mut, indicating a loss of FBXL4 function re-

sulting from a p.Arg206Leu amino acid change, affecting

the amino acid residue next to the Ile205 residue mutated

in S8. This observation points to an important role of this

part of the protein. Taken together, these results demon-

strate the causal role of the mutations identified in

FBXL4, thereby establishing FBXL4 as a gene necessary

for the homeostasis of mitochondrial bioenergetics.

FBXL4 Is Targeted to Mitochondria

With different software packages for prediction of mito-

chondrial or subcellular localization, the FBXL4 protein

sequence scored high for mitochondrial targeting, because

of the presence of a potential mitochondrial targeting

sequence (MTS) encompassing the first 22 to 26 amino

acid residues at the N terminus. However, FBXL4 was

previously proposed to interact with a nuclear endonu-

clease.29 In order to experimentally demonstrate the

subcellular localization for FBXL4, we first used confocal

immunofluorescence on HEK293T cells expressing the

full-length FBXL4 tagged with the influenza-virus

haemo-agglutinin (HA) epitope at the C terminus

(FBXL4HA-C) under induction with doxycycline. In doxy-

cycline-induced cells, a monoclonal HA-specific antibody

showed an immunofluorescence pattern coincidental

with the pattern obtained by means of the mitochon-

drial-targeted dye MitoTracker Red. No HA-specific stain-

ing was present in other cell compartments, including

the nucleus (Figure 4A); as expected, noninduced cells

were HA negative. To test whether the C-terminal HA
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extension of the recombinant FBXL4HA-C protein can

mask a nuclear-localization signal, we then repeated the

same experiment with a construct bearing the HA epitope

at the N terminus of the full-length FBXL4 (FBXL4HA-N).

FBXL4HA-N did localize predominantly to mitochondria;

although a tenuous and diffuse immunofluorescence

could be detected in the cytosol, no signal was detectable

in the nucleus (Figure S4). These data suggest still robust

but less efficient mitochondrial targeting of FBXL4HA-N as

compared to FBXL4HA-C. Finally, to test whether transla-

tion initiation at a AUG start codon downstream from

the AUG codon encoding Met1 could address the protein

to the nucleus, we transfected two C terminus HA-flagged

FBXL4 constructs, starting at either the second AUG, en-

coding Met8 (D8FBXL4HA-C), or the third AUG, encoding

Met29 (D29FBXL4HA-C). The D8FBXL4HA-C construct, which

encodes an FBXL4 variant still containing most of the

predicted MTS, localized completely and exclusively to

mitochondria (Figure S4). Conversely, the D29FBXL4HA-C

construct, which encodes an FBXL4 variant lacking the

predicted MTS entirely, showed a predominantly cytosolic

localization (Figure S4). These results show that the N-ter-

minal MTS is essential to target FBXL4 to mitochondria.

Importantly, in neither case was nuclear localization ever

observed.

Next, we carried out immunoblot-based visualization

analysis on different HEK293T cell fractions by using

both polyclonal antibodies against the native FBXL4

mammalian protein (a-FBXL4) and an anti-HA mono-

clonal antibody (a-HA). In the mitochondrial fraction of

doxycycline-induced HEK293T cells analyzed on SDS-

PAGE blots, both a-FBXL4 and a-HA detected a band of

cross-reacting material (CRM) corresponding to a protein

of approximately 68–70 kDa, compatible with the molec-

ular weight of FBXL4. This band was (weakly) detected

in the total cell lysate, but not in the nuclear nor in

the postmitochondrial cytosolic fractions (Figure 4B).

We used suitable markers to demonstrate the purity of

the different cellular fractions. These results were consis-

tently obtained in several independent experiments with

HEK293T (Figure 4B) and also HeLa and 143B cells (not

shown).

We then asked whether FBXL4 is bound to the mito-

chondrial membrane fraction or is localized in the aqueous

soluble fraction of the organelle. In isolated mouse liver

mitochondria, FBXL4-CRMwas present only in the soluble

fraction, whereas no CRMwas detectable in themembrane

fraction (Figure 4C); this result is in agreement with the

absence of transmembrane domains in FBXL4. Finally,

in order to establish which soluble compartment of

mitochondria, i.e., matrix versus intermembrane compart-

ment, FBXL4 resides in, we carried out trypsin-protection

experiments in mitochondria isolated from inducible

FBXL4HA-C-expressing HEK293T cells. As shown in Fig-

ure 4D, Tom20, an outer-membrane component, was com-

pletely digested by trypsin (25 mg/ml for 30 min) in intact

mitochondria, whereas the 70 kDa band corresponding to
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Figure 4. Subcellular Localization of FBXL4
(A) Recombinant protein was labeled with a-HA antibody (green), nuclei were stained blue with DAPI, and mitochondria were stained
red with MitoTracker. A noninduced HEK293T cell is shown to highlight the specificity of the a-HA antibody.
(B) Total cell lysate (CL), cytosol (C), nuclei (N), and mitochondrial (M) fractions were isolated from FBXL4HA-C stably transfected
HEK293T cells followed by immunoblot analysis with a-FBXL4 (Abcam) and a-HA (Roche) antibodies. In vitro synthesized human
FBXL4 HA-C full-length protein (ivT) was included as control. Mitochondrial subcellular localization was confirmed by immunoblotting
based on signal from HSP60 and TOM20 (mitochondrial), SF2 (nuclear), GAPDH (cytosolic). A previously suggested partner of FBXL4,
cullin 1 (CUL1), is here shown to be cytosolic.
(C) Subcellular fractionations obtained from mouse liver. Mitochondrial subcellular localization was confirmed by immunoblotting
based on signal from ETHE1 (mitochondrial matrix), SDHB (mitochondrial membranes), AIFM1 (mitochondrial intermembrane space),
and tubulin (cytosolic).
(D) Intact mitochondria isolated from FBXL4HA-C stably transfected HEK293T cells after 0 (noninduced) or 5 ng/ml doxycycline induc-
tion for 24 hr (induced) were left untreated or incubatedwith trypsin or digitonin followed by trypsin digestion. Submitochondrial local-
ization was established by comparison of FBXL4 and HA signal from immunoblots to TOM20 (outer membrane), cytochrome c, CYC
(intermembrane space), and electron transfer B, ETFB (matrix).
FBXL4 was resistant to trypsin digestion, indicating that

FBXL4 resides inside mitochondria, being protected from

trypsin digestion by the outer mitochondrial membrane.

However, FBXL4 band intensity was progressively reduced

by trypsin treatment of mitochondria after exposure to

increasing concentrations of digitonin, a detergent that

solubilizes the outer, but not the inner, mitochondrial

membrane. The susceptibility of FBXL4 to trypsin diges-

tion in the presence of digitonin was identical to that of

two proteins known to reside in the intermembrane space:

cytochrome c (Figure 4D) and adenylate kinase 2 (Fig-

ure S5A). In contrast, two mitochondrial matrix proteins,

ETF (Figure 4D) and citrate synthase (Figure S5A), were

resistant to trypsin in all conditions. Convergent results

were obtained by in vitro import experiments (Figure S5B).
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The in vitro 35S-labeled translated product of full-length

FBXL4 cDNA was protected against proteinase K in naive

mitochondria by translocation within mitochondria

through a membrane-potential-dependent mechanism.

However, we failed to detect posttranslational cleavage

of the N-terminal MTS, as seen for many proteins of the

mitochondrial matrix. Taken together, our findings estab-

lish FBXL4 as a protein targeted to and residing inside

mitochondria, most probably within the intermembrane

space.

FBXL4 Is Part of a Supramolecular Complex

FBXL4 has a leucine-rich repeat domain (Figure 2), which

is typically engaged in protein-protein interactions

(Figure 5A). We tested this hypothesis by immunoblot
Journal of Human Genetics 93, 482–495, September 5, 2013 491



Figure 5. Structural Features of FBXL4
(A) A comparative structure of the F-box and leucine-rich repeat
(dark gray) domains of FBXL4, modeled on the X-ray structures
of FBXL3 and SKP2. A surface representation of the CRY2 binding
partner (light gray) of FBXL3 modeled in the equivalent position
with FBXL4 suggests a protein-protein interaction surface is
formed by the concave b-sheet of the leucine-rich repeats. Muta-
tions of FBXL4 are shown as colored sticks: p.Gly356Alafs*15
(red), p.Ser410Phe (orange), p.Leu433Arg (yellow), p.Arg482Trp
(green), p.Ile551Asn (cyan), p.Asp565Gly (blue), p.Gly568Ala
(indigo), and p.Gln597Pro (violet).
(B) Blue Native Gel Electrophoresis (BNGE) from FBXL4HA-C stably
transfected HEK293T cells and induced with 2 ng/ml doxycycline
for 48 hr. Samples were separated in 5%–13% gradient nondenatu-
rating gels and immunoblotted for FBXL4 and HA in order to
reveal the presence of high-molecular-weight complexes. SDS-
boiled sample, NDUFB8 from complex I, and SDHB from complex
II were analyzed as controls.
analysis on one-dimension blue-native gel electrophoresis

(1D-BNGE) of the mitochondrial fraction from doxycy-

cline-induced, FBXL4HA-C-transfected HEK293T cells.

Immunovisualization by a-FBXL4 consistently revealed a

CRM doublet formed by two proximal bands in the

400 kDa range. Only the lower band was immunovisual-

ized with a-HA (Figure 5B). These results indicate that
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FBXL4 is present in a quaternary protein complex and sug-

gest that the HA epitope partly interferes with the stability

of the complex. Interestingly, the leucine-rich repeat

domain, which is deemed to promote protein-protein in-

teractions, is targeted by most of the mutations found in

affected subjects (Figures 2A and 5A).
Discussion

The following points provide evidence that recessive

FBXL4mutations are responsible for severe, infantile-onset

mitochondrial encephalomyopathy. First, two unrelated

consanguineous families were both linked to the same

interval in 6q16.1 by different haplotypes; exome

sequencing showed them to harbor two different, probably

pathogenic, homozygous FBXL4 variants as the only vari-

ants within the linkage interval in each kindred. Second,

independent filtration of exome variants in four unrelated

simplex families revealed six additional mutant FBXL4

alleles, including two nonsense and four missense muta-

tions; another missense mutation was found in homozy-

gosity by ad hoc screening of FBXL4 in a subject with

clinical and biochemical features similar to the previously

identified mutant subjects. Taken together, we found nine

disease-associated FBXL4mutant alleles in seven unrelated

kindreds. Third, two nonsense variants predict the forma-

tion of truncated and aberrant transcripts or proteins,

whereas the seven missense variants involve severe

changes at evolutionarily highly conserved amino acid

positions. Further, with the exception of p.Ile205Thr

(S8), which is localized in a poorly structured domain,

the other identified amino acid substitutions all affect

the FBXL4 leucine-rich domain that is probably involved

in protein-protein interactions. Fourth, albeit variable,

the clinical presentation, laboratory findings, brain MRI,

and disease course share several common features,

including early-onset lactic academia and severe psycho-

motor delay and eventually stagnation, associated with

predominantly supratentorial brain lesions and progressive

brain atrophy. Dysmorphic facial traits and other

malformations were present in some individuals. Fifth,

affected subjects had consistent, albeit variable, biochem-

ical and morphological features indicating significant

impairment of mitochondrial OXPHOS, in both muscle

and cultured fibroblasts. We also detected variable but

consistent reduction in the mtDNA copy number. Sixth,

expression of naive FBXL4 cDNA rescued the OXPHOS

defect of FBXL4 mutant fibroblasts. Taken together, these

results concordantly converge to indicate mutant FBXL4

as the cause of a previously unreported early-onset mito-

chondrial disease syndrome. With the exception of S6

and S9, who died in early infancy from metabolic crisis

consequent to infection, the other children are all alive,

some having entered late childhood, with protracted,

slowly progressive multisystemic evolution of their clinical

course. This observation suggests that FBXL4 function is
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important for normal health and development but not

essential for survival into late childhood and possibly early

adulthood.

Because a common hallmark of this syndrome consisted

of impaired mitochondrial bioenergetics, we first asked

whether FBXL4 is a mitochondrial protein. F-box pro-

teins are versatile regulators of a variety of cellular func-

tions.30,31 These proteins usually contain a wide range of

other motifs including zinc fingers, leucine zipper, ring

fingers, tetratricopeptide repeats (TPR), and proline-rich

regions. Typically, they serve as substrate adaptors in

Skp1-Cullin-F-box (SCF) E3 ubiquitin ligases, where they

are required to target proteins to ubiquitination and

degradation by the 26S proteasome. However, many

F-box proteins may also function independently of the

SCF complex and the 26S proteasome.32 A previous report

suggested that FBXL4 is an E3 ubiquitin ligase interacting

with JMJD2A, a histone lysine demethylase.29 However,

we notice that no evidence was provided that FBXL4 is a

SCF complex member. Further, JMJD2A-CRM was immu-

noprecipitated in the reported study by an anti-FBXL4

antibody incubated overnight with ethidium-bromide-

treated whole HEK293T cell extracts; this experiment

cannot exclude nonspecific interactions between the two

proteins and no further evidence was provided on the

subcellular localization of FBXL4. In contrast, by applying

a number of different experimental approaches that

were supported by in silico predictions, we clearly demon-

strated here that FBXL4 is indeed localized in mitochon-

dria, and the predicted full-length FBXL4, or variants of

it, consistently failed to be detected in the nucleus of (1)

human naive cultured cells, (2) cells expressing a recombi-

nant full-length, HA-tagged FBXL4, or (3) mouse liver cell

fractions. The presence of cryptic nuclear-localization sig-

nals was excluded by using several FBXL4 recombinant

variants expressed in cultured cells. Notably, the localiza-

tion of FBXL4 CRM was clearly separated from that of

cullin-1 (see Figure 4B). Although we cannot exclude in

principle that in some (untested) conditions or tissues

FBXL4 may also localize in other cellular compartments,

we provide compelling evidence in multiple cell lines

that this protein is predominantly, if not exclusively, tar-

geted to and localized within mitochondria. Further exper-

imental evidence indicates that FBXL4 is present in the

intermembrane space and is stably incorporated within

an approximately 400 kDa quaternary complex. Interest-

ingly, this demonstration has been made possible by the

link between FBXL4 mutations and mitochondrial disease

and underscores the impact that mitochondrial medicine

has in the elucidation of fundamental mechanisms rele-

vant to mitochondrial biology. In fact, our observation

opens several important, and somewhat unexpected, ques-

tions concerning the precise biological function, mecha-

nism of action, and physical status of FBXL4. In silico

reconstruction of FBXL4 bymeans of the known structures

of human FBXL3 and SKP2, which belong to the same

protein family, suggests that the concave b-sheet of the
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leucine-rich repeats form a protein-protein interaction sur-

face (CRY2 in case of FBXL3) (Figure 5A). Interestingly,

nearly all of the missense mutations found in our subjects

are contained within the leucine-rich domain (Figures 2A

and 5A), suggesting that they could potentially compro-

mise the formation of a functioning supramolecular

complex.

In budding yeast, at least 21 proteins contain a discern-

ible F-box motif.30 Two of these proteins, Mdm30 and

Mfb1, have nonredundant, F-box-independent roles,

because they are required for proper mitochondrial

distribution and morphology during mitotic growth.

F-box leucine-rich repeat proteins provide subunits to

the enzymatic complex carrying out phosphorylation-

dependent ubiquitination of proteins that are then

disposed by proteasome degradation. Although a com-

plete ubiquitination system has not been reported to exist

within mitochondria, two ubiquitin ligases (MITOL/

MARCH-V and MULAN), as well as a deubiquitinating

enzyme (Ubp16/USP30), are embedded in mitochondrial

outer membranes and participate in mitochondrial dy-

namics.33 Defects in mitochondrial morphology or respi-

ration capacity are also reported for mutations in other

ubiquitination-proteasome system (UPS) components,

such as the ubiquitin ligases parkin and Rsp5, as well

as proteasome subunits. These examples are likely to

reflect a pervasive involvement of the UPS in recycling

mitochondria-associated proteins. The flux of imported

proteins and the proximity of mitochondrial import

across the inner mitochondrial membrane to oxidative

phosphorylation probably result in protein damage or

misfolding that require a responsive quality control sys-

tem. It is tempting to speculate that FBXL4 might act

as a protein quality control system, connecting to other

similar pathways that control OXPHOS proficiency and

mitochondrial biogenesis. For instance, PINK1, a kinase

predominantly found in the outer compartment of mito-

chondria, is rapidly degraded in DJ-proficient organ-

elles.34 However, in energetically spent mitochondria

having impaired DJ, PINK1 is stabilized to attract parkin,

an E3 ligase that in turn promotes the disposal of the

organelle, by a specialized macro-autophagic process

termed mitophagy. Activation of the mitophagic pro-

cesses could underlie the decreased mitochondrial mass

and explain, at least to some extent, the reduced mtDNA

copy number and citrate synthase activity that we

observed in muscle and cultured fibroblasts from FBXL4

mutant subjects. Consistent with a possible role of

FBXL4 in quality control and modulation of mitochon-

drial dynamics, we found that the mitochondrial network

was clearly more fragmented in some mutant fibroblasts

compared to controls (Figure 3C).

Future work is warranted to elucidate the composition,

interactions, and mechanistic role of this mitochondrial

protein/complex that controls bioenergetics homeostasis

and causes a previously unrecognized infantile-onset mito-

chondrial disease.
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Supplemental Data include five figures and five tables and can be

found with this article online at http://www.cell.com/AJHG/.
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