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Some results on special types of semigroups of transformations of a 
set (including permutation groups) are developed and combined with 
the fundamental results of Paul1 and Unger on state minimization of 
incompletely specified sequential machines to obtain some properties 
of the transformation semigroup of such a machine which are pre- 
served in all minimum state machines (strong preservation), or in at 
least one (weak preservation) minimum state machine. The principal 
results are that for permutation machines (those whose states are 
permuted by every input) there is strong preservation and for simpl e 
machines (those whose semigroups have no proper ideals) there is 
weak preservation. A number of further properties of permutation 
machines in the satisfaction and minimum state relations are de- 
veloped. 

INTRODUCTION 

The point of view taken in this paper  is similar to tha t  of Ginsburg 
(1960) and Elgot  and Rutledge (1962) in tha t  properties of incompletely- 
specified sequential machines are studied which are preserved either in a t  
]east one (weak sense) or in all (strong sense) min imum state  machines. 
However  the direction taken here is perhaps closer to Schiitzenberger 
(1962) in tha t  the pr imary  interest is in the properties of the semigroups 
of the maclfines. Whereas in Schtitzenberger (1962) a relation between 
the senfigroups of arbi t rary machines in the satisfaction relation was 
studied, the emphasis here is on showing tha t  classes of machines having 
certain types of semi~oToups are closed under state minimization, either 
in the strong or the weak sense. Another  difference between Schfitzen- 
berger (1962) and the present s tudy is tha t  while there the abst ract  semi- 
group was the main point of interest, it seemed necessary when con- 
sidering state minimization to s tudy the semigroup of t ransformations 
connected with a machine. This is the mot iva t ion  of Section 2, which 
develops the necessary properties of t ransformation semigroups. Section 1 
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gives a summary of standard definitions and properties of semigroups 
which Mll be needed in the sequel. In Section 3, the fundamental results 
of Paull and Unger (1959) for incompletely-specified sequential machines 
are developed (since their formulation differs somewhat from what was 
needed here) and are combined with the contents of Section 2 to obtain 
some new results on state minimization. Principally these results concern 
permutation machines (those whose states are permuted by every input) 
and simple machines (those whose semigroups are simple). For the former 
there is strong preservation (Corollaxy 3.18) and for the lat~er weak 
preservation (Corollary 3.14) under state minimization. In addition a 
result of Beatty and Miller (1963), involving a closure operation on sets 
of states of a machine, is generalized slightly in Theorem 4, whose proof 
is considerably simplified by the use of a new characterization of this 
operation. This is then applied to permutation machines. Finally, a 
variety of further properties of permutation machines is given. 

Though the Moore model of a sequential machine is used (in which the 
output is a function of the state alone), it would appear that the applica- 
tion of these results of the Mealy model would be a straightforward 
matter. 

1. SEMIGROUPS 

It  is assumed that the reader is familiar with the elementary proper- 
ties of semigroups. For the basic definitions not given explicitly, reference 
can be made to Section 1.1 of Clifford and Preston (1961), whose nota- 
tion is used here except where indicated. 

Let S be a semigroup. A subset T of S is said to be a left [right, two sided] 
ideal of S if and only if S T  c_ T[TS C T, TS  U S T  c_ T]. The semigroup 
S is said to be simple if and only if it has no proper two sided ideals and 
O-simple if its only such ideal is 0, where by 0 is meant an element of S 
(which must be unique if it exists) such that sO = 0s = 0 for all s e S. 
By S 1 is meant S itself in case S has an identity, and S with an identity 
adjoined otherwise. Two elements s and t of S are said to be 
2~-[(R-, ~-] equivalent (written s2t[~(t~t, s~t]) if and only if S~z = 
s i t [ s S  1 = tS ~, S~sS 1 = S~tS1], 3C-equivalent ( s3Ct) if and only if s2t and 
s6lt, and ~)-equivalent (s~)t) if and only if there exists u e S such that s2u 
and u6)Lt (or equivalently such that s~u and u£t) .  To see that ~) is really 
an equivalence relation see Section 2.1 of Clifford and Preston, 1961. An 
element s of S is said to be regular if and only if there exists s' ~ S such 
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that  ssts = s, and S is regular when each of its elements is, The following 
well known properties of semigroups will be used ia the sequel: 

PROPERTY 1.1. In  a semigroup S, i f  s~t  then s~t. 
PROPERTY 1.2. A semigroup is simple if  and only i f  all of its elements are 

~-equivalent. (For a discussion of these and related facts see Clifford and 
Preston, 1961, p. 48.) 

P~OPERTY 1.3. A finite simple semigroup is regular. (Theorem 2.51 of 
Clifford and Preston, 1961). 

PROPERTY 1.4. I n  a finite semigroup, ~) = 9" (Green, 1951, Theorem 3) 
By the free semigroup F, on a set X we mean the set of all finite sequences 
of elements of X, in which the product of two such sequences is simply 
their juxtaposition. 

PROPERTY 1.5. Let F be the free semigroup on X.  Let S be any semiqroup 
and let ~o be any mapping of X into S. Then ~o can be extended in one and 
only one way to a homomorphism of F into S. ( Lemma 1.28 of Clifford and 
Preston, 1961). 

2. TRANSFORMATION SEMIGROUPS 

Let A be a set. By a transformation of A we mean a mapping of A into 
A. t f  a e A and f is a mapping of A into any set, then af will denote the 
image of the element a under the mapping f, and if B ___ A then B f  will 
denote the collection { af ] a e B} of all images under f of elements of B. 
If  s is a mapping of A into D and t a mapping of D into C, then by st, the 
composition of t with s, we mean the mapping of A into C obtained by 
applying first s then t. Thus if a ¢ A, then a(st) = (as)t, so the parenthe- 
ses may be omitted without ambiguity. If s and t are transformations of 
A, then so is st, i.e. composition is a binary operation on the set 54 of all 
transformations of A. In  fact it is associative, so 5~ is a semigroup. By  a 
[finite] transformation semigroup we mean an ordered pair (A, S), where 
A is a [finite] set and S is a subsemigroup of 5A. If  s is a mapping of A 
into B and B'  _ E, then sB' Will denote the collection {a ~ A I as ~ B'} 
of all elements of A mapped into B'  by s. A transformation semigroup 
(A, S) is called a permutation group if and only if S is a group and As = A 
for every s e S. I t  is an immediate consequence of this definition tha t  the 
iden.tity of the group S is the identity mapping of A and that  all elements 
of S axe one-to-one mappings. 

If  A is a set then by 24 we mean the collection of all subsets of A. Le~ 
(A, S) be a transformation semigroup and let Z ___ 24. We will say that  
is weakly closed under S if and only if for every B e Z and s e S there exists 
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B ! ! Z with Bs c__ B ,  and that  ~ is closed under S if and only if Bse  ~ for 
each B ~ ~ and s ~ S. 

PROPOSITION 2.1. I f  Z is closed under S and ~ :S ---> 5~ is de~ned by 
letting B( s~) equal Be for each s e S and B e ~, then ~ is a homomorphis~n 
and will be called the homomorphism of S induced by ~. 

Proof. For each B e Z  and s, t e S ,  B((s t )~)  = B(st) = (Bs)t  = 
B(s~)(@),  so (st)~ = (s~)(@), Q.E.D. 

PROPOSITION 2.2. I f  (A, S} is a permutation group, Z ~ 2 A is closed 
under S, and ~ is the homomorphism of S induced by ~, then (~, S~) is a 
permutation group. 

Proof. That  S~ is a group follows from the fact that  S is a group and 
is a homomorphism. Let  s e S and B e %. Since ~ is closed under S, 
Bs -~ e Z and B = (Bs-~)s. Thus Z(s~) = Z and (~, S~) is a permutation 
group, Q.E.D. 

Let  % be a collection of subsets of A such that  each element of A is 
contained in at least one element of Z. Then Z is said to cover A, and the 
relation p on A defined by letting xpy if and only if x and y are contained 
in exactly the same elements of ~ is readily seen to be an equivaIence 
relation on A. The collection of all p-equivalence classes will be called the 
coarsest partition of A refining Z. 

In  the transformation semigroup (A, S) we define b e A to be accessible 
from a e A if and only if there exists s e S such that  as = b. We will say of 
(A, S) tha t  it is accessible if and only if every b e A is accessible from some 
a e A. Clearly every permutation group is accessible. We will say that  
(A, S) is connected if and only if for every a, b e A, either a is accessible 
from b or b is accessible from a, and that  (A, S} is strongly connected if 
and only if each a e A is accessible from every b e A. 

The eardinality of a set A will be denoted by [A [. 
PROPOSITmSr 2.3. I f  <A, S) is a connected permutation group, then the 

subgroup H = { s e S I as = a} which fixes a single element a of A, is of 
index I A I in S. 

Proof. See Corollary 2.5.1 of Hal l  (1959). 

PROPOSITION 2.4. I f  (A, S) is a finite connected permutation group, then 
I J l divig s [el .  

Proof. By Proposition 2.3, S has a subgroup of index I A I, so l A I, 
divides t N I, Q.E.D. 

PROPOSITION 2.5. A connected permutation group is strongly con- 
nected. 
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Proof.  Let (A, S) be a connected permutation group and let a, a' e A 
and s e S be such that  as = a'. Then a's -1 = a, Q.E.D. 

What  we have termed a connected permutation group is usually called 
a transitive permutation group. A permutation group (A, S} is called 
s imp ly  transitive if and only if for every a, b e A there is exactly one s e S 
such that  as = b. Par t  of the following proposition is contained in Propo- 
sition 2.4 of Tully (1961). 

PROPOSITION 2.6. I f  (A ,  S )  is  a strongly connected transformation semi- 

group and S is  commutative,  then (A ,  S} is  a s imp ly  transitive permuta t ion  

group, and ] A [ = IS].  
Proof.  Suppose as = a and b e A. Let  t e S be such that  at = b. Then 

bs = ats = ast = at = b, so s = 1 ( the identi ty transformation of A).  
Now suppose as = b and let t e S be such that  bt = a, so ast = a and 
st = 1. Thus (A, S) is a permutation group. To show that  (A, S} is simply 

--___ S ! transitive, suppose as as' for some a e A and s, e S. Then ass -1 
! - -1  t - -1  

as s = a, so s s = 1, and this implies tha t  s' = s. Since (A, S} is simply 
transitive, then clearly I A ] = IS I, Q.E.D. 

PROPOSITION 2.7. I f  (A ,  S} is  a f ini te  transformation semigroup and 

A s  = A for  each s e S ,  then (A ,  S} is a permutat ion  group. 

Proof .  Since S is finite, then for each s e S, some power of s is idem- 
potent.  But  the only idempotent element of S is the identi ty transforma- 
tion. Thus every s e S has an inverse, and S is a group, Q.E.D. 

The following two lemmas parallel and generalize some of the material 
in Section 2.2 (See Clifford and Preston, 1961.) In the transformation 
semigroup (A, S} if s e S, we denote by  ~r~ the part i t ion (or equivalence 
relation) of A corresponding to s, by which is meant tha t  a and a r fall 
into the same block of Try(aTria ~) if and only if as = a's. 

LEM~_ 2.8. Let  (A,  S} be a transformat ion semigroup and let s, t e S.  I f  

s2 t  then A s  = At .  I f  s and t are regular and A s  = A t  then s2t .  

' t' S 1 Proof .  By definition of 2, s2~t if and only if there exist s ,  e such 
that  s = s't and t = t's. Thus if s2t ,  then A s  = A s ' t  c A t  and 
A t  = Atrs  c_ As ,  so A s  = At .  Now assume s and t are regular and 
A s  = A t ,  so there exist s', t' e S such that  ssPs = s and tt't = t. For any 
a e A, since A s  = A t ,  there exists b e A such tha t  as = bt. Thus ast't  = 

btt't = bt = as for any a e A. Consequently ( s t ' ) t  = s. Similarly ( t s t )s  = 

t and so s2~t, Q.E.D 
L e m m a  2.9. Let  (A ,  S} be a transformat ion se~ igroup  and let s, t e S.  

I f  s(Rt, then ~'~ = ¢t • I f  s and t are regular and ~r~ = ~rt , then s~ t .  
I t t Proof.  By definition of ~, s ~ t  if and only if there exist s ,  e S ~ such 
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tha t  s = ts' and t = st'. Thus if s~t  and at = bt, then as = ats' = bts' = bs; 
similarly, if as = bs, then at = bt. Thus ~ = yr .  Now assume tha t  s and 
t are regular and ~r~ = ~rt, and let s r and t' be such tha t  sJs  = s and 

] ! 

tt't = t. For a e A ,  since att't = at, then (att )~rta, so (art)~r~a and 
att's = as. Thus t(tts) = s, since a was arbitrarily chosen. Similarly 
s(s~t) = t, so s~t,  Q.E.D. 

A transformation semigroup (A, S} will be called simple if and only if 
S is simple. Suschkewitseh (1928) was apparent ly  aware of the following 
characterizations of finite simple transformation semigroups, though he 
did not state them explicitly: 

THEORE~I 2.10. The following conditions on a finite transformation semi- 
group (A, S} are equivalent: 

(a) (A,  S} is  simple 
(b) f o r e o e r y s ,  t e S ,  I A s l  = I A t [ ;  
(c) for every s, t e S ,  As t  = At;  
(d) for every s, t e S,  the restriction of t to A s  is a one-to-one mapping  

of A s  onto At .  
Proof. (a)  ~ (b) : Since S is finite, then ~ = ~ by  Proper ty  1.4, so all 

elements of S are ~)-equivalent by  Proper ty  1.2 and (a) .  Thus if s, t e S, 
there exists u e S such tha t  s2u and u(~t. By Lemma 2.8 and 2.9, then 
A s  = A u  and ~r~ = ~rt. But  clearly IAu I = I~r~ I = 17rtl = I A t  I, so 
I d s [  = ]At] .  

(b) ~ ( c ) : S i n e e A s  c A ,  t h e n A s t  ~ At .  B u t ] A s t t  = I At[  by (b),  
and since the sets are finite, it follows tha t  Ast  = At .  

(c) ~ (d) :  By (c), t maps A s  onto At;  and s maps A t  onto As.  
Since the sets are finite, then t must  be one-to-one on As. 

(d) ~ (a)  : Let  a, b ~ A and s, t e S. If  as = bs, then ast = bst; con- 
versely if ast = bst, then as = bs by (d),  since t is one-to-one on As.  
Thus ~r~t = 7r~. Since also Ast  = A t  by (d),  it suffices to show tha t  S is 
regular; for then it will follow from Lemmas  2.8 and 2.9 tha t  t£ (s t )  and 
(st)  (~s and hence tha t  s~t  and by Proper ty  1.1 tha t  s~t; finally since s 
and t were chosen arbitrarily, then all elements of S are J-equivalent  and 
S is simple (Proper ty  1.2). To show tha t  S is regular, let s e S and let G 
be the set of restrictions to A s  of the elements of the set Is p E S IAs  r = As}.  
Thus  because of (d),  G is a semigroup of permutat ions of the finite set 
A s  and hence, by Proposition 2.7, mus~ be a group. Let  g e G be the re- 
striction of s to A s  and let s'  e S be such tha t  its restriction to A s  Is" g-~. 
Thus for any a e A ,  ass's = ( as)g-lg = as, so ss's = s and s is regular, 

Q.E.D. 
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If (A, S} is a transformation semigroup and Z c_ 2 ~, then Z will be 
called a weakly closed cover of <A, S> if and only if 21 is a cover of A and is 
weakly closed under S. A weakly closed cover N of (A, S> will be called 
irredundant if and only if for every Z p c__ Z if Z' is a weakly closed cover 
of (A, S} then 21' = 21. If A is a set, then Z __ 2 a will be called normal 

t ! • 

if and only if for B, B e Z, B C B'  implies B = B .  Clearly any lrredundant 
weakly closed cover of (A, S) is normal. 

LEMMA 2.11. Let (A, S> be a permutation group and let ~ ~ 2 ~ be normal 
and weakly closed under S. Then ~ is closed under S. 

Proof. Let  B e Z and s ~ S. Let  B t, B" e Z be such that  Bs C B ,  and 
B's -1 C B". Then B = Bss -~ ~ B's -~ c B" and so, since Z is normal, 
B = B "  , - -1  ! = B s . Thus Bs = B's-~s = B ,  and ~ is closed under S, 

Q.E.D. 
LEMMA 2.12. Let (A, S) be a connected permutation group and 21 an it- 

redundant weakly closed cover of (A, S). Then Z is closed under S and i f  
is the h.omomorphism of S induced by Z, then (Z, S~} is connected. 

Proof. Since Z is irredundant, it  is normal, and hence, by Lemma 2.11, 
closed under S. Let  B e Z and let Z' = {Bs [ s e S}. Then Z' ___ 21 and Z t 
is closed under S. Let  b e B and a e A and let s e S be such that  bs = a. 

' 21' = 21, since otherwise ~ would Then a e Bs e Z ,  so covers A. Thus 21' 
not  be irredundant. Since B(s~)  = Bs, this proves tha t  (Z, S~} is 
connected, Q.E.D. 

Let  A be a set, Z ~ 2 ~, C e Z, and B _ A. Then we will say that  C 
intersects B maximally (wi th  respect to Z) and call C n B a maximal 
Z-intersection with B if and only if for all C ~ ~ 21, if C f'l B ~ C' fl B then 
C f~ B = C ~ N B. Let  (A, S} be a transformation semigroup, s e S, and 
21 __c 2 ~. Then by 21~' we will denote the collection of all maximal Z-inter- 
sections with the set As. Clearly 21J is normal. I f f  : 21 ---> 2 ~ is the mapping 
defined for B e Z by B f  = Bs, then we will say that  s induces f. 

LEMMA 2.13. Let (A, S) be a finite simple transformation semigroup and 
suppose Z c 2 ~ is weal~ly closed under S. Then for any s, t e S, t induces a 
one-to-one mapping of 21J onto Zt'. 

Proof. For s e S, let s* be the restriction of s to As. By Theorem 2.10, 
the set G~ = { t* lA t  = As} is a group of permutations of As. If  
C = B n As  e ~ j ,  where B e 21, and At  = As, then by the fact tha t  21 is 
weakly closed under S, there exists B ' e  Z such tha t  Bt c_ B'. Thus 
Ct* = Ct = ( B n A s ) t ~  B t n A s t  = B t n A t  = B t f 3 A s ~  B'  n A s .  
Thus there exists C' ' ' " e Z. such that  Ct* __ C ,  so Z~ is weakly closed under 
G~ and hence by  Lemma 2.11, Z~' is closed under G~. Now let s, t e S and 
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E ' where B ~ ~. Since E is weakly closed under S, there C = B N A s ~  ~, 
exists B'  ~ Z such that  Bt C B'. Since C ~ B, then Ct C B'. By Theorem 
2.10, since (A, S} is simple, t maps As one-to-one onto At, and since 
C ~ As, then t maps C one-to-one onto Ct C_ At, so Ct C B' n At. Thus 

Z t C '  ' Ct C_ D for some D e  ~. Similarly Ds ~ C ~ for some ~Z~. Since 
Ats = As, then ( ts )*eG~.  Since C(ts)* = Cts _C C ~eZ'~ and ~ , ' i s  
normal and closed under G~, then Cts = C', so'] C i = I C' I. But  [ C t = 
I Ct l <- I D I = I Ds l g I C' I, so equality holds in each case. Thus 
Ct = D, and t induces a mapping of ~'~ into Zt'. If C, C ' e2 ; /  and 
Ct = C't, then (C U C')t = Ct and since t is one-to-one on As and 
C U C ' C A s ,  t h e n i C U C ' [  = [CI = t C ' [ s o C ' =  C. T h u s t i n d u c e s a  
one-to-one mapping of ~,' into Z '  t .  Since s also induces a one-to-one 
mapping of Z~' into ~ /  and both are finite, then both mappings axe 
necessarily onto, Q.E.D. 

LEMM~ 2.14. Let (A, S} be a finite simple accessible transfor~?mtion semi- 
group and ~ C 2 ~ an irredundant weakly closed cover of (A, S). Then for 
each B ~ ~ there exists s e S such that B intersects As maximally. 

Proof. Suppose by  way of contradiction that  B e E intersects no As 
maximally. I t  will be shown that  ~ -- {B} is a weakly closed cover of 
(A, S), and hence that  Z is not irredundant, contrary to the hypothesis 
of the Lemma. Since (A, S) is accessible, then for each a e A there exists 
s E S such that  a E As. If a e B then, since B does not intersect As 
maximally, there exists B '  -- E ~Y {B} such that B 71 As ~ B'  71 As, so 

B t" a e This shows that  Z - {B / is a cover of A. To show that  Z - { B}  is 
weakly closed under S, 6he need only note that,  because ~ is weakly 
closed under S for each B ' e 2  and s e S ,  B's C As 7 1 B"  for some 
B/r e ~ which intersects As maximally. Hence B" Z - {B}, Q.E.D. 

Let (A, S} be a transformation semigroup, let ~ c 2 a, let S' C S, and 
let p be a mapping of S' into 5~. Then p will be called 2-consistent if and 

S' only if for each s e and B e Y-, Bs C B(so). 
LE~MA 2.15. Let (A, S} be a finite simple transformation semigroup, let 

Z c_ 2 A be a weakly closed cover of (A, S), and let S' ~ S be any set of 
generators of S. Then there exists a E-consistent mapping p of S' into 5~ such 
that S'p generates a simple subsemigroup T of 5~ . I f  (A, S) is accessible and 
Z is irredundant, then p can be extended to a homomorphgsm of S onto T and 
(Z, T) is accessible. 

Proof. Let  ~' = U,~s %/, i.e., Z' is the collection of all maximal E-inter- 
sections with the sets As for s e S. Now let f be an arbitrary but  fixed 
mapping of Z' into Z such that  for each C e ~', C c Cf. I t  is clear from 
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the definition of E' tha t  such a mapping  exists. For  each s e S let 
2~ = 2~tf. Now if C e ~ ' ,  C c B1 e 2~, and C ___ B2 ~ ~ ,  then we must  
have B1 = Clf and B2 = C2f for C1, C 2 e 2 j ,  so C 1 U c  _c B1 and 
C~ U C _c B2. Thus since C, C1, and C2 are maximal  Z-intersections with 
A s ,  then C1 = C = C2, so B1 = C~f = C2f = B2 . This shows tha t  no 
distinct elements of 2~, can hxve the  same element of ~J  as a subset, and 
hence tha t  [ ~, [ = I ~, '  I. Now we are ready to define the mapping p of 
S t into 5~. For  each B e N and s e S '  let B ( s p )  -- B t ,  where B '  is an 
arbi t rary  element of ~ such tha t  B s  C_ B ~. Tha t  at  least one such element 
exists is evident from the fact tha t  2 is weakly closed under S; for 
B s  c_ A s  and there exists B" e ~ with B s  C B t', so B s  c A s  [J B " .  Thus  
B s  ~ C for some C e N J, and C c B t for some B t e ~ , ,  so B s  c_ B r. Clearly 
p is Z-consistent. Now we will prove tha t  for each s, t e N~(tp) ~ , .  

From the definition of p it is obvious tha t  N( tp )  c_ ~t  • By Lemma  2.13, t 
induces a one-to-one mapping of N, t onto ~ / .  I f  B e ~ t ,  then B = C f  for 
some C ~ Z/ .  Let  C t e NJ be such tha t  C't = C, and let B '  = Crf e N~. 
Then C = Ctt c_ B t t  c B t ( t o )  e Y~t. Thus B t ( t p )  = B ,  since both are 
elements of 2~ and contain the element C of 2 ' t as a subset. This shows 
tha t  2(tp) = 2,(tp) = 2~, and hence tha t  the classes Z(tp) have the 
same cardinality for all t e S t, since this is true of the Nt. Let  T be the sub- 
semigroup of 5~ generated by  S'p.  Clearly if g e T then there exist 
8 1 , . . .  , s ~ e S ' s u c h t h a t t  = t l . . . t ~ a n d t j  = s j o f o r l  _<j_< n. Thus 
Nt = N(Slp) • • • (s~p) = N(s~p) ,  and so the ~t have the same cardinality 
for all t E T. Thus by  Theorem 2.10, T is simple• I t  remains to show tha t  if 
(A, S) is accessible and ~ is irredundant, then o can be extended to a 
homomorphism of S onto T ~nd (Z, T} is accessible. Let  s = s~ • • • s~ = 
r l - . . r ~  where s j ,  r i e S  t, u~ = sip, and t~ = rlp for 1 < j < n and 
1 < i < m ; a n d l e t t  = t ~ . . - t ~ e T a n d u - - u ~ . . . u ~ e T .  Wewou ld l ike  
to show tha t  t = u,  i.e., for every B e ~ tha t  B t  = B u .  Now by  Theorem 

t t 
2.10, As~ = A s  = A r ~ ,  so Z,~ = ~ , , f  = N~f = Z~ and N~ = 2 , .  Also 
by  Theorem 2.10 (since T is simple) Zt = Zt~ = N(rmp) = ~ ,~  and 
Z u  = Nu~ = Y,(s~p) = ~ .  Thus 2t = Nu = 2~. Now let B e N .  By m 
and n respective applications of the E-consistency of o we obtain B s  c_ B t  

• t • St and Bs ~ Bu. By Lemma2.14,BlntersectsAs max~mally for some e N. 

Thus C = B~As te~t,, so Cse~ by Lemma 2.13. Therefore 

Ca C_ Bs C_ B~ ~ Bu. But B~ and Bu are both elements of Z~, and they 
have a common subset Cs e Z t, so it follows that Bt = Bu. This com- 
pletes the proof that t = u and enables us to define a mapping ~ of S 

onto T as follows: for any s e S let s = 81 • " • s~ be any factorization of s 
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into a product of elements of S' and define s~ = (sip) . . .  (s+p). What 
we have just shown guarantees tha t  ~ is well defined, i.e., independent 
of the particular factorization chosen. Clearly for s e S', s~ = sp, i.e., 
is an extension of p, and S~ = T since Sip generates T. Now it is im- 
mediate that  ~ is a homomorphism, for if r, s e S, let r = rl • • • rm, 

• S p s = e l ' "  sn whe re , ' i ,  s~.e for 1 < i _ m and 1 _< j < n. Then 
( rs)~ = (rio) " "  ( r,~o)( slo) " "  (s,p) = ( r~)( s~). Final ly to  prove that  
(2, T} is accessible, we notice tha t  2tf  ~ 2 is a weakly closed cover of 
(A, S} and hence Etf = 2. Thus for each B e 2, there exists s e S such that  
B e2~ = 2(s~) and hence there exists B t e2  such that  B'(s~) = B, 

Q.E.D. 
Let  (A, S) be a transformation semigroup and E ~ 2 x. Then 2 will be 

said to be inverse closed (under S) if and only if for every B e ~ and s e S, 
sB( ~ {a e A l a s  e B} ) e ~. By the inve~°se closure of ~2 we mean the class 

U { sB I s S and B 2}.  
Let A be an arbitrary set and 2 ~ 2 A and define the funct ionf  on 2 a by 

letting Bf  = N {B t e 2 [ B _ B'}, where it is to be understood that  
/3 ~ ~- A if 0 denotes the empty class of subsets of A. I t  is clear that  f is 
a closure operation on the complete lattice 2 ~ (in the sense of Birkhoff 
(1948), p. 49, tha t  for all B, C e 2 ~, B C Bf, Bff = Bf, and if B _ C then 
Bf C Cf), and we will call f the closure operation on 2 ~ deter,zined by 2. A 
set B e 2 4 will be said to be closed with respect to Z if and only if Bf  = B. 

LE~MA 2.16. Let (A, N) be a transformation semigroup, 2 ~ 2 A, R ~ S, 
and p a Z-consistent mapping of R into 3z . Let ~t c 2 A be inverse closed 
under S. Let f be the closure operation on 2 ~ determined by E t. Let pt map R 
into 3~] as follows: if  s e R and B e 2 let ( Bf)  ( sp' ) = ( B(  sp ) )f. Let T and 
T t be the subsemigroups of g~ and 5~y generated by Rp and Rp t respectively. 
Tl~en pt is (~f)-consistent. 

Proof. I t  is to be shown that  (Bf)s  ~ (Bf)(sp')  for every B e Y~ and 
t 

s e R. By  definition of o ,  this is equivalent to showing that  (Bf) s 
2 t (B(sp)) f .  By definition of f, (Bf )s  = ( N { B ' e  (B C Bt})s C 

A {B's [ B ~ B t e 2t}, and because o is ~-consistent and f is a closure 
2 t = 

operation, A {Bte IBs C B t} (Bs ) f  c_ (B(sp)) f .  Thus it would 
suffice to prove that  [-/{Bts I B C B t e 2'} C f] {B t e 2 t [Bs  C Bt}. Sup- 
p o s e a e n { B t s l B  C B te~t} If a ¢ [ 3 { B  te~. [ Bs ~ Bt}, then there 
exists B~e E' with Bs c B'  but a ¢ B t. Since Z' is inverse closed then 
sB~eE t. Since Bs ~ B t then B C sB t. But  (sBt)s C B', so 
a ¢ ~) {Cs I B ~ C e Nt}, contrary to assumption. Thus a e N {B t e N [ Bs 
___ B t} and the proof is complete, Q.E.D. 
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COnOLLA~Y 2.17. I f  (A, S} is a transformation semigroup, ~ c 2~is 
weakly closed under S, ~t c 2 A is inverse closed under S, and f is the 
closure operation on 2 ~ determined by i f ,  then ~ f  is weakly closed under S. 

Proof. Since % is weakly closed under S, it is possible to define a Z-con- 
sistent mapping p of S into 5z.  The lemma then yields a (~f)-consistent 
mapping of S into 5:s ,  so Zf must  be weakly closed under S, Q.E.D. 

Tt~EOREM 2.18. Let (A~ S) be a permutation group and let ~ c 2 ~ be 
closed under S and cover A and let H be the coarsest partition of A refining 
Z. Then II is closed under S and if  we denote by ~ and ~r the homomorphisms 
of S induced by Z and H respectively, then S¢ "~ S~r. 

Proof. Clearly the class A t = {{a}l a e A} is closed under S. Since the 
elements of S are one-to-one mappings, and each has its inverse in S, 
then ~ is inverse closed. Let  f be the closure operation on 2 ~ determined 
by Z. Then clearly A~f = II and by  Corollary 2.17, Atf  is weakly closed 
under S. Since II is a partition, it is normal and hence closed under S 
( L e m m a  2.11). Suppose sla = s2z and P e II, P = {a}f. Thus Bsl = Bs2 
for all B e Z. Then since sl and s2 are one-to-one mappings, P(s~Tr) = 
Ps~ = ( A { B E Z ] a ~ B } ) s ~  = N{Bs~ l a ~ B ~ }  = A { B s 2 1 a ~ B ~ }  = 
( A {B e Z la e B} )s2 = Ps2 = P( s~r). Thus, sl~ = s~ .  This shows tha t  
by letting t~ = s~ for t = sae Sa we get a mapping ~ of Sa into S~r. Since 

and ~ are homomorphisms, it is immediate tha t  ~ is a homomorphism 
of S¢ onto S~. Suppose (s,a)~ = (s~a)~, so s,~ = s~ .  Since any B e ~ is 
a union of elements of H, it follows tha t  Sla = s:a. Thus ~ is an iso- 
morphism, Q.E.D. 

3. MACHINES 

An (incompletely-specified finite-state sequential deterministic) ma- 
chine (with input alphabet  X and output  alphabet Y) is a quadruple 
(~ = (A, S, ~, a} where A is a finite set called the set of states of a,  S is a 
subsemigroup of 5 a ,  ~ is a homomorphism of the free semigroup F on X 
onto S, and a is a mapping of a subset of A into Y. This is equivalent 
to the usual definition of a Moore- type machine (without initial s tate)  
in terms of a completely specified ~ransition function; for such a function 
simply maps  each element of X to a t ransformation of the states of the 
machine and can thus be extended uniquely to a homomorphism of F 
into 5~ by  Proper ty  1.5. Machines with incompletely-specified transition 
functions can be reduced to the above model by introducing a "sink 
state".  (See Narasimhan,  1961.) The  machine (~ defined above is said to 
be complete if a is defined on all of A. All machines in this paper  will be 
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assumed to have input alphabet X and output  alphabet Y. The free 
semigroup on X will be denoted throughout by  F. Given the machine 
a = (A, S, ~, a}, we will denote by ~ the extension of~ to F ~ = F U {1} 
obtained by letting 13 be the identity transformation of A. Here the 
identity I of F 1 may be thought of as the null string. I t  is clear that  the 
mapping ~: F 1 -~ 54 is a homomorphism. We will consistently identify an 
element x of X with the string consisting of x alone, i.e., X ~ F. The 
behavior fla of a in state a(a e A)  is the mapping of a subsetof F 1 to Y 
defined by letting f/3~ = (a (f~)) a, if the latter is defined, and leaving f ~a 
undefined othei~dse. If  ® = (B, T, T, ~} is a machine, a e A and b e B, 
then we define a _ b to mean fl~ __C fib, i.e., for all f E F 1 if f/3~ is defined, 
then f flb is defined and they are equal. If for every a ~ A there exists 
b e B such that  a _< b, then we shall write (~ < (~ and say that  (~ satisfies 
a.  In  case a < (~ and no machine with fewer states than ® satisfies a, 
we write • < ~ (~ and say that  (~ is a minimum state machine for (L Two 
states a and b of a are said to be compatible if and only if ~ and/~b agree 

F 1 on the intersection of their domains, i.e. for all f e if f fl~ and f fib are 
both defined, then they are equal. A set C of states of (~ is said to be 
compatible if and only if C ~ 0 and all pairs of states in C are compatible. 
Given the machine a = (A, S, ¢, a}, we may refer to the semigroup S of a 
or to the transformation semigroup (A, S} of (~. In case (A, S} is a 
permutation group, we will say that  a is a permutation machine, and in 
case S is a simple [commutative] semigroup, we will say a simple [com- 
mutative] machine. If (A, S} is accessible [connected], then we say that  a 
is accessible [connected]. 

PROPOSITION 3.1. Let a = (A, S, (r, a} and 6~ = (B, T, r, ~} be machines 
such that (~ ~ ®. I f  a e A and b E B are such that a ~_ b and f e F ~, then 
a(f~) ~_ b(fr).  

Proof. If (a(f~)(gcf))a is defined and equals y then since a(f¢)(g~) = 
a(( fg)~) ,  it follows that  (b((fg)T))~ is defined and equals y. But  
b( (fg)~) = b( fr ) (gr) .  Thus a(f~) <_ b(fr),  Q.E.D. 

Let  (~ = (A, S, ~, a}, and ~ = (B, T, r, ~} be machines such that  
(~ ~ (B. We define Ab = { a e A l a  < b} for each b e B  and let 

= {Ab [ b e B and Ab ~ 0}. Then ~ will be called the projection of (~ 
onto (~. A class E ~ 24 will be called a C-class for a if and only if it satis- 
fies the following conditions: (1) Z covers A, (2) each element of ~ is 
compatible, and (3) ~ is weakly closed u~der S. Let  (~ = (A, S, ~, a} be 
a machine and ~ G 2 ~. Let (B = (~, T, ~, ~} be a machine satisfying the 
following conditions: (i) the mapping which takes x¢ to x~ for all 
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x ~X is a E-consistent mapping of Xz  into 3~, and (2) for all B ~ ,  
if there exists a ~ B with aa defined, then BE is defined and B E = aa. 
Then we will say tha t  63 is a construct of (~ with ~. I t  is an immediate  
consequence of this definition tha t  for a l l /~  F 1 and B ~ ~ we have B(f~) 

B(f~) .  Let  a = (A, S, z, a} and 63 = (B, T, r, ~} be machines and 
let e be a mapping of A onto B such tha t  for all a ~ A and x ~ X ,  (a(sz ) )~  
= (a~) (x r ) .  Then ~ will be called a homomorphism of a onto 63. If, 
in addition to being a homomorphism, ~ has the proper ty  tha t  whenever 
aa is defined then (ae )~  is defined and (a~)~ = aa, then we will say 
tha t  ~ is a machine homomorphism of a onto 63. I f  ~ is a one-to-one 
homomorphism of (~ onto 63, then it will be called an isomorphism of (~ 
onto 63 and (~ and 63 will be said to be isomorphic; if ~ is a one-to-one 
machine homomorphism of (~ onto 63 such tha t  ~-1 is a machine homomor-  
phism of 63 onto (~, then e will be called a machine isomorphism of a 
onto 63, and we say tha t  (~ and 63 are machine isomorphic. I f  there is an 
isomorphism of 63 onto 6, which is also a machine homomorphism, 
then we will say tha t  63 is a restriction of a.  I f  E is a C-class for a which 
is closed under S, then by  the natural construct of a with ~, we mean the 
construct 63 = (~, T, r, ~) of (~ with ~ obtained by  defining B(x~-) = 
B ( x z )  for all B ~ ~ and x ~ X and by  leaving B~ undefined unless there 
exists a ~ B with aa defined (in which case B~ must  be defined equal 
to aa ). 

P~OPOSITmN 3.2. Let a = (A, S, ~, a) and 63 = (B, T, r, ~} be machines 
and let ~ be a homomorphism of (~ onto 63. Then T is a homomorphic 
image of S. I f  ~ is an isomorphism then S _~ T. 

Proof. For each s e S  and a ~ A  we define (a~)(s~) = (as)e and 
claim tha t  the mapping ~ so defined is a homomorphism of S onto T. 
Clearly ~ maps S into 3~, since each b ~ B is of the form ae  for some 
a ~ A, so tha t  b(s~) = (as)q is well defined. To prove tha t  ~ is a homo- 
morphism let s, ~S. I t  must  be shown tha t  (s's)~ (s '~)(s~) i.e. 
for every a ~ A tha t  (a¢)( (s ' s )~)  = (a~)(s '~)(s~) .  But  (a~)((s ' s )~)  = 
(as's)~ = ((as ' )~)(s~)  = ((a~)(s'q~))(s~b) = (a~) ( ( s '~ ) ( s~) ) .  Since 

is a homomorphism of a onto ~,  for any a e A and x ~ X ,  (a¢) (xz~)  = 
(a(xa))¢  = (a~)(xr) .  Thus xa¢~ = xr for all x eX.  By Proper ty  1.5, 
since z~ is a homomorphism of F into 5 . ,  then ~@ = r. Thus S~ = Fa~ = 
F r  = T. I f  ¢ is an isomorphism, then clearly ~ is also, Q.E.D. 

PROPOSITION 3.3. I f  a = (A, S, ~, a) is a machine, ~ is a C-class for 
(~ which is closed under S, ~ = (~, T, .r, ~) is the natural construct of a with 
~, and ~ the homomorphism o r s  induced by ~, then ~r = ~ and S¢ = T. 
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Proof. By definition of the natural  construct, B(xr)  = B(xz)  for 
each B e 2 and x e X. Thus  xr = (xz)¢ for x e X. Since z is a homomor- 
phism of F onto S and e a homomorphism of S into 5~, then z f  is a 
homomorphism of F into 5~ which agrees with r on X. Thus z~ = r 
by  Proper ty  1.5, and S~ = Fz~ = F.r = T, Q.E.D. 

Propositions 3.4, 3.5, and 3.6 are essentially due to Paull and Unger 
(1959). 

PI~OPOSlTION 3.4. I f  a = (A, S, ~, a} is a machine and Y, is a C-class 
for a, then there exists at least one construct of (~ with ~. I f  6~ is any such 
construct then (~ <_ 63. 

Proof. Let  r be the unique homomorphie extension, (see Prop- 
erty 1.5), of the mapping r '  : X --~ 5~ defined by  letting B(xr ' )  = B', 
where B'  is such that  B(x¢)  ~ B ~. (Such an element B ~ must exist 
for each B e ~ and x e X by the fact tha t  ~ is weakly closed under S).  
Let  T = F r  and let ~ :Z ~ Y be such that  B~ = aa for each a eB for 
which aa is defined. Since B is compatible this is always possible. I t  
is clear tha t  (E, T, r, ~) is a construct of a with ~. Now let (g = (Z, T, r, f~) 
be any such construct. I t  will be shown that  if a e B e 2, then a < B. 
Since Z covers A it will follow that  a < (g. Suppose then that  (a( fa))a is 
defined and equals y. Then a ( f ~ ) e B ( j ) )  c B ( f ~ ) e Z ,  so (B( f e ) )$  
is defined and equals y. Thus a N (g, Q.E.D. 

PnOPOSITION 3.5. Let a = (A, S, ~, a) and 6t = (B, T, .r, ~} be machines 
such that (~ ~ B and let Z = {Ab t b e B and Ab ~ 0} be the projection of 
(g onto (~ (where Ab = {a ~ A la <_ b}). Then E is a C-class for a, and 

F 1 in fact Ab(fe) C_ Ab(s~) for all f e and b e B. Moreover there exists a 
construct (g" of (~ such that (~ <_ (g' < (g and such that i f  (~ < m (g, then 
®' is machine isomorphic to 5~. 

Proof. That  :~ covers A is evident from the definition of _<. Suppose 
a g b and a' _< b, so fl~ ___ fl~ and ~,, ___ ¢~. Thus if (a( fe ) )a  and (a ' ( fa))a 
are both defined, then they are both equal to (b(fe))~ and hence equal 
to each other. Thus A~ is compatible. If a e A~, then a _< b so a( ie)  < 
b(fe) by Proposition 3.1, i.e. a(f~) e A~(~) . Thus A~(f~) ~ A~(]~) and Z 
is weakly closed m~der S, and a C-class for (~. Now let A~(xro') = A~(~,) 
for x e X and b e B and let r ~ be the unique extension of the mapping 
r0' :X  --~ 5~ to a homomorphism of F (Proper ty  1.5). Let  T' = Fr~; 
let A ~ '  be defined equal to y if b'B = y for all b' e B such that  A~ = A~,, 
and leave Avf~' undefined otherwise. Finally let (g' = (Z, T ~, r', ~'}. 
Clearly (g' is a construct of a with Z, so (~ _< (~' by Proposition 3.4. 
Now we will show that  A~ _< b for each b e B. Thus suppose (A~(f-~))fl' 
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is defined and equals y. Since Ab(f-~) = Ab¢~) then (b(f~))~ is defined 
and equals y. Thus Ab _~ b and so (~' _< ~. Now if a m < ~ then the 
mapping 9 which takes b e B to Abe ~ must be one-to-one, for otherwise 
(B would not be a minimum state machine for a. By  definition of r '  
and 8', for all b eB  and x e X ,  (b(xr))q~ = (b~)(xr ') ,  and bE is defined 
and equal to y if and only if (b~)/~' is defined and equal to y. Thus 
~ '  is machine isomorphic to (~, Q.E.D. 

If  a = (A, S, ~, a) is a machine, then Z will be called a minimum 
C-class for (~ if and only if (1) Z is a C-class for (~ and (2) there exists 
no C-class for a having cardinality less than that  of Z. 

PROPOSITION 3.6. The minimum state machines for a machine ~ are, 
up to machine isomorphism, the constructs of (~ with its minimum C-classes. 

Proof. From Proposition 3.5 it is evident tha t  any minimum state 
machine for a is isomorphic to a construct of (~ with some C-class Z for (L 
If  ~ were not a minimum C-class for a then ® would not be a minimum 
state machine for a,  by Proposition 3.4. Given any minimum C-class 

for (~ and any construct 6t of (~ with ~, then it is immediate from 
Propositions 3.5 and 3.4 that  a ~ ~ ~, Q.E.D. 

PROPOSITION 3.7. Let (~ = (A, S, ~, a) be a machine and let ~ be a 
C-class for (~ which is a partition of A.  Let 6t = (~, T, r, ~} be any con- 
struct of (~ with Z. Then there is a machine homomorphism of (~ onto 6t. 

Proof. Let  ~ :A -~ ~ be the natural  mapping, i.e. a~ = B if and only 
if a e B .  L e t a e B E Z  a n d x e X ,  soa~  = B. T h e n ( a ~ ) ( x r )  = B(x r )  
and a ( x a ) e B ( x a )  C_ B ( x r ) e Z ,  so (a (xz ) )~  = B (x r )  = (a¢) (xr ) .  
Clearly (a~)fl = aa whenever the latter is defined. This shows that  ~ is a 
machine homomorphism of (~ onto 63, Q.E.D. 

If  a = (A, S, z, a} is a machine, then C ~ A will be called a maximal 
compatible of (~ if and only if C is compatible and not a proper subset of 
any compatible (set of states) of a.  Let  ~ be the collection of all maximal 
compatibles of (~, [t the inverse closure of 4~ in the transformation semi- 
group (-4, S}, and ~ the closure operation on 2 ~ determined by ~. We 
will call ~ the closure operation of (~, and define B ___ A to be a closed set. 
of states of a if and only if B~ = B. 

Remarks. In  ease • happens to be a partition, then it is a minimum 
C-class for (~ and all constructs of a with • (and hence all minimum 
state machines for a )  are isomorphic, and there is, by  Proposition 3.7, a 
machine homomorphism of (~ onto any minimum state machine for (L 
This is the case in particular when a is complete, and then in ~ddition 
all minimum state machines are machine isomorphic. (See Moore, 
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1956.) In general • is not a partition and, though it is always a C-class, 
is not a minimum C-class. The definition of a closed set of states of a 
machine given here is equivalent to that  used in Beat ty  and Miller 
(1963) when allowance is made for the difference in the models used. 
This will be proved elsewhere. Given this equivalence, Theorem 3.8 
and Corollary 3.9 are closely related to results presented in Beat ty  and 
Miller (1963). 

T~EORE~ 3.8. Let a = (A, S, o, a) be a machine, and ~ the closure 
operation of 6. Let Z be a C-class for a and let Z' = ~ .  Then Z' is a 
C-class for a, and if  ® = (Z, T, ~', fl) is a construct of 6 with Z then there 
is a construct (~' = (Z', T', r', f~') of 6 with ~' such that ~ is a homomorphism 
of 5~ onto ~'.  

Proof. Let 4~ be the class of all maximal compatibles of 6 and 
the inverse closure of ¢. If  B e Z then B is compatible, so B _ C for 
some C E ¢ ~ ~ so B~ _ C~ = C, and B~ is compatible. Since ~ is 
weakly closed under S then Z' is also, by Corollary 2.17. Since Z covers 
A, then so does Y,'. Thus ~'  is a C-class for 6. The set R = (xz I x e XI 
generates S and the mapping p which takes x~ to xr is E-consistent by 
the fact that  (~ is a construct of a with %. We define the mapping 
p' :R --+ 3~, from p and ~ as in Lemma 2.16, namely let (B~)(sp') = 
(B(sp) )~  for B eZ and s eR. Define xro' = (xo-)p' for x eX, let ~-' be 
the unique extension of r0' to a homomorphism of F (Property 1.5), 
and let T' = Fr ' .  Clearly T and T' are the semigroups generated by 
Rp and Rp' respectively. To complete the definition of (~', we define 

Z' 2' for B e such that  B~' = aa if a e B and aa is defined, and it is 
clear that  (~' is a construct of 6 with %'. From the definition of p and 
p' we conclude for B e E  and x e X  that  (B(xr) )~  = (B(xzp) )~  = 
,B~) ( (x~)p  ) (B~)(xr ' )  so that  a is a homomorphism of ~ onto ~ ,  

Q.E.D. 
COROLLARY 3.9. I f  (~ = (A, S, z, a) and ~ = (B, T, r, ~) are machines 

such that 6 <_ ~, ~, then there exists a C-class ~' for (~ consisting entirely 
of closed sets of states of 6, and a construct 5J of 6 with ~! which is iso- 
morphic to ~. 

Proof. By Proposition 3.6 5~ is machine isomorphic to a construct of 
! 

6 with ~, where ~ is some minimum C-class for 6. If  we define ~, %, 
r ,  T ,  and as in Theorem 3.8, then Z' consists entirely of closed 
sets, (since ~ is a closure operation, (B~)~ = B~). Since Z ! = Z~ is a 
C-class for 6, then the homomorphism ~ must be one-to-one and hence 
an isomorphism of (~ onto (~'. Q.E.D. 
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LnMMA 3.10. Let a = (A, S, ~, a> be a machine and let a, b e A be 
compatible and s e S. Then as and bs are compatible. 

Proof. Let  f e F be such that  s = fz  and let g e F 1 be arbitrary. Sup- 
pose (as(g~))a and (bs(g~))a are both defined. Since a and b are com- 
patible and s(g(r) = (fg)~ then (as(ga))a = (bs(g~))a, Q.E.D. 

By the intersection closure of a class Z C 2 ~ is meant  the class 

LEMMA 3.11. Let (~ = (A, S, ~, a> be a permutation machine. Then the 
class of closed compatible sets of states of a is the intersection closure of 
the class ,~ of all maximal compatibles of a. 

Proof. By Lemma 2.11, • is closed under S, for it is weakly closed 
under S by Lemma 3.10 and normal. Also if B e ~ and s e S then sB = 
Bs -~ e ~, since elements of S are one-to-one mappings. Thus • is inverse 
closed hence equal to its inverse closure, so B ~ A is closed if and only 
if B = ['1 {B' e ~ [ B _ B'} if and only if B is an element of the inter- 
section closure of ~. Q.E.D. 

COROLLARY 3.12. Any  minimum state machine for a permutation 
machine a is isomorphic to a construct of a with a C-class Z for a con- 
sisting only of intersections of maximal compatibles of (L 

A C-class for a machine a will be called irredundant if and only if it 
has no proper subclass which is a C-class for a. 

THEOREM 3.13. I f  a = (A, S, ~, a) is a simple machine (i.e. S is a 
simple semigroup) and ~ is a C-class for a, then there exists a simple 
construct (~ = <Z, T, T, fl} of (~ with Z. Moreover, i f  Z is an irredundant 
C-class and (~ is accessible, then T is a homomorphic image of S and 6t is 
accessz791e. 

Proof. Since ~ is a weakly closed cover of the transformation semi- 
group (A, S) and R = Xz generates S, then by  Lemma 2.15 there exists 
a E-consistent function p of R into 5~ such that  Rp generates a simple 
subsemigroup of 5~. Let  xr' = (xz)p for x e X, let r be the unique 
extension of r ~ to a homomorphism of F into 3~, and let T = F t .  Then 
X - /  = Rp and X r  ~ generates T, so T is simple by  Lemma 2.15. Defining 

such that  B/~ = aa whenever a e B and aa is defined, we see tha t  
(~ = (~, T, T, ~> is a simple construct of a with ~. If  Z is an irredundant 
C-class for a and (~ is accessible, then ~ is an irredundant weakly closed 
cover of the accessible transformation semigroup (A, S}. So by Lemma 
2.15, p can be extended to a homomorphism of S onto T and (Z, T} 
is accessible, Q.E.D. 
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COROLLARY 3.14. Every simple machine has at least one simple mini- 
mum state machine. 

Proof. Let ~ be a minimum C-class for the simple machine a.  By  
Theorem 3.13 there is a simple construct 63 of (~ with ~. By Proposition 
3.6, 63 is a minimum state machine for a,  Q.E.D. 

COROLLARY 3.15. I f  (~ = (A, S, ~, a} is a simple accessible machine, 
then a has at least one simple accessible minimum state machine 
63 = (B, T, r, fl} such that T is a homomorphie image of S. 

Proof. Let Z be any minimum C-class for (~. Then Z must be irredun- 
dant, so the construct 63 of (~ with Z defined in Theorem 3.13 has the 
desired properties, Q.E.D. 

Remark. One might also ask whether the related property of 0-sim- 
plicity can always be preserved in at least one minimum state machine. 
Fig. 1 shows this to be false by exhibiting a machine with a 0=simple 
semigroup and all of its minimum state machines, none of whose semi- 
groups even has a 0. Notice that  in the figures a machine a = (A, S, ~, a} 
is given in the conventional form of a directed graph with a node for 
each element of A and an edge directed from a e A to b e A and labeled 
by x e X if and only if a(xz)  = b. l~oreover, the node a is labeled y if 
and only if aa = y and provided with a dash in case aa is undefined. 
That  not every minimum state machine for a simple accessible machine 
need even be simple is illustrated by Fig. 2. 

PROPOSITIO~ 3.16. I f  (~ = (A, S, ~, a} is a connected permutation 
machine and there is a homomorphism of • onto 63 = (B, T, ~, ~} then 
]B[ divides I d ] .  

Proof. I t  is clear that  if ~ is a homomorphism of (~ onto 63 then the 
sets Pb = {a e A [ a~ = b} are mapped onto each other by each s e S. 
Since (,4, S} is transitive, it follows that  the Pb all have the same car- 
dinality, so ]B [ divides I A I, Q.E.D. 

THEOREM 3.17. Let (~ = (A, S, cr, a} be a permutation machine, let 
63 = (B, T, -r, fl} be a minimum state machine for a, and let ~ be the pro- 

t jection of 63 onto (~. Then Z is closed under S and if  63' = (~, T% r ,  ~r} is 
the natural construct of (~ with ~, then (~ < 63' ~ 63 and 63' is a restriction 
of 63. 

Proof. Since ~ is a minimum C-class for 6, it is certainly an irrc- 
dundant weakly closed cover of (A, S} and hence normal. Thus by 
Lemma 2.11, since (A, S} is a permutation group, then Y2 is closed under S. 
By Proposition 3.5, 63 is isomorphic to a construct of a with ~, so we 
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(none of whose semigroups has a zero). 

may  write 65 = (Z, T, r, fl), and if C e Z and x e X, then C(xr ' )  = C(xv )  
C C(x r ) .  But  Z is normal, so C ( x / )  C(xr)  and hence r by 
Proper ty  1.5, showing tha t  65 and 65' are isomorphic. I f  C~ t = y then 
there exists a e C such tha t  aa = y and since 65 is a construct of a with 

then C~ = y. This proves tha t  65t is a restriction of 65, Q.E.D. 
COROLLARY 3.18. Let a = (A, S, ~, a} be a permutation machine and 

let 65 = {B, T, r, ~} be a m i n i m u m  state machine for a. Then 65 is a permuta- 
tion machine, and there is a homomorphism ~ of S onto T such that r = ~ 
and such that i f  a e A ,  b e B,  s ~ S and a < b, then as < b( s~). Moreover, 
i f  (~ is connected then 65 is also connected. 

Proof. Let  Z be the projection of 65 onto a and let 65' be the natural  
construct of a with Z (which is closed under S by Theorem 3.17). 
By  Theorem 3.17 we may  write 65' = (Z, T, T, ~'} since 65' is a restric- 
tion of 65. By Proposition 3.3 if ~ is the homomorphism of S induced by  
Z, then r = ~ and S~ = T. Now if a _ b and s = f~, then s~ = f ~  = fr ,  
and by  Proposition 3.1, a(f~)  ~ b( f r ) .  Thus as <_ b(sg) .  Since ~ is a 
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minimum C-class for a then ~ is an irredundant weakly closed cover of 
the permutation group (A, S}. Thus if (A, S) is connected, then (Z, S~} 
is connected, byLemma 2.12, Q.E.D. 

Remark. Corollary 3.18 confirms the conjecture of C. C. Elgot re- 
ferred to in Schiitzenberger (1962) that any minimum state machine 
for a permutation machine is a permutation machine. 

CO~OLLARY 3.19. I f  a = (A, S, ~r, a} is a connected permutation machine 
such that a <_ m 63 = (t?, T, r,/9}, then I B ] divides I S I .  

Proof. Since (B, T) is a connected permutation group by Corollary 
3.18, then I B I divides 1 T 1 by Proposition 2.3. Since T is a homomorphic 
image of S, then I TI divides IS I. Thus I BI divides IS [, Q.E.D. 

COROLLARY 3.20. Let a = (A, S, ~, ~) be a connected permutation 
machine and (~ <_m (B = (B, T, r, ~}. Let Ab = {a e A I a <_ b} for b e B  
and Bo = {b e B l a <_ b} for a e A.  Then the Ab all have the same car- 
dinality n, and the B~ all have the same cardinality m. Moreover, 
IBIn = ba lm.  

Proof. By Theorem 3.17 and Corollary 3.18, ~B is isomorphic to the 
natural construct of a with % = IAbl b eB} and ~ is connected. Thus 
for any C, C' e ]~ there exists s e S such that Cs = C'. Since s is a one- 
to-one mapping, then I CI = I C' I. Thus the Ab all have the same 
cardinality n. Now we wish to show that %' = {B~ l a e A} is cloud 
under T, and hence that the B~ all have the same cardinality m. Let 

be the homomorphism of S onto T given by Corollary 3.18. We 
will show that B~(s~) = B~, for a e A  and s o S .  First suppose b eB, 
so a _< b. Thus as <_ b(s~) by Corollary 3.18, so b ( s ~ ) e b b , ,  and 

x I  

xl xz 

x 2 

~3 X2 

X I 
X I X3 

a b 
FIG. 2. A simple machine (a) with a non-simple minimum state machine ~b) 
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Ba(s~) C_ B ~ .  Now let beBa~ so as ~ b. Again by  Corollary 3.18, 
a ~ b(s-l~) so b ( s - l~ )eBb .  Thus beB~(s~) ,  and Bo(s~) = B ~ .  
Now clearly the number of pairs (a, b) such that a e A, b e B and a <_ b 
is expressible either as Z~A I B~ ] = I A Ira, or as Zb~B lAb i = I BI  n, 

Q.E.D. 
We will say of a machine (~ = (A, S, z, a} that  it is trivial if and only 

if A is compatible. Clearly (~ is trivial if and only if it has a one state 
minimum state machine. 

COROLLARY 3.21. I f  a = (A, S, ~, a} is a nontrivial connected permuta- 
tion machine and (~ ~in 5~ = (B, T, r, ~}, then I A I and I BI  are not rela- 
tively prime. 

Proof. Let the sets Ab and B,  and the numbers n = 1Ab I and m = I B~ ] 
be as in Corollary 3.20, so I B I n = I A I m. Since Ab C_ A then n _< l A I- 
If  I A I and I B I are relatively prime then I A I divides n. Thus I A l = n, 
so Ab -----A. Since the sets Ab are compatible (Proposition 3 . 5 ) t h e n  a is 
trivial, Q.E.D. 

COROLLARY 3.22. A connected permutation machine (~ with a prime 
number of states is either trivial or self-minimum (i.e. (~ _<m (~). 

THEOREM 3.23. I f  (~ = (.4, S, ~, a) and ~ = (B, T, r, fl) are permuta- 
tion machines such that (~' < ~, i f  E = {Abl beB}  is the projection of 

onto a (where Ab ~- { a e A  l a ~_ b}) then Z is closed under S, and if 
(B t (E, T', r ,  ~'} is the natural construct of (~ with Z, and ~ : B --+ 
the mapping which takes b to Ab for each b e B, then ~ is a homomor- 
phism of (~ onto 5~', ~r  is a permutation machine, and a <_ ~ '  <_ 5~. 
Moreover, i f  ~ is an isomorphism then ~-~ is a machine homomorphism. 

Proof. Let b e B and if e F. Then by Proposition 3.5, Ab(if¢) ~-- Ab(/~). 
Let g e F  be such that  gr ---- (fr) -1. Then Ab((fg)~) = Ab(if¢)(g~) 
Ab~)(ga) C_ Abz~)(a~) = Ab. But  ( fg)z  e S is a one-to-one mapping 
since (.4, S} is a permutation group. Thus since A is fmite it follows that  
Ab(( fg)z)  = Ab(/~)(gz) = Ab. But  f¢ and g~ are also one-to-one map- 
pings, so lAb(ira) [ = I Ab I = t Ab(~,) I. Thus Ab(ifa) = Abet,). This 
proves that  Z is closed under S, and that  for x e X and b e B, 
(b(xr))~o = A~(~,) = Ab(xa)  = (b~o) (xa), i.e. that,~o is the homomorphism 
claimed. Now let ~b be the homomorphism of S induced by Y. By  Proposi- 
tion 3.3, S~b = T', so by  Proposition 2.2, (Z, T ~) is a permutation group, 
i.e. ~ '  is a permutation machine. Since ~ '  is a construct of ~t then (it _< 5~'. 
In  order to show that  5~ ~ _< $ and that  ~-1 is a machine homomorphism 
if ~ is an isomorphism, we will show Ab <_ b for b e B. Suppose (Ab( f~) ) f l '  
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is defined ~nd equals y so there exists a e Ab(f'~) = A b ~  such that  
am = y. Thus since a <_ b(f~) then (b(f~))fl = y, Q.E.D. 

A permutation machine (Z = (A, S, o, a} will be called simply transi- 
tive if and only if (A, S} is a simply transitive permutation group. 

COROLLARY 3.24. Let (~ = (,4, S, o-, ~> and (B = (B, T, r, ~} be permuta- 
tion machines such that a is simply transitive, 6~ is connected, and a ~_ ~. 

! 
Then there is a machine 6J = (B', T', r ,  fl') such that a <_ 6~' ~ ~ and 
there are a machine homomorphism ~ of (~ onto 6J and a homomorphism 

of 6~ onto 6~ ~ such that i f  ~ is an isomorphism then ~-1 is a machine homo- 
morphism. Thus IB ' ld iv ides  both ] A l and l B ]. 

! 
Proof. Let E be the projection of 6~ onto (~ ~nd 6~ r = (B', T', r ,  ~P) 

be the natural construct of a with Z, so a <_ (B r _< (B by Theorem 3.23. 
The homomorphism ~ is given by Theorem 3.23. Since (B is connected 

B' then (B e is connected. Let a0 e A and b0 e be such tha t  a0 <_ b0. Let  
be the homomorphism of S induced by Z. By Proposition 3.3 then 

~ = r '  and S~ = T'. For each s e S define (aos)~ = bo(s~). Since for 
every a ~ A there is a unique s e S such tha t  aos = a and since (B', T'} 
is transitive, it follows tha t  @ is a mapping of A onto B t. For every x e X 
and a e A ffwe let s e S be such that  aos = a, then (a(xo'))~ = (aos(xa))~ 
= b 0 ( ( s ( x ~ ) ) ~ )  = b 0 ( s ~ ) ( x ~ )  = b o ( s ~ ) ( x J )  = ( ( a o s ) ~ ) ( z , - ' )  = 
(a~b)(xr'), and ¢ is a homomorphism of (~ onto 6~'. To show that  ~ is a 
mackine homomorphism it clearly suffices to show that  a _ a@ for all 
a e A. But  if a = aos, then a t  = b0(s~), and since a0 <_ b0 by choice of 
b0, then aos <_ bo(s¢) by Corollary 3.18. That  I B'I  divides [ A I and 
1B ] follows from Proposition 3.16, Q.E.D. 

Remark. Elgot and Rutledge (1962) define a machine to be /n/net- 
free if its input alphabet X consists of a single letter. The semigroup of 
such a machine is cyclic, hence commutative. If  an input-free machine is 
strongly connected, it  is a simply transitive permutation machine. Thus 
Corollary 3.24, though not a direct generalization of the "Interpolation 
Theorem" of Elgot and Ruthledge (1962) for input-free machines, 
clearly generalizes an essential portion of it. 

C o ~ o L ~ a v  3.25. Let a = (A, S, z a) be a simply transitive permuta- 
tion machine and a ~_,~ 5~ = (JR, T, v, ~). Then there is a machine homo- 
morphism of (~ onto ~5 and I B] divides t A ]. 

Proof. By Corollary 3.24 there exists a machine (B ~ such tha~ 
(~ "< (B ~ ~_ (B and there is a machine homomorphism ~b of a onto (B' 
and a homomorphism ~ of (B onto (B'. Since (~ <:~ (B then ~ must be an 
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isomorphism. T h u s ,  = ¢~-1 is a machine homomorphism of 0~ onto 63, 
by Corollary 3.24. That [B1 divides [~4[ follows from Proposition 
3.16, Q.E.D. 

Remark. The divisibility property of Corollary 3.25. does not, in 
general, extend to connected permutation machines which are not 
simply transitive, as is evidenced by the machines in Fig. 3. 

COROLLARY 3.26. Let (~ ~ (A, S, (r, a) be a strongly connected commuta- 
tive machine and a < m 63 ~ (B, T, r, 8). Then there is a machine homo- 
morphism of a onto 63 and ] B [ divides [ A [. 

Proof. By Proposition 2.6, (A, S) is simply transitive, so the results 
follow from Corollary 3.25, Q.E.D. 

Remark. Corollary 3.25 and Corollary 3.26 are related to the Corollary 
of Elgot and Rutledge (1962) on input-free machines. The uniqueness 
of the minimum state machine (proved there for input-free machines), 
however, does not hold even in the strongly connected commutative 
case for non-input-free machines. (See Fig. 4.) 

THEOREM 3.27. Let a = (.4, S, ~, a) and 63 = (B, T, r, 8) be permuta- 
tion machines such that a <_ 63. Then there exist permutation machines 
a '  (A', S', a ,  a') and = (B', T ,  r ,  8') such that (1) (2 _< a '  __ 
~ '  _~ 63; (2) there is a machine homomorphism of (~ onto (~' and a homo- 
morphism of 6~ onto 6~'; and (3) S' ~-- T'. 

Proof. Let :~ be the projection of 6~ onto a, so Z is closed by Theorem 
3.23. Let 63' be the natural construct of a with :~, so again by Theorem 

, 631 3.23 there is a homomorphism of (~ onto 63, is a permutation 
machine and a _< 6~' _< 63. Now let II be the coarsest partition of A 
refining Z. By Theorem 2.18, H is closed under S. Thus II is a C.class 

Xl 

X3 , X3 

X2 
X2 

X 2 ( ~ .  

~ X 2 X I ~ X3 I 

Xl 

a b 

FIG. 3. A connected permutation machine (a) with a minimum state machine (b) 
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t l l  

X2(~_- Xl - ~ ) X  2 

X 

X2 

X 

a bl ba 
:FIG. 4. A commutative connected permutation machir~e (a) with non-isomorphic 

minimum state machines (b~) and (be). 

for (~. Let (~' = (II, S', J ,  a'} be the natural construct of a with II. 
Let ¢ and ~ be the homomorphisms of S induced by ~ and II respectively. 
By Proposition 3.3 then S' = S~ and T' = S~. By Theorem 2.18, 
S¢ ~- S~b so S' _~ T'. Clearly (~ _< (~'. For every C e II there exists D e Z 
with C ___ D. We will now show that  C G D implies C _< D and con- 
clude that  a '  _< 63'. Suppose f e F 1 and (C ( f e ' ) ) a '  is defined. Then 
there exists a e C(fe ' )  such that  aa = (C( f~ ' ) )a ' .  By Proposition 3.3, 

= 0¢ and ~ .  Thus C(f~')  C(f~np) = C(fe) and D(fe ' )  
D(fe~)  = D(f~) .  Since C G D then C(fe)  ~ D( f~) .  Thus a ~ C(f~') 
D ( f f ' ) ,  so (D(fe ')) f l '  = a~ = (C(fe ' ) )a ' .  This concludes the proof that  
C < D, and hence that  a '  _< 63t. That  there is a machine homomor- 
phism of (~ onto (~t follows from Proposition 8.7, Q E D. 

COROLLARY 3.28. Let (~ = (A,  S, (r, c~) be a permutation machine and 
63 = (B, T, r, fl) a m i n i m u m  state machine for (L Then there exists a 

] 

machine (~! = (A t, S t, ~ , a') such that a <_ (~' <_ 63, S t .~_"~ T, and there is 
a machine homomorphism of (~ onto (~. 

Proof. By Corollary 3.18, 63 is a permutation machine, so we may 
choose (~' and 63' as ha Theorem 3.27. Then the homomorphism of 53 
onto 63t given by the theorem must be an isomorphism, since otherwise 
63 would not be a minimum state machine for (h Thus S ! ~'~ T' = ~ T b y  
Proposition 3.2 and Theorem 3.27. The latter also gives the machine 
homomorphism of (~ onto et', Q.E.D. 

COROLLARY 3.29. I f  (~ = (A, S, (r, a )  is a connected permutation 
machine whose m in imum state machines have more than ] A I/2 states, 
and i f  (~ < ~  ® = (B, T, r, ~), then S ~- T. 

Proof. Let a ! be the machine given by Corollary 3.28, so (~ < (~ < 63, 
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k•f - -  T and there is a homomorphism ~ of a onto (~'. By Proposition 
3.16, since (~ is connected, then ]A' I divides I A ]. If ]A' I < [A J, 
then IA'I  <_ I A I/2, which is impossible since (~ < a '  implies I A ' I  > 
[A ]/2. Thus [A'  ] = I A I, so ~ is an isomorphism. By Proposition 
3.2 then S - -  S' ~ . . . . . .  "~ so S = T, Q.E.D. 

Remark. In the example of Fig. 4, it will be noticed that  although the 
minimum state machines are not isomorphic, at least their Semigroups 
~re isomorphic. In order not to lead the rea~ler into the mistaken con- 
jecture that  this is ~ general property of permutation machines, we 
close with the following: 

THEOREM 3.30. Let B be a finite set and let <B, $1}, . . .  , (B, S,) be 
permutation groups. Then there exist sets X and Y and a permutation 
machine (~ = <A, S, ~, a) with input alphabet X,  output alphabet Y, and 
minimum state machines (~1, "'" , (~ such that for each j(1 < j _~ n) 
the permutation group of aj is isomorphic to <B, S~). 

Proof. Let  A = B ~, i.e. the set of ~11 n-tuples of elements of B, ~nd 
let Y = B. Let (bl, . . . ,  b~)a be defined and equal to b if ~nd only 

X3 

X ,. 

f 

X 3 

~ = X2 

(I 
~_ X2 
/ -  

(i 
-~ X 2 
2 -  

1 I 

~ = X3 

X , x l  

k . ~ =  X 3  

_ f  
X2 

• x2 ,,~x3 
{I 

o b2 

X I = ~ = = X I 

X!  

bl 
FIG. 5, A permutation machine (a) with minimum state machines (bi) and (b~) 

having non-isomorphic groups. 
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if bj = b for 1 _< j _< n. Let  Rj be a set of generators of S~ for 1 ~ j _< n. 
Let  f j  be a one-to-one mapping of a set X~ onto Rj for 1 _< j ~ n, where 
the Xj  are chosen to be mutual ly  disjoint, and let X = [J~'%1 Xj .  Define 

! 
a : X  -*  ~ as follows: if x e Xj" then let (b l ,  . . . ,  b ~ ) ( x J )  = 
(bl', • b~') where b '  • . ,  , ,~ = b ~ i f i  ~ j a n d b /  = b~(xf~). L e t  z be the  

unique extension of z '  to a homomorphism of F and S = Fz. I t  is readily 
seen tha t  for each j (1  _< j <_ n) ,  ~j = {{(bl, " ' , b ~ ) e A l b j  = b}] 
b e B} is a minimum C-class for {t, and if a j  is the natural  construct of 
a with ~ j ,  then (B, S~) is isomorphic to the permutat ion group of 
a s ,  Q.E.D. 

An example of the construction of Theorem 3.30 for n -- 2 is given 
in Fig. 5. 
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