

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 309 (2009) 1714-1717

www.elsevier.com/locate/disc

Note

On convex decompositions of a planar point set

Kiyoshi Hosono

Department of Mathematics, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan

Received 30 November 2006; received in revised form 7 February 2008; accepted 8 February 2008 Available online 17 March 2008

Abstract

Let *P* be a planar point set in general position. Neumann-Lara et al. showed that there is a convex decomposition of *P* with at most $\frac{10n-18}{7}$ elements. In this paper, we improve this upper bound to $\lceil \frac{7}{5}(n-3) \rceil + 1$. © 2008 Elsevier B.V. All rights reserved.

Keywords: Convex hull of a point set; Decomposition problem; Combinatorial convexity

1. Introduction

Let *P* be a set of points in general position in the plane. A family *F* of convex polygons with vertices in *P* and with pairwise disjoint interiors is called a *convex decomposition* of *P* if their union is the convex hull ch(P) of *P* and no point of *P* lies in the interior of any polygon in *F*. We call a convex polygon in a convex decomposition a *cell*. Let H(P) be the minimum number of cells in a convex decomposition of *P*, and let h(n) represent the maximum value of H(P) over all sets *P* with *n* points.

In 1998, Urrutia [5] conjectured that $h(n) \le n + 1$ for any $n \ge 3$, and Neumann-Lara et al. proved that $h(n) \le \frac{10n-18}{7}$ for any $n \ge 3$ in [4]. As for the lower bound, Aichholzer and Krasser [2] showed that $h(n) \ge n + 2$ for any $n \ge 13$. Later, García-López and Nicolás proved that $h(n) > \frac{12}{11}n - 2$ for any $n \ge 4$ in [3]. In addition, Aichholzer et al. [1] discuss a subdivision of the plane that consists of both convex polygons and pseudo-triangles with this problem.

In this paper, we improve on the upper bound of h(n).

Theorem. $h(n) \leq \left\lceil \frac{7}{5}(n-3) \right\rceil + 1$ for any $n \geq 3$.

We first introduce the definitions and notation required for the remainder of the paper. Let Q be a subset of a given point set P. Denote the vertices on the boundary of ch(Q) by V(Q). Let R be a region in the plane. The region R is said to be *empty* if R contains no elements of P in the interior. Let S(R) be the elements of P in R, i.e., $S(R) = P \cap R$. We denote a cell in a convex decomposition of Q with an edge \overline{uv} lying in the boundary of ch(Q) by $C(\overline{uv}, Q)$.

Let *a*, *b* and *c* be any three non-collinear points in the plane. Denote by $\gamma(a; b, c)$ the *convex cone* with apex *a*, determined by *a*, *b* and *c*. If $\gamma(a; b, c)$ is not empty, we define an *attack point* $\alpha(a; b, c)$ from the half-line *ab* to *ac* as the element of *P* in $\gamma(a; b, c)$ such that $\gamma(a; b, \alpha(a; b, c))$ is empty. For $\delta = b$ or *c* of $\gamma(a; b, c)$, let δ' be a

E-mail address: hosono@scc.u-tokai.ac.jp

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.02.008

Fig. 1. (a) Convex cones $\gamma(a; b, c)$ and $\gamma(a; b', c)$. (b) Attack points $\alpha(a; b, c)$ and $\alpha(a; c, b')$.

Fig. 2. $T_1 \cup C_1$ or $T_3 \cup C_2$ is a cell in a convex decomposition of *P*.

point collinear with a and δ so that a lies on the segment $\delta\delta'$. Then we obtain a new convex cone or attack point of $\gamma(a; b', c)$ or $\alpha(a; c, b')$. See Fig. 1.

2. Proof

Let *P* be a planar *n* point set in general position. We construct a convex decomposition of *P* by recursively constructing convex decompositions of subsets of *P*. Namely, we show that $h(n) \le \lceil \frac{7}{5}(n-3) \rceil + 1$ for any $n \ge 3$ by induction on *n*. Since $h(3) = 1 \le \lceil \frac{7}{5}(3-3) \rceil + 1$, we suppose that $n \ge 4$ and use the induction hypothesis that $h(n') \le \lceil \frac{7}{5}(n'-3) \rceil + 1$ for any $n' \le n-1$.

2.1. $|V(P)| \ge 4$

Let $V(P) = \{v_1, v_2, \dots, v_L\}$ in counter-clockwise order. Consider $K_1 = ch(\{v_1, v_2, v_3\}) = \Delta v_1 v_2 v_3$ and $K_2 = (ch(P) \setminus K_1) \cup \overline{v_1 v_3}$ where $K_1 \cap K_2 = \overline{v_1 v_3}$. By the induction hypothesis, for i = 1, 2, there is a convex decomposition of $S(K_i)$ with at most $\lceil \frac{7}{5}(n_i - 3) \rceil + 1$ cells where $n_i = |S(K_i)|$. For the cell of $C_i = C(\overline{v_1 v_3}, S(K_i))$ for i = 1, 2, we claim that $C_1 \cup C_2$ is a cell in a convex decomposition of P. Therefore, $h(n) \leq (\lceil \frac{7}{5}(n_1 - 3) \rceil + 1) + (\lceil \frac{7}{5}(n_2 - 3) \rceil + 1) - 1 \leq \lceil \frac{7}{5}(n_1 + n_2 - 5) \rceil + 1 = \lceil \frac{7}{5}(n - 3) \rceil + 1$ with $n = n_1 + n_2 - 2$.

2.2.
$$|V(P)| = 3$$

Let $V(P) = \{v_1, v_2, v_3\}$ in counter-clockwise order. We first consider $P' = P \setminus \{v_1\}$ and suppose that |V(P')| = 3where $V(P') = \{p, v_2, v_3\}$. Let $T_1 = \triangle pv_1v_2$, $T_2 = \triangle pv_2v_3$ and $T_3 = \triangle pv_3v_1$ where $ch(P) = T_1 \cup T_2 \cup T_3$ and T_1 and T_3 are empty.

If T_2 is also empty, H(P) = 3 and $h(4) \le \lceil \frac{7}{5}(4-3) \rceil + 1 = 3$ holds. If T_2 is not empty, we have $C_1 = C(\overline{pv_2}, S(T_2))$ and $C_2 = C(\overline{pv_3}, S(T_2))$ with $C_1 \ne C_2$. Then $T_1 \cup C_1$ or $T_3 \cup C_2$ is a cell in a convex decomposition of P since either C_1 is in $\gamma(v_1; v_2, p)$ or C_2 is in $\gamma(v_1; v_3, p)$. See Fig. 2. Since there is a convex decomposition of P' with at most $\lceil \frac{7}{5}(n'-3) \rceil + 1$ cells for $n' = |P'|, h(n) \le (\lceil \frac{7}{5}(n'-3) \rceil + 1) + 2 - 1 \le \lceil \frac{7}{5}(n'-2) \rceil + 1 = \lceil \frac{7}{5}(n-3) \rceil + 1$ with n = n' + 1.

We can now make the following assumption.

Fig. 3. A cell C_i in a convex decomposition of $S(T_i)$ for i = 1, 2.

Fig. 4. The shaded portion is empty.

Assumption 1. For any *v* in *V*(*P*), $ch(P \setminus \{v\})$ is not a triangle.

For $p_1 = \alpha(v_3; v_2, v_1)$, we suppose that $\gamma(p_1; v'_2, v_3)$ is not empty and consider $p_2 = \alpha(p_1; v_3, v'_2)$, where $\{v_2, v_3, p_1, p_2\}$ is an empty convex quadrilateral. Let $T_1 = \Delta v_1 v_2 p_1$, $T_2 = \Delta v_1 p_2 v_3$ and $T_3 = \Delta v_1 p_1 p_2$.

By Assumption 1, neither T_1 nor T_2 is empty. Let $C_i = C(\overline{v_1 p_i}, S(T_i))$ for i = 1, 2 where C_1 is in $\gamma(p_1; v_1, p'_2)$ and C_2 is in $\gamma(p_2; v_1, p'_1)$ as shown in Fig. 3. If T_3 is empty or not, $C_1 \cup T_3 \cup C_2$ is a cell in a convex decomposition of P or both $C_1 \cup C(\overline{v_1 p_1}, S(T_3))$ and $C_2 \cup C(\overline{v_1 p_2}, S(T_3))$ are cells in a convex decomposition of P, respectively. Thus, $h(n) \leq (\lceil \frac{7}{5}(n_1-3)\rceil+1)+(\lceil \frac{7}{5}(n_2-3)\rceil+1)+(\lceil \frac{7}{5}(n_3-3)\rceil+1)+1-2 \leq \lceil \frac{7}{5}(n_1+n_2+n_3-7)\rceil+1 = \lceil \frac{7}{5}(n-3)\rceil+1$ where $n_i = |S(T_i)|$ for i = 1, 2, 3 and $n = n_1 + n_2 + n_3 - 4$.

For the remaining of the proof we can make the following stronger assumption.

Assumption 2. For any edge $\overline{v_i v_{i+1}}$ on the boundary of ch(P), there exists an element w_i of P such that $\gamma(v_i; v_{i+1}, w_i) \cup \gamma(v_{i+1}; v_i, w_i)$ is empty for i = 1, 2, 3, where $v_4 = v_1$.

See Fig. 4 where the shaded portion is empty. We remark that $w_i \neq w_j$ for $i \neq j$ by Assumption 1. Let $K_1 = \Delta v_1 w_1 w_3$, $K_2 = \Delta v_2 w_2 w_1$, $K_3 = \Delta v_3 w_3 w_2$ and $K' = \Delta w_1 w_2 w_3$.

We continue under Assumption 2.

Case 1: K_i is empty for every i = 1, 2, 3.

If K' is empty, i.e., n = 6, then H(P) = 6 and $h(6) \le \lceil \frac{7}{5}(6-3) \rceil + 1 = 6$ holds. Let $C_i = C(\overline{w_{i-1}w_i}, S(K'))$ for i = 1, 2, 3 where $w_0 = w_3$. If K' is not empty, since $C_i \ne C_j$ for $i \ne j$ and $K_i \cup C_i$ is a cell in a convex decomposition of P for each $i, h(n) \le (\lceil \frac{7}{5}(n'-3) \rceil + 1) + 6 - 3 \le \lceil \frac{7}{5}n' \rceil + 1 = \lceil \frac{7}{5}(n-3) \rceil + 1$ with n = n' + 3 for n' = |S(K')|.

Case 2: There exists a non-empty K_i , say K_1 .

Let $V(S(K_1) \setminus \{v_1\}) = \{w_1, u_1, u_2, \dots, u_k, w_3\}$ in clockwise order.

(A) $\triangle v_2 u_1 w_1$ is not empty.

Consider $p = \alpha(v_2; w_1, u_1)$ and let $T_1 = \Delta v_1 v_2 p$, $T_2 = \Delta v_2 v_3 p$ and $T_3 = \Delta v_3 v_1 p$, where $|S(T_1)| = 4$. There is a convex decomposition of $S(T_i)$ with at most $\lceil \frac{7}{5}(n_i - 3) \rceil + 1$ cells for $n_i = |S(T_i)|$, i = 2, 3.

Fig. 5.

If p is in $\gamma(v_3; w_2, w_1)$ as shown in Fig. 5a, we consider $C_2 = C(\overline{v_3p}, S(T_2))$, $C_3 = C(\overline{v_3p}, S(T_3))$ and $C'_3 = C(\overline{v_1p}, S(T_3))$. Since $\{v_1, v_3, w_1, p\}$ is in convex position, $\Delta v_1 w_1 p \cup C'_3$ is a cell in a convex decomposition of P. And C_3 is contained in $\gamma(p; v'_2, v_3)$ since, otherwise, $C_3 = T_3$ and C_3 would not be empty, that is, $C_2 \cup C_3$ is also a cell in a convex decomposition of P. Thus, $h(n) \leq (\lceil \frac{7}{5}(n_2 - 3) \rceil + 1) + (\lceil \frac{7}{5}(n_3 - 3) \rceil + 1) + 3 - 2 \leq \lceil \frac{7}{5}(n_2 + n_3 - 4) \rceil + 1 = \lceil \frac{7}{5}(n - 3) \rceil + 1$ with $n = n_2 + n_3 - 1$ (*).

If p is in $\gamma(v_3; w_1, u_1)$ as shown in Fig. 5b, we let $C_2 = C(\overline{v_3p}, S(T_2))$ and $C'_2 = C(\overline{v_2p}, S(T_2))$ where $C_2 \neq C'_2$ by the existence of w_2 . Since both $\Delta v_2 p w_1 \cup C'_2$ and $C_2 \cup C(\overline{v_3p}, S(T_3))$ are cells in a convex decomposition of P for the same reason, we obtain the same inequalities as (*).

(B) $\triangle v_2 u_1 w_1$ is empty.

Let $T_1 = \Delta v_1 v_2 u_1$, $T_2 = \Delta v_2 v_3 u_1$ and $T_3 = \Delta v_3 v_1 u_1$ with $|S(T_1)| = 4$. See Fig. 5c. Since $C(\overline{v_3 u_1}, S(T_3))$ is in $\gamma(u_1; v'_2, v_3)$ and both $\Delta v_2 u_1 w_1 \cup C(\overline{v_2 u_1}, S(T_2))$ and $C(\overline{v_3 u_1}, S(T_2)) \cup C(\overline{v_3 u_1}, S(T_3))$ are cells in a convex decomposition of $P, h(n) \le (\lceil \frac{7}{5}(n_2 - 3) \rceil + 1) + (\lceil \frac{7}{5}(n_3 - 3) \rceil + 1) + 3 - 2 \le \lceil \frac{7}{5}(n - 3) \rceil + 1$ with $n = n_2 + n_3 - 1$ for $n_i = |S(T_i)|, i = 2, 3$.

3. Final remark

There is still a substantial gap between the upper and lower bounds for h(n). We believe that a more complicated approach may be able to prove that $h(n) \le \lfloor \frac{4}{3}(n-2) \rfloor$ for any $n \ge 3$.

Acknowledgements

The author is grateful to the referees for their suggestions for improving the exposition of this paper.

References

- O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudotriangles, Graphs and Combinatorics 23 (5) (2007) 481–507.
- [2] O. Aichholzer, H. Krasser, The point set order type data base: A collection of applications and results, in: Proc. 13th Canadian Conference on Computational Geometry, University of Waterloo, Waterloo, 2001, pp. 17–20.
- [3] J. García-López, M. Nicolás, Planar point sets with large minimum convex partitions, in: Abstracts 22nd European Workshop on Computational Geometry, Delphi, 2006, pp. 51–54.
- [4] V. Neumann-Lara, E. Rivera-Campo, J. Urrutia, A note on convex decompositions of point sets in the plane, Graphs and Combinatorics 20 (2) (2004) 223–231.
- [5] J. Urrutia, Open problem session, in: 10th Canadian Conference on Computational Geometry, McGill University, Montreal, 1998.