Note

On convex decompositions of a planar point set

Kiyoshi Hosono

Department of Mathematics, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan

Received 30 November 2006; received in revised form 7 February 2008; accepted 8 February 2008
Available online 17 March 2008

Abstract

Let P be a planar point set in general position. Neumann-Lara et al. showed that there is a convex decomposition of P with at most $\frac{10 n-18}{7}$ elements. In this paper, we improve this upper bound to $\left\lceil\frac{7}{5}(n-3)\right\rceil+1$. (c) 2008 Elsevier B.V. All rights reserved.

Keywords: Convex hull of a point set; Decomposition problem; Combinatorial convexity

1. Introduction

Let P be a set of points in general position in the plane. A family F of convex polygons with vertices in P and with pairwise disjoint interiors is called a convex decomposition of P if their union is the convex hull $\operatorname{ch}(P)$ of P and no point of P lies in the interior of any polygon in F. We call a convex polygon in a convex decomposition a cell. Let $H(P)$ be the minimum number of cells in a convex decomposition of P, and let $h(n)$ represent the maximum value of $H(P)$ over all sets P with n points.

In 1998, Urrutia [5] conjectured that $h(n) \leq n+1$ for any $n \geq 3$, and Neumann-Lara et al. proved that $h(n) \leq \frac{10 n-18}{7}$ for any $n \geq 3$ in [4]. As for the lower bound, Aichholzer and Krasser [2] showed that $h(n) \geq n+2$ for any $n \geq 13$. Later, García-López and Nicolás proved that $h(n)>\frac{12}{11} n-2$ for any $n \geq 4$ in [3]. In addition, Aichholzer et al. [1] discuss a subdivision of the plane that consists of both convex polygons and pseudo-triangles with this problem.

In this paper, we improve on the upper bound of $h(n)$.
Theorem. $h(n) \leq\left\lceil\frac{7}{5}(n-3)\right\rceil+1$ for any $n \geq 3$.
We first introduce the definitions and notation required for the remainder of the paper. Let Q be a subset of a given point set P. Denote the vertices on the boundary of $\operatorname{ch}(Q)$ by $V(Q)$. Let R be a region in the plane. The region R is said to be empty if R contains no elements of P in the interior. Let $S(R)$ be the elements of P in R, i.e., $S(R)=P \cap R$. We denote a cell in a convex decomposition of Q with an edge $\overline{u v}$ lying in the boundary of $\operatorname{ch}(Q)$ by $C(\overline{u v}, Q)$.

Let a, b and c be any three non-collinear points in the plane. Denote by $\gamma(a ; b, c)$ the convex cone with apex a, determined by a, b and c. If $\gamma(a ; b, c)$ is not empty, we define an attack point $\alpha(a ; b, c)$ from the half-line $a b$ to $a c$ as the element of P in $\gamma(a ; b, c)$ such that $\gamma(a ; b, \alpha(a ; b, c))$ is empty. For $\delta=b$ or c of $\gamma(a ; b, c)$, let δ^{\prime} be a

[^0]

Fig. 1. (a) Convex cones $\gamma(a ; b, c)$ and $\gamma\left(a ; b^{\prime}, c\right)$. (b) Attack points $\alpha(a ; b, c)$ and $\alpha\left(a ; c, b^{\prime}\right)$.

Fig. 2. $T_{1} \cup C_{1}$ or $T_{3} \cup C_{2}$ is a cell in a convex decomposition of P.
point collinear with a and δ so that a lies on the segment $\delta \delta^{\prime}$. Then we obtain a new convex cone or attack point of $\gamma\left(a ; b^{\prime}, c\right)$ or $\alpha\left(a ; c, b^{\prime}\right)$. See Fig. 1 .

2. Proof

Let P be a planar n point set in general position. We construct a convex decomposition of P by recursively constructing convex decompositions of subsets of P. Namely, we show that $h(n) \leq\left\lceil\frac{7}{5}(n-3)\right\rceil+1$ for any $n \geq 3$ by induction on n. Since $h(3)=1 \leq\left\lceil\frac{7}{5}(3-3)\right\rceil+1$, we suppose that $n \geq 4$ and use the induction hypothesis that $h\left(n^{\prime}\right) \leq\left\lceil\frac{7}{5}\left(n^{\prime}-3\right)\right\rceil+1$ for any $n^{\prime} \leq n-1$.
2.1. $|V(P)| \geq 4$

Let $V(P)=\left\{v_{1}, v_{2}, \ldots, v_{L}\right\}$ in counter-clockwise order. Consider $K_{1}=\operatorname{ch}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=\Delta v_{1} v_{2} v_{3}$ and $K_{2}=\left(\operatorname{ch}(P) \backslash K_{1}\right) \cup \overline{v_{1} v_{3}}$ where $K_{1} \cap K_{2}=\overline{v_{1} v_{3}}$. By the induction hypothesis, for $i=1,2$, there is a convex decomposition of $S\left(K_{i}\right)$ with at most $\left\lceil\frac{7}{5}\left(n_{i}-3\right)\right\rceil+1$ cells where $n_{i}=\left|S\left(K_{i}\right)\right|$. For the cell of $C_{i}=C\left(\overline{v_{1} v_{3}}, S\left(K_{i}\right)\right)$ for $i=1,2$, we claim that $C_{1} \cup C_{2}$ is a cell in a convex decomposition of P. Therefore, $h(n) \leq\left(\left\lceil\frac{7}{5}\left(n_{1}-3\right)\right\rceil+1\right)+\left(\left\lceil\frac{7}{5}\left(n_{2}-3\right)\right\rceil+1\right)-1 \leq\left\lceil\frac{7}{5}\left(n_{1}+n_{2}-5\right)\right\rceil+1=\left\lceil\frac{7}{5}(n-3)\right\rceil+1$ with $n=n_{1}+n_{2}-2$.
2.2. $|V(P)|=3$

Let $V(P)=\left\{v_{1}, v_{2}, v_{3}\right\}$ in counter-clockwise order. We first consider $P^{\prime}=P \backslash\left\{v_{1}\right\}$ and suppose that $\left|V\left(P^{\prime}\right)\right|=3$ where $V\left(P^{\prime}\right)=\left\{p, v_{2}, v_{3}\right\}$. Let $T_{1}=\Delta p v_{1} v_{2}, T_{2}=\Delta p v_{2} v_{3}$ and $T_{3}=\Delta p v_{3} v_{1}$ where $\operatorname{ch}(P)=T_{1} \cup T_{2} \cup T_{3}$ and T_{1} and T_{3} are empty.

If T_{2} is also empty, $H(P)=3$ and $h(4) \leq\left\lceil\frac{7}{5}(4-3)\right\rceil+1=3$ holds. If T_{2} is not empty, we have $C_{1}=$ $C\left(\overline{p v_{2}}, S\left(T_{2}\right)\right)$ and $C_{2}=C\left(\overline{p v_{3}}, S\left(T_{2}\right)\right)$ with $C_{1} \neq C_{2}$. Then $T_{1} \cup C_{1}$ or $T_{3} \cup C_{2}$ is a cell in a convex decomposition of P since either C_{1} is in $\gamma\left(v_{1} ; v_{2}, p\right)$ or C_{2} is in $\gamma\left(v_{1} ; v_{3}, p\right)$. See Fig. 2. Since there is a convex decomposition of P^{\prime} with at most $\left\lceil\frac{7}{5}\left(n^{\prime}-3\right)\right\rceil+1$ cells for $n^{\prime}=\left|P^{\prime}\right|, h(n) \leq\left(\left\lceil\frac{7}{5}\left(n^{\prime}-3\right)\right\rceil+1\right)+2-1 \leq\left\lceil\frac{7}{5}\left(n^{\prime}-2\right)\right\rceil+1=\left\lceil\frac{7}{5}(n-3)\right\rceil+1$ with $n=n^{\prime}+1$.

We can now make the following assumption.

Fig. 3. A cell C_{i} in a convex decomposition of $S\left(T_{i}\right)$ for $i=1,2$.

Fig. 4. The shaded portion is empty.

Assumption 1. For any v in $V(P), \operatorname{ch}(P \backslash\{v\})$ is not a triangle.
For $p_{1}=\alpha\left(v_{3} ; v_{2}, v_{1}\right)$, we suppose that $\gamma\left(p_{1} ; v_{2}^{\prime}, v_{3}\right)$ is not empty and consider $p_{2}=\alpha\left(p_{1} ; v_{3}, v_{2}^{\prime}\right)$, where $\left\{v_{2}, v_{3}, p_{1}, p_{2}\right\}$ is an empty convex quadrilateral. Let $T_{1}=\Delta v_{1} v_{2} p_{1}, T_{2}=\Delta v_{1} p_{2} v_{3}$ and $T_{3}=\Delta v_{1} p_{1} p_{2}$.

By Assumption 1, neither T_{1} nor T_{2} is empty. Let $C_{i}=C\left(\overline{v_{1} p_{i}}, S\left(T_{i}\right)\right)$ for $i=1,2$ where C_{1} is in $\gamma\left(p_{1} ; v_{1}, p_{2}^{\prime}\right)$ and C_{2} is in $\gamma\left(p_{2} ; v_{1}, p_{1}^{\prime}\right)$ as shown in Fig. 3. If T_{3} is empty or not, $C_{1} \cup T_{3} \cup C_{2}$ is a cell in a convex decomposition of P or both $C_{1} \cup C\left(\overline{v_{1} p_{1}}, S\left(T_{3}\right)\right)$ and $C_{2} \cup C\left(\overline{v_{1} p_{2}}, S\left(T_{3}\right)\right)$ are cells in a convex decomposition of P, respectively. Thus, $h(n) \leq\left(\left\lceil\frac{7}{5}\left(n_{1}-3\right)\right\rceil+1\right)+\left(\left\lceil\frac{7}{5}\left(n_{2}-3\right)\right\rceil+1\right)+\left(\left\lceil\frac{7}{5}\left(n_{3}-3\right)\right\rceil+1\right)+1-2 \leq\left\lceil\frac{7}{5}\left(n_{1}+n_{2}+n_{3}-7\right)\right\rceil+1=\left\lceil\frac{7}{5}(n-3)\right\rceil+1$ where $n_{i}=\left|S\left(T_{i}\right)\right|$ for $i=1,2,3$ and $n=n_{1}+n_{2}+n_{3}-4$.

For the remaining of the proof we can make the following stronger assumption.
Assumption 2. For any edge $\overline{v_{i} v_{i+1}}$ on the boundary of $\operatorname{ch}(P)$, there exists an element w_{i} of P such that $\gamma\left(v_{i} ; v_{i+1}, w_{i}\right) \cup \gamma\left(v_{i+1} ; v_{i}, w_{i}\right)$ is empty for $i=1,2,3$, where $v_{4}=v_{1}$.

See Fig. 4 where the shaded portion is empty. We remark that $w_{i} \neq w_{j}$ for $i \neq j$ by Assumption 1. Let $K_{1}=\Delta v_{1} w_{1} w_{3}, K_{2}=\Delta v_{2} w_{2} w_{1}, K_{3}=\Delta v_{3} w_{3} w_{2}$ and $K^{\prime}=\Delta w_{1} w_{2} w_{3}$.

We continue under Assumption 2.
Case 1: K_{i} is empty for every $i=1,2,3$.
If K^{\prime} is empty, i.e., $n=6$, then $H(P)=6$ and $h(6) \leq\left\lceil\frac{7}{5}(6-3)\right\rceil+1=6$ holds. Let $C_{i}=C\left(\overline{w_{i-1} w_{i}}, S\left(K^{\prime}\right)\right)$ for $i=1,2,3$ where $w_{0}=w_{3}$. If K^{\prime} is not empty, since $C_{i} \neq C_{j}$ for $i \neq j$ and $K_{i} \cup C_{i}$ is a cell in a convex decomposition of P for each $i, h(n) \leq\left(\left\lceil\frac{7}{5}\left(n^{\prime}-3\right)\right\rceil+1\right)+6-3 \leq\left\lceil\frac{7}{5} n^{\prime}\right\rceil+1=\left\lceil\frac{7}{5}(n-3)\right\rceil+1$ with $n=n^{\prime}+3$ for $n^{\prime}=\left|S\left(K^{\prime}\right)\right|$.
Case 2: There exists a non-empty K_{i}, say K_{1}.
Let $V\left(S\left(K_{1}\right) \backslash\left\{v_{1}\right\}\right)=\left\{w_{1}, u_{1}, u_{2}, \ldots, u_{k}, w_{3}\right\}$ in clockwise order.
(A) $\Delta v_{2} u_{1} w_{1}$ is not empty.

Consider $p=\alpha\left(v_{2} ; w_{1}, u_{1}\right)$ and let $T_{1}=\Delta v_{1} v_{2} p, T_{2}=\Delta v_{2} v_{3} p$ and $T_{3}=\Delta v_{3} v_{1} p$, where $\left|S\left(T_{1}\right)\right|=4$. There is a convex decomposition of $S\left(T_{i}\right)$ with at most $\left\lceil\frac{7}{5}\left(n_{i}-3\right)\right\rceil+1$ cells for $n_{i}=\left|S\left(T_{i}\right)\right|, i=2,3$.

Fig. 5.
If p is in $\gamma\left(v_{3} ; w_{2}, w_{1}\right)$ as shown in Fig. 5a, we consider $C_{2}=C\left(\overline{v_{3} p}, S\left(T_{2}\right)\right), C_{3}=C\left(\overline{v_{3} p}, S\left(T_{3}\right)\right)$ and $C_{3}^{\prime}=C\left(\overline{v_{1} p}, S\left(T_{3}\right)\right)$. Since $\left\{v_{1}, v_{3}, w_{1}, p\right\}$ is in convex position, $\Delta v_{1} w_{1} p \cup C_{3}^{\prime}$ is a cell in a convex decomposition of P. And C_{3} is contained in $\gamma\left(p ; v_{2}^{\prime}, v_{3}\right)$ since, otherwise, $C_{3}=T_{3}$ and C_{3} would not be empty, that is, $C_{2} \cup C_{3}$ is also a cell in a convex decomposition of P. Thus, $h(n) \leq\left(\left\lceil\frac{7}{5}\left(n_{2}-3\right)\right\rceil+1\right)+\left(\left\lceil\frac{7}{5}\left(n_{3}-3\right)\right\rceil+1\right)+3-2 \leq$ $\left\lceil\frac{7}{5}\left(n_{2}+n_{3}-4\right)\right\rceil+1=\left\lceil\frac{7}{5}(n-3)\right\rceil+1$ with $n=n_{2}+n_{3}-1(*)$.

If p is in $\gamma\left(v_{3} ; w_{1}, u_{1}\right)$ as shown in Fig. 5b, we let $C_{2}=C\left(\overline{v_{3} p}, S\left(T_{2}\right)\right)$ and $C_{2}^{\prime}=C\left(\overline{v_{2} p}, S\left(T_{2}\right)\right)$ where $C_{2} \neq C_{2}^{\prime}$ by the existence of w_{2}. Since both $\Delta v_{2} p w_{1} \cup C_{2}^{\prime}$ and $C_{2} \cup C\left(\overline{v_{3} p}, S\left(T_{3}\right)\right)$ are cells in a convex decomposition of P for the same reason, we obtain the same inequalities as $(*)$.
(B) $\Delta v_{2} u_{1} w_{1}$ is empty.

Let $T_{1}=\Delta v_{1} v_{2} u_{1}, T_{2}=\Delta v_{2} v_{3} u_{1}$ and $T_{3}=\Delta v_{3} v_{1} u_{1}$ with $\left|S\left(T_{1}\right)\right|=4$. See Fig. 5c. Since $C\left(\overline{v_{3} u_{1}}, S\left(T_{3}\right)\right)$ is in $\gamma\left(u_{1} ; v_{2}^{\prime}, v_{3}\right)$ and both $\Delta v_{2} u_{1} w_{1} \cup C\left(\overline{v_{2} u_{1}}, S\left(T_{2}\right)\right)$ and $C\left(\overline{v_{3} u_{1}}, S\left(T_{2}\right)\right) \cup C\left(\overline{v_{3} u_{1}}, S\left(T_{3}\right)\right)$ are cells in a convex decomposition of $P, h(n) \leq\left(\left\lceil\frac{7}{5}\left(n_{2}-3\right)\right\rceil+1\right)+\left(\left\lceil\frac{7}{5}\left(n_{3}-3\right)\right\rceil+1\right)+3-2 \leq\left\lceil\frac{7}{5}(n-3)\right\rceil+1$ with $n=n_{2}+n_{3}-1$ for $n_{i}=\left|S\left(T_{i}\right)\right|, i=2,3$.

3. Final remark

There is still a substantial gap between the upper and lower bounds for $h(n)$. We believe that a more complicated approach may be able to prove that $h(n) \leq\left\lceil\frac{4}{3}(n-2)\right\rceil$ for any $n \geq 3$.

Acknowledgements

The author is grateful to the referees for their suggestions for improving the exposition of this paper.

References

[1] O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudotriangles, Graphs and Combinatorics 23 (5) (2007) 481-507.
[2] O. Aichholzer, H. Krasser, The point set order type data base: A collection of applications and results, in: Proc. 13th Canadian Conference on Computational Geometry, University of Waterloo, Waterloo, 2001, pp. 17-20.
[3] J. García-López, M. Nicolás, Planar point sets with large minimum convex partitions, in: Abstracts 22nd European Workshop on Computational Geometry, Delphi, 2006, pp. 51-54.
[4] V. Neumann-Lara, E. Rivera-Campo, J. Urrutia, A note on convex decompositions of point sets in the plane, Graphs and Combinatorics 20 (2) (2004) 223-231.
[5] J. Urrutia, Open problem session, in: 10th Canadian Conference on Computational Geometry, McGill University, Montreal, 1998.

[^0]: E-mail address: hosono@scc.u-tokai.ac.jp

