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Abstract—The steady-state solution of the nonlinear heat equation is calculated using the decom-
position method.
DISCUSSION
We consider the nonlinear heat equation
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for 0 < z < 4, t > 0 and u(0,t) = To, u((,t) = Ty, u(z,0) = h(z), and f(u) an analytic
function. (We assume here that h(z) is a differentiable function but can allow it to be piecewise-
differentiable using the technique of [1].)

Let’s assume u(z,t) = w(z,t)+v(z), where tlim u(z,t) = v(z) and tlim w(z,t) = 0, considering
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w to be the transient solution and v to be the steady-state solution.
To calculate the steady-state solution, we consider
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The tlirglou(O,t) =v(0) = Tp and tlim u(€,t) = v(€) = T1. Thus, the steady-state solution is

g
=04k f(v), wherek:E.
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Write Lv = k f(v) where L = d?/dz?. Applying L~! to both sides, we get

v=co+crz+ I2k f(v),
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where the Ay, (vo,...,vm) are the Adomian polynomials. Using double decomposition, we get
T, — T,
vg = 15+ ! 7 o x,
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vy = I2k Ao,
Vg = Ikal,
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then
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vy = cgo) + 1‘6(10),

vy = cgl) + :cc(ll) + kI;" Ag,

Uy = cf)m) + a:c(lm) + klﬁ Anp_y.

In order to compute the matching coefficients of the boundary conditions, we develop the ap-
proximate boundary conditions by using our approximations to the solution

¢m+1[v] = Z VUn = ¢m + v
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Since v(0) = Ty and v(€) = T}, we can write the approximate boundary conditions
¢m+1(0) =To and ¢pm41(¢) = Th.
Since ¢mi1 = $m + Um, we have
vo(0) =To and vo(£) =Ty, form =0, and
vm(0) =0 and vy, (£) =0 for m > 0.

Consequently, writing Tp = Téo) for convenience,
O =T and ¥ = % (Tl(o) - Téo)) , vm(0) =0 and v, (€) = 0;
™ +0=—kI2 Am_i|,_, = T{™, by definition,
™ +ee™ =~k 12 Am_y|,_, = T{™, by definition,
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so cgm) and c(lm) are determined and we can write vg, vy ...; and finally ¢,[v] = 3 ;- vi.
REMARKS. This work is not limited to the heat equation; it is generic. The objective of the
decomposition method is the physically correct solution of nonlinear equations. Closed form
solutions are generally obtained at a price. The decomposition series converges quite rapidly,
generally in a few terms, and no linearization is necessary. The definition of the L and L~?
operators makes integration simpler. The « and the § used in the above example are not limited
to constants and f can be any function for which the A,, polynomials can be found.
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