
Appl. Math. Lett. Vol. 5, No. 5, pp. 3940, 1992 
Printed in Great Britain. All rights reserved 

0893-9659192 $5.00 + 0.00 
Copyright@ 1992 Pergamon Press Ltd 

AN APPROACH TO STEADY-STATE SOLUTIONS 

G. ADOMIAN AND R. RACH 

General Analytics, Inc.* 

(Received March 1992) 

Abstract-The steady-state solution of the nonlinear heat equation is calculated using the decom- 
position method. 

DISCUSSION 

We consider the nonlinear heat equation 

for 0 5 2 5 e, t > 0 and u(O,t) = To, u(l, 1) .~ 
= or, u(z,O) = h(z), and f(u) an analytic 

function. (We assume here that h(z) is a differentiable function but can allow it to be piecewise- 
differentiable using the technique of [l].) 

Let’s assume u(x, 1) = w(x,t)+ ( ) v 2 , w h ere tlimm ~(2, t) = v(z) and tlimm w(z, t) = 0, considering 

w to be the transient solution and v to be the<teady-state solution. 
To calculate the steady-state solution, we consider 

piI a2E=$+/3f(u) { > 
2 d2v d2v 

cr ,,,=O+Pf(v), orp=O+kf(U), 
P 

where k = -. 
cY2 

The /lzu(O,t) = v(0) = T 0 and tllmmu(e, t) = v(l) = TI. Thus, the steady-state solution is i 

d”v 
- = kf(v), 
dx2 

v(0) = To, v(l) = TI. 

Write L v = k f(v) where L = d2/dx ‘. Applying L-’ to both sides, we get 

2, = co + cl x + I: k f(v), 

where I,” is the twofold pure integration with respect to x. Using decomposition, let 

00 

v= c v,, f(v) = 2 Am, 
m=O m=O 

where the A,,, (~0,. . . , urn) are the Adomian polynomials. Using double decomposition, we get 

TI - To 
vo = To + ----__ 

e ’ 
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v1 = 1,kAo, 

v2 = @Al, 

03 

v= c %a, 
n=O 

n-1 cm Co 

then 

dnbl = c vi; co = c c$*) and cr = c c(lm) , 
i=O m=O m=O 

M M m m 

c 21, = c cI;“)+zC c’;“‘+k1,2 c A,, 
m=O m=O m=O m=O 

210 = cp+ zcp, 
Vl = cp + zc$‘) + L12Ao, 0 

V +~c~“)+~I,A~_~. 

In order to compute the matching coefficients of the boundary conditions, we develop the ap- 
proximate boundary conditions by using our approximations to the solution 

An+1 [VI = 2 vn = 4m + bn. 

n=O 

Since v(0) = TO and v(a) = T 1, we can write the approximate boundary conditions 

&+1(O) = TO and v&+1(4 = Z. 

Since &+I =q5,,,+vm,we have 

W,(O) = To and IQ(~) = TI, for m = 0, and 

v*(O) = 0 and vm(P) = 0 for m > 0. 

Consequently, writing TO E Tie) for convenience, 

co - co) - T,(O) and cy’ = i (5”:‘) - T$“) , ~~(0) = 0 and vm(L) = 0; 

c~~~+O=-~I,~A ,,+I IrcO E Tim), by definition, 

$I” + L c$“’ = -k: I, A,,,_1 IrzL E TjrnJ, by definition, 

or 

(: ;) ($:> = ($); 
so cbm;“’ and cim) are determined and we can write ve, VI . . . ; and finally &,[v] = Cyiol Vj. 

REMARKS. This work is not limited to the heat equation; it is generic. The objective of the 
decomposition method is the physically correct solution of nonlinear equations. Closed form 
solutions are generally obtained at a price. The decomposition series converges quite rapidly, 
generally in a few terms, and no linearization is necessary. The definition of the L and L-’ 
operators makes integration simpler. The cy and the p used in the above example are not limited 
to constants and f can be any function for which the A,, polynomials can be found. 
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