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We consider multicriteria decision problems where the actions are evaluated on a set of
ordinal criteria. The evaluation of each alternative with respect to each criterion may be
uncertain and/or imprecise and is provided by one or several experts. We model this eval-
uation as a basic belief assignment (BBA). In order to compare the different pairs of alter-
natives according to each criterion, the concept of first belief dominance is proposed.
Additionally, criteria weights are also expressed by means of a BBA. A model inspired by
ELECTRE I is developed and illustrated by a pedagogical example.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Evidence theory [9,10], also called Dempster–Shafer theory or belief functions theory, is a convenient framework for mod-
elling imperfection in data and for combining information. This formalism has been widely used in many fields. For instance,
one may cite: classification [36], data mining [38], knowledge elicitation [26], etc. In multicriteria decision analysis [6], it has
been incorporated in the analytic hierarchy process (AHP) method to permit a decision maker to make judgements on groups
of decision alternatives and to allow for additional analysis including levels of uncertainty and conflict in the decisions made
[23–25]. In addition, the evidential reasoning algorithm, which is an approach used to aggregate multiple attributes in uncer-
tain context, has been developed on the basis of evidence theory [12,16,17]. Furthermore, a sorting method called DISSET has
been modelled by this theory in the context where information about categories is represented by a set of alternatives of
which their related labels are either precise or imprecise [22].

In this paper, we propose another application of evidence theory within the framework of multicriteria decision making.
We consider multicriteria problems for which different experts collaborate to estimate the evaluation of alternatives accord-
ing to ordinal criteria. The information provided can be uncertain and/or imprecise. For example, in risk assessment of
investment projects, an expert may hesitate between two or more successive evaluation levels. He may be sure that the pro-
ject is either ‘‘safe” or ‘‘extremely safe” without being able to refine his judgment.

The inter-criteria information, usually represented by ‘‘weights”, may also be imprecise. For example, one could accept
that the total importance allocated to the coalition of financial criteria, including investment costs and operational costs,
. All rights reserved.
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is equal to 0.6 while the importance related to each of the single criteria is not determined or is such that their sum is lower
than 0.6.

Finally, information provided by several experts about the same alternative and the same criterion has to be combined.
Evidence theory offers tools to combine information issued from several experts for instance the Dempster’s rule [9] and the
normalized cautious rule [34]. However, we will show that these combination operators do not respect the unanimity prop-
erty which is a natural condition of an aggregation operator. Therefore, we have adapted the algorithm AL3 proposed by Jab-
eur and Martel [19].

In this work, we propose a model inspired by the ELECTRE I [5,13] method to address these kinds of problems. Evidence
theory will be used to represent imprecise and/or uncertain data and to represent the inter-criteria information.

This paper is organized as follows: in Section 2 we introduce the key concepts of evidence theory, then the notion of first
belief dominance is presented in Section 3 and a model inspired by ELECTRE I is proposed in Section 4. The model is illus-
trated by a pedagogical example in Section 5.

2. Evidence theory: some concepts

Evidence theory has been initially developed by Arthur Dempster in 1967 [4], formalized by Glenn Shafer in 1976 [9], and
axiomatically justified by Philippe Smets in his transferable belief model [31]. This theory has been proposed as a general-
ization of the Bayesian theory. It allows representing uncertainty and imprecision in situations where the available informa-
tion is imperfect. In this section, the basic notations of evidence theory are introduced and the main concepts that are
necessary to understand the rest of the paper are briefly recalled.

2.1. Knowledge model

Let H be a finite set of mutually exclusive and exhaustive hypotheses, called the frame of discernment. Let 2H be the set
of all subsets of H. A basic belief assignment (BBA) [9] is a function m from 2H to [0, 1] verifying

P
A # HmðAÞ ¼ 1. The quan-

tity m(A) represents the belief that is committed exactly to A. When m(A) – 0, A is called focal set.
A BBA m is said to be:

� Normal if £ is not a focal set, i.e., m(£) = 0. The initial works [4,9] on evidence theory requires that m(£) = 0, but this
condition is not imposed in the transferable belief model [31]. In this paper, we will only consider normal BBAs.

� Dogmatic if H is not a focal set, i.e., m(H) = 0.
� Vacuous if H is the only focal set, i.e., if m(H) = 1 and m(A) = 0 for all A – H. This type of BBA is used to represent the state

of total ignorance.
� Simple if m(H) = w and m(A) = 1 � w for some A – H and 0 6w 6 1. When w > 1, m is not a BBA since it is no longer a

function from 2H to [0,1]. Such a function can be referred as an inverse simple BBA. Both simple and inverse simple BBAs
are known as generalized simple BBAs and denoted as denoted Aw. w is interpreted as the weight of evidence (these
notions will be used later in the definition of the normalized cautious rule of combination).

A BBA can equivalently be represented by its associated belief (or credibility), plausibility and commonality functions [9]
defined, respectively, as:
BelðAÞ ¼
X
B # A

mðBÞ ð1Þ

PlðAÞ ¼
X

A\B – £

mðBÞ ð2Þ

QðAÞ ¼
X
A # B

mðBÞ ð3Þ
The quantity Bel(A) measures the total belief associated to A. The plausibility Pl(A) measures the belief that can potentially be
placed in A whereas the commonality Q(A) quantifies the belief that can be transferred to any element of A. The belief and
plausibility functions can be connected by the equation PlðAÞ ¼ 1� BelðAÞ, where A denotes the complement of A. Let us note
that the weight of evidence [32] introduced above can be obtained from the commonality function using the following
formula:
wðAÞ ¼
Y
A # B

QðBÞð�1ÞjBj�jAjþ1

ð4Þ
Evidence theory has been proposed as a generalization of the Bayesian theory. In fact, if all the belief masses of a given BBA
are associated to singletons, the induced belief function is nothing else than a probability function and it called a Bayesian
belief function. In his transferable belief model, Smets has proposed a technique called the pignistic transformation [29] for
translating the belief functions models to probability models in order to make decisions [30]. This transformation consists in
distributing equally each belief mass m(A) among the elements of A. This leads to the pignistic probability function BetP de-
fined as follows:



M.A. Boujelben et al. / International Journal of Approximate Reasoning 50 (2009) 1259–1278 1261
BetPðHiÞ ¼
X

A # H=Hi2A

mðAÞ
jAj ; 8Hi 2 H ð5Þ
where jAj is the cardinal of the subset A. This function is considered as a measure of probability used to make decisions. How-
ever, it is not a probability function suitable for representing beliefs.

2.2. Combination

The combination is an operation that plays a central role in evidence theory. The BBAs induced by several sources are
aggregated using a combination rule in order to yield a global BBA that synthesizes the knowledge of the different sources.
Within this context, several combinations rules have been proposed to aggregate independent and dependant sources.
Among others, we can mention the Dempster’s rule, the Dubois and Prade’s rule, the Yager’s rule, the cautious rule (normal-
ized and unnormalized), etc. [28,34]. In this section, we will only present the Dempster’s and the normalized cautious rules
that are used, respectively, to combine independent and dependant sources.

The Dempster’s rule [9], also known as the normalized conjunctive rule, has been the first combination operator proposed
in evidence theory. This rule allows the combination of BBAs provided by independent sources, i.e., distinct BBAs. Let m1 and
m2 be two distinct BBAs to combine, the Dempster’s rule is defined as follows:
mðAÞ ¼
P

B\C¼Am1ðBÞ � m2ðCÞ
1� k

; 8A # H ð6Þ
where k is defined by k ¼
P

B\C¼£
m1ðBÞ � m2ðCÞ. The coefficient k represents the mass that the combination assigns to £ and

reflects the conflict between the sources. The quotient (1 � k)�1 is a term of normalization that guaranties m(£) = 0 andP
A # HmðAÞ ¼ 1.
The Dempster’s rule has several interesting mathematical proprieties. It can be proved to be both commutative and asso-

ciative. That is why it has been used in expert systems [24]. However, it should not be applied to combine BBAs given by
dependant sources, i.e., nondistinct BBAs. To perform the combination in such situations, Denoeux introduced the normal-
ized cautious rule [34]. This operator combines nondogmatic BBAs. In practice, the cautious combination of two nondog-
matic BBAs m1 and m2 is computed as follows:

� Compute the commonality functions Q1 and Q2 using Eq. (3).
� Compute the weight functions w1 and w2 that are obtained from the commonalities using Eq. (4).
� Determine the generalized simple BBAs Aw1^w2 for all A �H such that w1 ^ w2 – 1.
� Combine the induced generalized simple BBAs using the normalized Dempster’s rule.

The normalized cautious rule is also commutative and associative and it is has been also used to combine expert opinions.
The interesting reader can refer to [26] that gives an application of this rule to climate sensitivity assessment.
3. First belief dominance

The stochastic dominance is an approach used to perform comparisons between probability distributions. This concept
has been addressed fundamentally in [8,11,14,27,37]. It has been applied in several domains especially in the field of mul-
ticriteria decision aid to compare evaluations of alternatives with respect to criteria.

Initially, the stochastic dominance concept has been used in comparing the evaluations expressed by probability distri-
butions in order to build some outranking relations that reflect the decision maker’s preferences [15]. Then, the use of sto-
chastic dominance has been extended to ambiguous probability distributions in ranking problem [3]. Recently, this concept
has been employed to compare mixed evaluations, i.e., evaluations expressed by probability distributions, fuzzy membership
functions, possibility measures and belief masses [33]. However, the use of this concept necessitates the transformation of
these functions to others of which the proprieties are similar to those of probability functions. For instance, the pignistic
transformation [29] developed essentially to make decisions in evidence theory [30] is used to transform a BBA into a pig-
nistic probability function.

In this section, we present a new concept called the first belief dominance [21] in the context of multicriteria decision
problems. This approach allows comparing evaluations expressed by BBAs and generalizes the first stochastic dominance
concept which is the simplest case of the stochastic dominance approach. Before presenting this concept, it is worth men-
tioning that similar extensions of stochastic ordering to belief functions, called credal orderings, have been developed by Thi-
erry Denoeux and have been published recently in [35]. Some of these orderings have been introduced, without
development, in [1,2] in the context of novelty detection. Let us note that the credal orderings and the concept of first belief
dominance have been developed simultaneously and independently, i.e., we have been not aware of the Denoeux’s orderings
when our concept has been developed. In Section 3.2, we will present the relationship between our approach and two of the
credal orderings.
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3.1. Problem formulation

We consider a multicriteria problem which can be represented by three elements: the actions, the ordinal criteria and the
criteria assessment grades. At first, we will consider situations where only one expert evaluates the alternatives. In what fol-
lows, let:

� A = {a1,a2, . . . ,an} be the set of actions.
� G = {g1,g2, . . . ,gq} be the set of ordinal criteria.
� Xh ¼ fxh

1; x
h
2; . . . ; xh

rh
g be the set of the ordinal assessment grades of the criterion gh.

The n alternatives are assessed, on each criterion gh, using the same set of the rh ordinal assessment grades xh
j (with

j = 1,2, . . . ,rh) which are required to be mutually exclusive and exhaustive. The rh ordinal assessment grades constitute
the frame of discernment in evidence theory and are defined such as the first ordinal grade xh

1 is less preferred than the sec-
ond ordinal grade xh

2 and so on, i.e., xh
1 � xh

2 � � � � � xh
rh

. Thus, we have a total order of the ordinal assessment grades on each
criterion gh.

The evaluation of each action ai with respect to each criterion gh is given by a normal BBA of which the focal sets are sub-
sets of the set Xh. Formally, this BBA is defined as a function mh

i : 2Xh

! ½0; 1� such as mh
i ð£Þ ¼ 0 and

P
C # Xh mh

i ðCÞ ¼ 1. In the
case where the expert is unable to express the assessment of action ai on criterion gh, the evaluation of ai is represented by a
vacuous BBA, i.e., the total mass is assigned to the frame Xh.

In order to compare the BBAs that represent the evaluations of alternatives with respect to each criterion, we propose a
new concept called ‘‘the first belief dominance”. This is naturally inspired by the concept of first stochastic dominance. Be-
fore describing it, some notations should be clarified.

Let ai and ai0 be two different actions and let mh
i and mh

i0 be, respectively, the BBAs of ai and ai0 defined on the frame Xh of
each criterion gh.

For all h 2 {1,2, . . . ,q} and for all k 2 {0,1, . . . ,rh}, let:
Ah
k ¼

£ if k ¼ 0
xh

1; . . . ; xh
k

� �
otherwise

(
ð7Þ
and let~SðXhÞ denote the set Ah
1;A

h
2; . . . ;Ah

rh

n o
. Similarly, for all h 2 {1,2, . . . ,q} and for all l 2 {0,1, . . . ,rh} such as l = rh � k, let:
Bh
l ¼

£ if l ¼ 0

xh
rh�lþ1; . . . ; xh

rh

n o
otherwise

(
ð8Þ
and let S
 ðXhÞ denote the set Bh

1;B
h
2; . . . ;Bh

rh

n o
.

k and l represent, respectively the number of elements of the sets Ah
k and Bh

l . Obviously, j~SðXhÞj ¼ j S
 
ðXhÞj ¼ rh,

Ah
k ¼ Bh

rh�k ¼ Bh
l for all k 2 {0,1, . . . , rh} and Bh

l ¼ Ah
rh�l ¼ Ah

k for all l 2 {0, 1,. . .,rh}.

3.2. Definitions

Definition 1. The ascending belief function noted Belhi
��!

, induced by mh
i and associating to the evaluation of action ai with

respect to criterion gh, is a function Belhi
��!

:~SðXhÞ ! ½0; 1� defined such as Belhi
��!

Ah
k

� �
¼
P

C # Ah
k
mh

i ðCÞ for all Ah
k 2~SðX

hÞ.

Definition 2. The descending belief function noted Belh
i

 ��
, induced by mh

i and associating to the evaluation of action ai with

respect to criterion gh, is a function Belh
i

 ��
: S
 ðXhÞ ! ½0;1� defined such as Belh

i

 ��
Bh

l

� �
¼
P

C # Bh
l
mh

i ðCÞ for all Bh
l 2 S
 ðXhÞ.

The third definition is that of the first belief dominance. This condition holds between two BBAs mh
i and mh

i0 whenever the
two following conditions are verified simultaneously:

� The ascending belief function Belh
i

��!
lies, entirely or partly, below the ascending belief function Belhi0

��!
.

� The descending belief function Belh
i

 ��
lies, entirely or partly, above the descending belief function Belh

i0

 ��
.

Definition 3. mh
i is said to dominate mh

i0
according the first belief dominance if and only if the following two conditions are

verified simultaneously:

� For all Ah
k 2~SðX

hÞ; Belhi
��!

Ah
k

� �
6 Belhi0
��!

Ah
k

� �
.

� For all Bh
l 2 S
 ðXhÞ;Belhi

 ��
ðBh

l ÞP Belh
i0

 ��
Bh

l

� �
.
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The first condition means that there is greater belief mass under Belhi0
��!

than Belhi
��!

for all Ah
k 2~SðX

hÞ. On the contrary, the

second condition means that there is greater belief mass under Belhi
 ��

then Belhi0
 ��

for all Bh
l 2 S
 ðXhÞ.

In the case where the two conditions are not verified simultaneously, then mh
i does not dominate mh

i0 according the first
belief dominance concept. As a conclusion, two situations are identified in our approach: FBD identifies first belief domi-
nance situations consistent with the conditions imposed by Definition 3, and FBD designates those which are not consistent
with these conditions. In what follows, we denote:

� mh
i FBDmh

i0 if mh
i dominates mh

i0 according the first belief dominance approach,
� mh

i FBDmh
i0 if mh

i does not dominate mh
i0 according the first belief dominance approach.

There is a relationship between the first belief dominance concept and two of Denoeux’s orderings. Denoting Ah
k and Bh

l ,
respectively as xh

1; x
h
k

� �
and xh

rh�lþ1; x
h
rh

h i
, we have:

� Belh
i

��!
Ah

k

� �
¼ Belhi xh

1; x
h
k

� �	 

¼ 1� Plh

i xh
kþ1; x

h
rh

h i� �
if k < rh

1 otherwise;

(

� Belh
i

 ��
Bh

l

� �
¼ Belh

i xh
rh�lþ1; x

h
rh

h i� �
¼ Belh

i xh
kþ1; x

h
rh

h i� �
if k < rh.

Consequently, mh
i dominates mh

i0 according to the first belief dominance if and only if for all

k 2 f1;2; . . . ; rhg; Plh
i xh

k ; x
h
rh

h i� �
P Plh

i0 xh
k ; x

h
rh

h i� �
and Belh

i xh
k ; x

h
rh

h i� �
P Belh

i0 xh
k ; x

h
rh

h i� �
. Using Denoeux’s notations, mh

i domi-

nates mh
i0 if and only if mh

i 1mh
i0 and mh

i P mh
i0 .

3.3. Partial preferences between alternatives

As indicated above, the performances of the alternatives with respect to each criterion are expressed by BBAs. In multi-
criteria decision problems, it is always necessary to determine the preferences between alternatives on each criterion in or-
der to apply a multicriteria procedure.

The first belief dominance concept allows concluding if mh
i dominates mh

i0 or not and consequently if the evaluation of ai is
at least as good as the evaluation of ai0 or not. Furthermore, it permits establishing four partial preference situations between
the actions performances:

� If mh
i FBDmh

i0 and mh
i0FBDmh

i , then mh
i is indifferent to mh

i0 . So, ai is indifferent to ai0 on criterion gh.
� If mh

i FBDmh
i0 and mh

i0FBDmh
i , then mh

i is strictly preferred to mh
i0 . So, ai is strictly preferred to ai0 on criterion gh.

� If mh
i FBDmh

i0 and mh
i0FBDmh

i , then mh
i0 is strictly preferred to mh

i . So, ai0 is strictly preferred to ai on criterion gh.
� If mh

i FBDmh
i0 and mh

i0FBDmh
i , then mh

i and mh
i0 are incomparable. So, ai and ai0 are incomparable on criterion gh.

The incomparability situation appears between two alternatives when their evaluations given by BBAs differ significantly.
This information may be important especially in decision problems where incomparability is allowed.

Example 1. In order to illustrate the first belief dominance concept, let us consider the following simple example in which
three actions are evaluated on the basis of two ordinal criteria g1 and g2. Let X1 ¼ x1

1; x
1
2; x

1
3

� �
and X2 ¼ x2

1; x
2
2; x

2
3

� �
be,

respectively the assessment grades sets of g1 and g2 such as x1
1 � x1

2 � x1
3 and x2

1 � x2
2 � x2

3. The evaluations are expressed by
BBAs and given in Table 1.

To apply the first belief dominance approach, it is first necessary to determine on each criterion the ascending and
descending belief functions:
Table 1
BBA’s characterizing the actions performances.

g1 g2

a1 m1
1 x1

1

	 

¼ 0:2

m1
1 x1

1; x
1
2

	 

¼ 0:4

m1
1 x1

3

	 

¼ 0:4

m2
1 x2

1; x
2
2

	 

¼ 0:7

m2
1 x2

2; x
2
3

	 

¼ 0:3

a2

m1
2 x1

1

	 

¼ 0:2

m1
2 x1

2

	 

¼ 0:4

m1
2 x1

1; x
1
2; x

1
3

	 

¼ 0:4

m2
2 x2

1

	 

¼ 0:64

m2
2 x2

1; x
2
2; x

2
3

	 

¼ 0:36

a3 m1
3 x1

2; x
1
3

	 

¼ 1

m2
3 x2

1

	 

¼ 0:6

m2
3 x2

1; x
2
2

	 

¼ 0:4
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� On criterion g1:
a1

Bel1
1

��!
A1

1

� �
¼ Bel1

1

��!
x1

1

� �	 

¼ 0:2

Bel1
1

��!
A1

2

� �
¼ Bel1

1

��!
x1

1; x
1
2

� �	 

¼ 0:6

Bel1
1

��!
A1

3

� �
¼ Bel1

1

��!
x1

1; x
1
2; x

1
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a2

Bel1
2

��!
A1

1

� �
¼ Bel1

2

��!
x1

1

� �	 

¼ 0:2

Bel1
2

��!
A1

2

� �
¼ Bel1

2

��!
x1

1; x
1
2

� �	 

¼ 0:6

Bel1
2

��!
A1

3

� �
¼ Bel1

2

��!
x1

1; x
1
2; x

1
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a3

Bel1
3

��!
A1

1

� �
¼ Bel1

3

��!
x1

1

� �	 

¼ 0

Bel1
3

��!
A1

2

� �
¼ Bel1

3

��!
x1

1; x
1
2

� �	 

¼ 0

Bel1
3

��!
A1

3

� �
¼ Bel1

3

��!
x1

1; x
1
2; x

1
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a1

Bel1
1

 ��
B1

1

� �
¼ Bel1

1

 ��
x1

3

� �
1

	 

¼ 0:4

Bel1
1

 ��
B1

2

� �
¼ Bel1

1

 ��
x1

2; x
1
3

� �	 

¼ 0:4

Bel1
1

 ��
B1

3

� �
¼ Bel1

1

 ��
x1

1; x
1
2; x

1
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a2

Bel1
2

 ��
B1

1

� �
¼ Bel1

2

 ��
x1

3

� �	 

¼ 0

Bel1
2

 ��
B1

2

� �
¼ Bel1

2

 ��
x1

2; x
1
3

� �	 

¼ 0:4

Bel1
2

 ��
B1

3

� �
¼ Bel1

2

 ��
x1

1; x
1
2; x

1
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a3

Bel1
3

 ��
B1

1

� �
¼ Bel1

3

 ��
x1

3

� �	 

¼ 0

Bel1
3

 ��
B1

2

� �
¼ Bel1

3

 ��
x1

2; x
1
3

� �	 

¼ 1

Bel1
3

 ��
B1

3

� �
¼ Bel1

3

 ��
x1

1; x
1
2; x

1
3

� �	 

¼ 1

8>>>>>><
>>>>>>:
� On criterion g2:
a1

Bel2
1

��!
A2

1

� �
¼ Bel2

1

��!
x2

1

� �	 

¼ 0

Bel2
1

��!
A2

2

� �
¼ Bel2

1

��!
x2

1; x
2
2

� �	 

¼ 0:7

Bel2
1

��!
A2

3

� �
¼ Bel2

1

��!
x2

1; x
2
2; x

2
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a2

Bel2
2

��!
A2

1

� �
¼ Bel2

2

��!
x2

1

� �	 

¼ 0:64

Bel2
2

��!
A2

2

� �
¼ Bel2

2

��!
x2

1; x
2
2

� �	 

¼ 0:64

Bel2
2

��!
A2

3

� �
¼ Bel2

2

��!
x2

1; x
2
2; x

2
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a3

Bel2
3

��!
A2

1

� �
¼ Bel2

3

��!
x2

1

� �	 

¼ 0:6

Bel2
3

��!
A2

2

� �
¼ Bel2

3

��!
x2

1; x
2
2

� �	 

¼ 1

Bel2
3

��!
A2

3

� �
¼ Bel2

3

��!
x2

1; x
2
2; x

2
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a1

Bel2
1

 ��
B2

1

� �
¼ Bel2

1

 ��
x2

3

� �	 

¼ 0

Bel2
1

 ��
B2

2

� �
¼ Bel2

1

 ��
x2

2; x
2
3

� �	 

¼ 0:3

Bel2
1

 ��
B2

3

� �
¼ Bel2

1

 ��
x2

1; x
2
2; x

2
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a2

Bel2
2

 ��
B2

1

� �
¼ Bel2

2

 ��
x2

3

� �	 

¼ 0

Bel2
2

 ��
B2

2

� �
¼ Bel2

2

 ��
x2

2; x
2
3

� �	 

¼ 0

Bel2
2

 ��
B2

3

� �
¼ Bel2

2

 ��
x2

1; x
2
2; x

2
3

� �	 

¼ 1

8>>>>>><
>>>>>>:

a3

Bel2
3

 ��
B2

1

� �
¼ Bel2

3

 ��
x2

3

� �	 

¼ 0

Bel2
3

 ��
B2

2

� �
¼ Bel2

3

 ��
x2

2; x
2
3

� �	 

¼ 0

Bel2
3

 ��
B2

3

� �
¼ Bel2

3

 ��
x2

1; x
2
2; x

2
3

� �	 

¼ 1

8>>>>>><
>>>>>>:
Then, the first belief dominance concept is applied to compare on each criterion the actions performances. The observed
belief dominances on each criterion are illustrated on Tables 2 and 3.

Finally, based on the observed belief dominances on each criterion, the partial preference situations between the actions
are established:

� On criterion g1:
– m1

1FBDm1
2 and m1

2FBDm1
1, then a1 is strictly preferred to a2;

– m1
1FBDm1

3 and m1
3FBDm1

1, then a1 and a3 are incomparable;



Table 3
Observed belief dominances between the alternatives on criterion g2.

a1 a2 a3

a1 – FBD FBD
a2 FBD – FBD
a3 FBD FBD –

Table 2
Observed belief dominances between the alternatives on criterion g1.

a1 a2 a3

a1 – FBD FBD
a2 FBD – FBD
a3 FBD FBD –
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– m1
2FBDm1

3 and m1
3FBDm1

2, then a3 is strictly preferred to a2.

� On criterion g2:
– m2

1FBDm2
2 and m2

2FBDm2
1, then a1 and a2 are incomparable;

– m2
1FBDm2

3 and m2
3FBDm2

1, then a1 is strictly preferred to a3;
– m2

2FBDm2
3 and m2

3FBDm2
2, then a2 and a3 are incomparable.

3.4. First stochastic dominance: a particular case of first belief dominance

Of course, it seems natural that the first belief dominance definition coincides with the first stochastic dominance defi-
nition in the context of Bayesian belief functions. This result is contained in Denoeux’s paper [35].

The first stochastic dominance is defined as follows. Let ph
i and ph

i0 denote the probability functions associating to the eval-
uations of actions ai and ai0 with respect to criterion gh, and let Ph

i and Ph
i0 be, respectively their cumulative distributions.

According to [14], ph
i is said to dominate ph

i0 according the first stochastic dominance if and only if for all
xh

j 2 Xh; Ph
i xh

j

� �
6 Ph

i0 xh
j

� �
.

Proposition 1. If Belhi and Belhi0 are two Bayesian belief functions over the frame Xh, then the two conditions of Definition 3 are
equivalent.

Proof 1. If Belh
i is a Bayesian belief function over the frame Xh, then Belh

i

��!
Ah

k

� �
þ Belhi
��!

Ah
k

� �
¼ 1 for all k = 0,1, . . . ,rh. Or, we have

Ah
k ¼ Bh

rh�k ¼ Bh
l for all k = 0,1, . . . ,rh, thus Belhi

��!
Ah

k

� �
þ Belhi
 ��

Bh
l

� �
¼ 1. The first condition of Definition 3 can be written as

1� Belh
i

��!
Ah

k

� �
P 1� Belh

i0

��!
Ah

k

� �
for all k = 1,2, . . . ,rh, then Belhi

 ��
Bh

l

� �
P Belh

i0

 ��
Bh

l

� �
for all l = 0,1, . . . , rh � 1. As a result, the two con-

ditions of Definition 3 are equivalent when Belh
i and Belh

i0 are Bayesian belief functions.

Proposition 2. If Belh
i and Belh

i0 are two Bayesian belief functions over the frame Xh, then the first stochastic dominance is a par-
ticular case of the first belief dominance.

Proof 2. According to Proposition 1, since the two conditions of Definition 3 are equivalent, then mh
i dominates mh

i0 according

the first belief dominance if and only if Belh
i

��!
Ah

k

� �
6 Belhi0
��!

Ah
k

� �
for all Ah

k 2~SðX
hÞ. Belhi is a Bayesian belief function, then all the

focal sets of mh
i are singletons. As a result, Belhi

��!
Ah

k

� �
¼
Pk

j¼1mh
i xh

j

� �
¼ Ph

i xh
k

	 

for all Ah

k 2~SðX
hÞ. Therefore, mh

i dominates mh
i0

according our approach if and only if Ph
i ðxh

j Þ 6 Ph
i0 xh

j

� �
for all xh

j 2 Xh. So, the first stochastic dominance is a particular case

of the first belief dominance.
Before ending this section, let us note that the first belief dominance approach provides a uniform treatment not only for

evaluations expressed by BBAs and probability functions, but also for evaluations given by possibility measures. In this case,
the close connection between possibility distributions and consonant belief structures is exploited to transform the
distribution containing the possible evaluations into a consonant belief structure, i.e., a BBA with nested focal sets [7].

Similarly, it is worth mentioning that the dominance (the non dominance, resp.) according the first belief dominance
approach does not imply necessarily the dominance (the non dominance, resp.) according the stochastic one when applying
the second approach on the pignistic probability functions associated to the considered BBAs. Indeed, it is possible to have
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two BBAs such that the first one dominates (does not dominate, resp.) the second one according the first belief dominance
approach whereas this does not hold according the stochastic ordering. Example 2 illustrates these situations.

Example 2. The objective of this example is to show the difference between the first belief and stochastic dominance
approaches when using the second approach to compare the pignistic probability functions derived from the considered
BBAs.

Let us consider again the data of Example 1. It is easy to build for each BBA its related pignistic probability function BetPh
i

using the pignistic transformation. Table 4 presents the pignistic probability distributions related to the BBAs that describe
the actions performances.

The first stochastic dominance concept is used to compare the actions according to each criterion. In order to apply this
approach, the cumulative distributions associated to the pignistic probability functions are computed. Then, the observed
stochastic dominances between alternatives are determined on each criterion. Two situations are identified: FSD identifies
the situations consistent with the first stochastic dominance theorem, and FSD designates those which are not consistent
with this theorem. The observed stochastic dominances on each criterion are given respectively on Tables 5 and 6.

Based on these results and those achieved in Example 1, we remark that the first belief and stochastic dominance ap-
proaches lead to similar results except in the following cases:

� m1
1FBDm1

2 whereas BetP1
1FSDBetP1

2,
� m1

3FBDm1
1 whereas BetP1

3FSDBetP1
1,

� m2
1FBDm2

2 whereas BetP2
1FSDBetP2

2,
� m2

2FBDm2
3 whereas BetP2

2FSDBetP2
3.

Therefore, the dominance (the non dominance, resp.) according the first belief dominance approach does not imply nec-
essarily the dominance (the non dominance, resp.) according the stochastic one when using the last approach on the pignis-
tic probability functions.

4. The model

In this section, we propose a model inspired by ELECTRE I method [5,13] to build a binary outranking relation in uncertain
imprecise and multi-experts contexts.
Table 4
Pignistic probability functions associated to the BBA’s characterizing the actions performances.

g1 g2

a1 BetP1
1 x1

1

	 

¼ 0:4

BetP1
1 x1

2

	 

¼ 0:2

BetP1
1 x1

3

	 

¼ 0:4

BetP2
1 x2

1

	 

¼ 0:35

BetP2
1 x2

2

	 

¼ 0:5

BetP2
1 x2

3

	 

¼ 0:15

a2

BetP1
2 x1

1

	 

¼ 0:333

BetP1
2 x1

2

	 

¼ 0:533

BetP1
2 x1

3

	 

¼ 0:133

BetP2
2 x2

1

	 

¼ 0:76

BetP2
2 x2

2

	 

¼ 0:12

BetP2
2 x2

3

	 

¼ 0:12

a3
BetP1

3 x1
2

	 

¼ 0:5

BetP1
3 x1

3

	 

¼ 0:5

BetP2
3 x2

1

	 

¼ 0:8

BetP2
3 x2

2

	 

¼ 0:2

Table 5
Observed stochastic dominances between the alternatives on criterion g1.

a1 a2 a3

a1 – FSD FSD
a2 FSD – FSD
a3 FSD FSD –

Table 6
Observed stochastic dominances between the alternatives on criterion g2.

a1 a2 a3

a1 – FSD FSD
a2 FSD – FSD
a3 FSD FSD –



M.A. Boujelben et al. / International Journal of Approximate Reasoning 50 (2009) 1259–1278 1267
ELECTRE I is a multicriteria outranking method that consists in choosing a subset of actions considered as the best accord-
ing to the criteria set. It is close to the Condorcet rule that has been developed in the context of voting theory. The underlying
idea is first to build a binary relation denoted S between pairs of alternatives and then to exploit this relation to select the
subset of ‘‘best” actions. Intuitively, aiSai0 is interpreted as ‘‘ai is at least as good as ai0”. Therefore, ai must be at least as good
as ai0 on a sufficiently important coalition of criteria without being much worst on any criterion. More formally, we assume
that:

� All the criteria have to be maximized.
� The decision maker has provided a set of weights, denoted wh, representing the relative importance of the criteria. Fur-

thermore, we assume thatwh P 0(h = 1,2, . . . ,q) and
Pq

h¼1wh ¼ 1.
� The decision maker has provided an acceptability threshold denoted c and a veto threshold denoted v.

Following the intuition explained before, both a concordance index denoted CðaiSai0 Þ, and a discordance index denoted
DðaiSai0 Þ, are computed as follows:
CðaiSai0 Þ ¼
X

fh:ghðaiÞPghðai0 Þg
wh ð9Þ

DðaiSai0 Þ ¼ max
fh:ghðaiÞ<ghðai0 Þg

ðghðai0 Þ � ghðaiÞÞ ð10Þ
Based on these two indices, one is able to define the S relation in the following way:
aiSai0 ()
CðaiSai0 ÞP c

DðaiSai0 Þ 6 v

�
ð11Þ
The selection of ‘‘best” alternatives is based on the kernel of the graph induced by all the binary outranking relations.
In what follows, we will describe our model inspired by ELECTRE I. For the sake of simplicity, we will only consider the

concordance index when the binary outranking relations are built. At first, we assume that the experts are non-equivalent in
their importance within the group. We further assume that several experts have expressed their assessments for actions set
with respect to criteria set. This information is provided on the form of BBAs. In what follows, let:

� wf be the importance of expert Ef within the group (with f = 1,2, . . . ,s);
� mh

ijf be the BBA that represents the evaluation of action ai according criterion gh and given by expert Ef.

Furthermore, we propose to model the criteria weights by means of a BBA. Let mG be the BBA that defines the inter-cri-
teria information and BelG its associated belief function. Intuitively, mG(T) represents the weight committed exactly to the
criteria set T and BelG(T) represents the total weight assigned to this set. Thus, in addition to the usual weights on criteria
taken separately, weights on coalitions of criteria can also be defined. The weight assigned to a criteria set quantifies the
synergy between the criteria that compose this set. Of course, if BelG is as Bayesian belief function, mG is nothing else than
the weighted sum. In this case, we consider that there is no synergy between criteria.

The steps of the proposed model are the following. At first, the first belief dominance approach is applied by each expert
to compare his/her individual BBAs. Based on the observed individual belief dominances on each criterion, each expert builds
his/her individual binary outranking relations between the actions and so his/her individual outranking graph. Then, the
algorithm AL3 proposed by Jabeur and Martel [19] is used to aggregate the individual outranking graphs in order to establish
a collective one which is at minimum distance from those. This algorithm takes into account the coefficients of the experts’
relative importance. Finally, the collective outranking graph is exploited to determine the subset of the ‘‘best” alternatives.

4.1. Comparison between the individual BBAs

In the first step of the model, the individual BBAs given by each expert and characterizing the actions performances on
each criterion are compared. The first belief dominance concept is used by each expert to perform comparisons between the
pairs of alternatives on each criterion.

As indicated previously, this approach allows concluding clearly if a given action is at least as good as another action on a
given criterion or not, i.e., if there is a dominance according the first belief dominance approach or not. Once the belief domi-
nances between the alternatives on each criterion are determined by each expert, they are exploited in the next step to build
the individual binary outranking relations.

4.2. Building the individual outranking graphs

The use of the first belief dominance concept by each expert Ef allows identifying the coalition of criteria, denoted Df, for
which a given action ai is at least as good as another action ai0 . More formally:



Table 7
Numeri

D

ai 	 ai0

ai � ai0

ai?ai0

ai � ai0
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Df ¼ gh 2 Gjmh
ijf FBDmh

i0 jf

n o
ð12Þ
Intuitively, BelG(Df) quantifies the total belief associated to the fact that the action ai is at least as good as the action ai0 for all
the criteria in Df according expert Ef. Thus, we will call BelG(Df) the concordance index.

Of course, if the BBAs are such that the total belief is restricted to a unique singleton and if BelG is as Bayesian belief func-
tion, BelG(Df) is nothing else than the concordance index computed as in the ELECTRE I method.

In the same way, the application of the first belief dominance approach by each expert Ef permits identifying the coalition
of criteria, denoted Qf, for which the actions ai and ai0 are incomparable (i.e., mh

ijf and mh
i0 jf do not dominate each other). More

formally:
Qf ¼ gh 2 Gjmh
ijf FBDmh

i0 jf and mh
i0 jf FBDmh

ijf

n o
ð13Þ
Therefore, we define a new degree called the incomparability index and denoted BelG(Qf). This degree quantifies the total
belief associated to the fact that the actions ai and ai0 are incomparable for all the criteria in Qf according expert Ef.

The concordance and incomparability indexes are exploited to build the individual binary outranking relations. These in-
dexes are compared, respectively to concordance and incomparability thresholds denoted, respectively c and r and which are
fixed according the type of the application. Therefore, ai outranks ai0 (denoted aiSai0 Þ if and only if BelG(Df) is greater than or
equal to the concordance threshold and BelG(Qf) is lesser than or equal to the incomparability threshold. More formally:
aiSai0 ()
BelGðDf ÞP c

BelGðQ f Þ 6 r

(
ð14Þ
The experts can agree on the values of thresholds or cannot. In such situation, each expert can propose and use his/her own
values of thresholds. Finally, based on his/her individual binary outranking relations, each expert builds his/her individual
outranking graph.

4.3. Aggregation of the individual outranking graphs

In this step, the individual outranking graphs are aggregated in order to establish a collective one from which the ‘‘best”
alternatives subset is determined. The aggregation is performed using the algorithm AL3 that has been applied in the context
of group decision making [18].

The algorithm AL3 takes into account the coefficients of the experts’ relative importance within the group. Furthermore, it
allows determining for each pair of alternatives the collective preference relation H* 2 {�, �, 	, ?} where � is the strict pref-
erence relation, � is the inverse strict preference relation, 	 the indifference relation and ? is the incomparability relation. So
before aggregating, the individual outranking graphs should be transformed into individual preference graphs where the
alternatives are represented by nodes and individual binary preference relations [18]. The only difference between these
graphs is in the representation of the indifference relation. In fact, in an outranking graph, the indifference is represented
by two arrows which have opposite direction while it is represented by an arrow with double directions in a preference
graph [18]. The algorithm AL3 determines, for each pair of alternatives ðai; ai0 Þ, the nearest collective preference relation
H* 2 {�, �, 	,?} to the individual ones. For this purpose, a divergence index UHðai; ai0 Þ that measures the deviation between
the collective preference relation H 2 {�, �, 	, ?} and each individual one Hf ðai; ai0 Þ is calculated as follows:
UHðai; ai0 Þ ¼
Xs

f¼1

wf � DðH;Hf ðai; ai0 ÞÞ ð15Þ
where wf is the importance of expert Ef within the group and DðH;Hf ðai; ai0 ÞÞ is the distance measure between the collective
preference relation H and the individual one Hf ðai; ai0 Þ suggested in [20]. The numerical values of the distance measure are
given in Table 7.

Then, we identify the collective relation H
ðai; ai0 Þ that minimizes the divergence indexes, i.e.:
H
 ¼ Arg min
H2f�;�;	;?g

UHðai; ai0 Þ ð16Þ
cal values of the distance measure D.

ai 	 ai0 ai � ai0 ai?ai0 ai � ai0

D(	,	) = 0 D(	,�) = 1 D(	,?) = 4/3 D(	,�) = 1
D(�,	) = 1 D (�,�) = 0 D(�,?) = 4/3 D(�,�) = 5/3
D(?,	) = 4/3 D (?,�) = 4/3 D(?,?) = 0 D(?,�) = 4/3
D(�,	) = 1 D (�,�) = 5/3 D(�,?) = 4/3 D(�,�) = 0
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Once the collective preference relations between all pairs of alternatives are determined, we build the collective preference
graph. Therefore, it is easy to deduce the collective outranking graph.

Finally, let us note that the application of the algorithm AL3 may produce several collective preference relations at min-
imum distance from the individual ones. Then, several collective outranking graphs can be obtained.

4.4. Determination of the ‘‘best” alternatives subset

In the last step of the model, the collective outranking graph is exploited to identify the ‘‘best” alternatives. Since several
collective outranking graphs can be deducted, several subsets of ‘‘best” alternatives can be proposed. For both situations, the
experts can either not accept the unique subset obtained by a mathematical processing or fail to build, from several subsets,
a single subset of the ‘‘best” alternatives. In order to treat both of these situations, Jabeur and Martel propose an interactive
and iterative procedure that helps the experts to reach a consensus on the ‘‘best” alternatives subset. More details can be
found in [18].

Finally, it is worth mentioning that another manner to the aggregation problem is the use of a combination rule offered by
evidence theory to aggregate the individual BBAs given by the experts. Let mh

i be the BBA resulting from the combination of
mh

ij1;m
h
ij2,. . . and mh

ijs. Obviously, mh
i represents the collective evaluation of action ai according criterion gh.

The combination rule used for the aggregation of the individual BBAs should be commutative and associative. Therefore:

� If the BBAs are distinct, we suggest the Dempster’s rule of combination to take into account independencies between
experts.

� If the BBAs are nondistinct, we suggest the normalized cautious rule of combination to take into account dependencies
between experts.

Once the collective BBAs are determined, the first belief dominance approach is used to compare these BBAs and so to
build the collective outranking graph of which the ‘‘best” alternatives subset is identified. However, both combination rules
that we have suggested do not respect in some situations the unanimity property which is a natural condition of an aggre-
gation operator. Formally, this property means that:

� If mh
ijf FBDmh

i0 jf for all f 2 {1,2, . . . ,s}, then mh
i FBDmh

i0 .
� If mh

ijf FBDmh
i0 jf for all f 2 {1,2, . . . ,s}, then mh

i FBDmh
i0 .

That’s why we have adapted the algorithm AL3 for the aggregation.
Two counter-examples to the unanimity property are introduced below (see Examples 3 and 4). In the first one, we have

used the Dempster’s rule to combine distinct BBAs. In the second one, we have used the normalized cautious rule to aggre-
gate nondistinct BBAs.

Example 3. Let us consider two alternatives of which the evaluations are expressed by distinct BBAs and given by two
experts. In this example, we will consider only the evaluations on criterion g1. Let x1

1; x
1
2; x

1
3 and x1

4 be the assessment grades
set of g1 such as x1

1 � x1
2 � x1

3 � x1
4.

The Dempster’s rule of combination is used in this example to aggregate the BBAs induced by the experts for every action
on criterion g1. The objective is to yield a combined BBA that represents the performance of every action on criterion g1. Then,
the first belief dominance approach is applied to compare the BBAs given by each expert and the combined BBAs. The results
are given in Table 8.

As can be noticed, the experts agree that a1 dominates a2 on criterion g1 according the first belief dominance concept.
However, when we apply this approach on the combined BBAs, we obtain: a1 does not dominate a2 on g1. Then, the Demp-
ster’s rule does not respect the unanimity property.
Table 8
Counter-example to the unanimity property: case of distinct BBAs.

a1 a2 The observed belief dominances

The BBA’s given by expert 1 m1
1j1 x1

2; x
1
3

	 

¼ 0:5

m1
1j1 x1

4

	 

¼ 0:5

m1
2j1 x1

2

	 

¼ 0:5

m1
2j1 x1

3

	 

¼ 0:5

m1
1j1FBDm1

2j1

The BBA’s given by expert 2 m1
1j2 x1

2; x
1
3

	 

¼ 1

m1
2j2 x1

1; x
1
2

	 

¼ 0:5

m1
2j2 x1

2; x
1
3

	 

¼ 0:5

m1
1j2FBDm1

2j2

The combined BBA’s given by the two experts m1
1 x1

2; x
1
3

	 

¼ 1

m1
2 x1

2

	 

¼ 0:67

m1
2 x1

3

	 

¼ 0:33

m1
1FBDm1

2



Table 9
Counter-example to the unanimity property: case of nondistinct BBAs.

a1 a2 The observed belief dominances

The BBA’s given by expert 1 m1
1j1 x1

2

	 

¼ 0:1

m1
1j1 x1

1; x
1
2

	 

¼ 0:9

m1
2j1 x1

1

	 

¼ 0:6

m1
2j1 x1

2

	 

¼ 0:2

m1
2j1 x1

1; x
1
2

	 

¼ 0:2

m1
1j1FBDm1

2j1

The BBA’s given by expert 2
m1

1j2 x1
1

	 

¼ 0:5

m1
1j2 x1

2

	 

¼ 0:2

m1
1j2 x1

1; x
1
2

	 

¼ 0:3

m1
2j2 x1

2

	 

¼ 0:1

m1
2j2 x1

1; x
1
2

	 

¼ 0:9

m1
1j2FBDm1

2j2

The combined BBA’s given by the two experts
m1

1 x1
1

	 

¼ 0:5

m1
1 x1

2

	 

¼ 0:2

m1
1 x1

1; x
1
2

	 

¼ 0:3

m1
2 x1

1

	 

¼ 0:6

m1
2 x1

2

	 

¼ 0:2

m1
2 x1

1; x
1
2

	 

¼ 0:2

m1
1FBDm1

2
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Example 4. Let us consider two alternatives of which the evaluations are expressed by nondistinct BBAs and given by two
experts. In this example, we will consider only the evaluations on criterion g1. Let x1

1 and x1
2 be the assessment grades set of g1

such as x1
1 � x1

2.

The normalized cautious rule of combination is used in this example to aggregate the BBAs induced by the experts for
every action on criterion g1. The objective is to yield a combined BBA that represents the performance of every action on
criterion g1. Then, the first belief dominance approach is applied to compare the BBAs given by each expert and the combined
BBAs. The results are given in Table 9.

As can be noticed, the experts agree that a1 does not dominate a2 on criterion g1 according the first belief dominance con-
cept. However, when we apply this approach on the combined BBAs, we obtain: a1 dominates a2 on g1. Then, the normalized
cautious rule does not respect the unanimity property.

5. Illustrative example

In order to illustrate the model, let us consider the following example. A public establishment, which has for mission to
sustain the innovation and the growth of the SME (small and medium enterprises), announces its call for bids destined to the
industrial enterprises.

The projects transmitted by the enterprises are submitted to a committee composed of three experts referred to as ex-
perts 1, 2 and 3. The coefficients of their relative importance within the group are, respectively 0.5, 0.3 and 0.2.

The projects are evaluated on the basis of four ordinal criteria to maximize which are the following:

� Originality of the project or the activity, i.e., the innovation degree brought by the project (new products, new procedures,
improved products, improved procedures).

� Competitiveness, i.e., the capacity of the enterprise to face with success the concurrence on the national and/or interna-
tional markets. The evaluation of the project on this criterion is determined by analysing the product supply and its ade-
quacy in relation to the market, the market and the concurrence related to the activity, . . .

� Profitability, i.e., the capacity of the enterprise to generate positive results by using rationally the resources.
Table 10
Criteria and the assessment grades.

Criterion Assessment grades

g1: Originality of the project or the activity x1
1: No innovation in the project

x1
2: There is the improvement in the project

x1
3: There is the innovation in the project

x1
4: Absolutely an original project

g2: Competitiveness x2
1: Not competitive

x2
2: Competitive

g3: Profitability x3
1: Very low

x3
2: Low

x3
3: Average

x3
4: High

x3
5: Very High

g4: Creation of employment x4
1: Limited number of jobs

x4
2: Average number of jobs

x4
3: High number of jobs
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� Creation of employment, i.e., the capacity of the enterprise to generate jobs on several levels (strategic, intermediate,
operational).

The criteria are proposed by the public establishment. Table 10 presents the assessment grades of each criterion which
are given from the least preferred to the most preferred.

Finally, the inter-criteria information is given by a BBA defined as follows:
Table 1
BBA’s c

a1

a2

a3

a4

a5

Table 1
BBA’s c

a1

a2

a3

a4

a5
mGðg1Þ ¼ 0:2
mGðg2Þ ¼ 0:2
mGðg1; g2Þ ¼ 0:2
mGðg3Þ ¼ 0:3
mGðg4Þ ¼ 0:1
As can be noticed, the total importance allocated to the coalition of criteria g1 and g2 (the originality of the project or the
activity and the competitiveness) is equal to 0.6 while the importance related to each of the single criteria is equal to 0.2, i.e.,
their sum is lower than 0.6.

We propose to consider 5 projects. The evaluation of each project with respect to each criterion is given by a BBA. We
suppose that each expert can express individually the assessments for all the projects with respect to all the criteria. Tables
11–13 present the BBAs characterizing the evaluations of the projects given, respectively by experts 1, 2 and 3. For instance,
the evaluations of project a1 are established by the experts as follows:

� On criterion g1, experts 1 and 3 hesitate between the third and the fourth assessment grades. They are sure that the project
is either innovating or absolutely original without being able to refine their judgment whereas expert 2 is certain that the
project is innovating.
1
haracterizing the evaluations of the projets given by expert 1.

g1 g2 g3 g4
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2
haracterizing the evaluations of the projets given by expert 2.

g1 g2 g3 g4
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Table 13
BBA’s characterizing the evaluations of the projets given by expert 3.

g1 g2 g3 g4

a1 m1
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� On criterion g2, the three experts are certain that the enterprise is competitive.
� On criterion g3, experts 1 and 3 hesitate between the first, the second and the third assessment grades whereas expert 2

hesitates between the third, the fourth and the fifth ones. The formers are sure that the project profitability is very low,
low or average whereas the latter is sure that it is average, high or very high. The three experts are unable to refine their
judgments.
2a

3a

4a

1a

5a

Since alternatives a2 and
a3 are outranked by 
alternatives a1 and a5, they 
can not be chosen. a1 and 
a5 outrank each other. 
Moreover, alternative a4 is 
incomparable to a1 and a5. 
Then a1, a4 and a5 are the 
set of best alternatives 
according expert 1. 

Fig. 1. The outranking graph induced by expert 1.

2a

3a

4a

1a

5a

Since alternative a1

outranks alternatives a2,
a3, a4, and a5 and it is not 
outranked by any 
alternative, a1 is the kernel 
of the graph. Then, a1 is 
the best alternative 
according expert 2. 

Fig. 2. The outranking graph induced by expert 2.



2a

3a

4a

5a

1a

Since alternatives a2, a3

and a5 are outranked by 
alternative a1, they can not 
be chosen. Moreover, 
alternative a4 is 
incomparable to a1. Then, 
a1 and a4 are the set of 
best alternatives according 
expert 3.  

Fig. 3. The outranking graph induced by expert 3.

2a

3a

4a

1a

5a

2a

3a

4a

1a

5a

Since alternatives a2, a3

and a5 are outranked by 
alternative a1, they can not 
be chosen. Moreover, 
alternative a4 is 
incomparable to a1. Then, 
a1 and a4 are the set of 
best alternatives according 
the three experts.  

Since alternatives a2, a3

and a5 are outranked by 
alternative a1, they can not 
be chosen. Moreover, 
alternative a4 is 
incomparable to a1. Then, 
a1 and a4 are the set of 
best alternatives according 
the three experts.  

Fig. 4. Collective outranking graphs.
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� On criterion g4, experts 1 and 3 are certain that the project creates a limited number of jobs whereas expert 2 does not
express his/her assessments on the project. That’s why the total masse is assigned to the set of assessment grades, i.e.,
the frame X4 (total ignorance case).

The first belief dominance approach is applied by each expert to compare, on each criterion, the different pairs of alter-
natives. Based on the observed individual belief dominances on each criterion, the concordance and incomparability indexes
are computed by each expert for each pair of alternatives using the BBA representing the inter-criteria information. Appen-
dixs A, B and C illustrate the partial belief dominances between alternatives as well as the concordance and incomparability
indexes given, respectively by experts 1, 2 and 3.

Therefore, each expert builds his/her individual binary outranking relations between the actions and so his/her individual
outranking graph. In this example, we suppose that the experts agree on the values of the concordance and incomparability
thresholds which are equal, respectively to 0.6 and 0.4. Figs. 1–3 give the outranking graphs built, respectively by experts 1, 2
and 3.

Then, the individual outranking graphs are aggregated using the algorithm AL3 to obtain the collective outranking graph.
The application of this algorithm produces for the pair of alternatives (a2,a4) two distinct preference relations which are at
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minimum distance from the individual ones. In fact, we can consider a2 and a4 as incomparable or we can accept that a4 is
strictly preferred to a2. So, we obtain two collective outranking graphs that differ between them on the arrow (a4,a2). Fig. 4
shows these two collective outranking graphs.

Finally, the collective outranking graphs are exploited to identify the subset of the ‘‘best” alternatives. In both situations,
the collective decision is to choose alternatives a1 and a4.

As we remark, the collective decision reflects well the individual ones since alternative a1 is chosen individually by each
expert and alternative a4 is chosen by experts 1 and 3. Alternative a5 is among the best alternatives according expert 1
whereas it is not chosen by experts 2 and 3.
6. Conclusion

In this paper, we have addressed the question of building a binary outranking relation in uncertain, imprecise and mul-
ti-experts contexts. Evidence theory offers convenient tools to tackle such kind of problems. At first, the concept of BBA
allows experts to express freely their assessments and even to represent the total ignorance. In order to compare the BBAs
associated to two actions for a given criterion, the concept of the first belief dominance has been introduced. We have
shown that it is a natural extension of the first stochastic dominance approach. In addition, the concept of BBA has been
used to represent the criteria weights. Finally, a model inspired by ELECTRE I has been proposed and illustrated on a ped-
agogical example.

At this point, we have illustrated the benefits of using evidence theory in these kinds of problems. Of course there are still
many directions for future research. Among others, we can mention the extension of the first belief dominance concept to
second and third degrees or the development of combination rules that respect the unanimity principle.
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Appendix A. Expert 1: The partial belief dominances between alternatives/The concordance and incomparability
indexes

Tables 14–19.
Appendix B. Expert 2: The partial belief dominances between alternatives/The concordance and incomparability
indexes

Tables 20–25.
Table 15
The observed belief dominances between alternatives on criterion g2.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 14
The observed belief dominances between alternatives on criterion g1.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –



Table 17
The observed belief dominances between alternatives on criterion g4.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 18
The concordance indexes.

a1 a2 a3 a4 a5

a1 – 0.6 0.6 0.2 0.6
a2 0.4 – 0.3 0.3 0.4
a3 0.1 0.7 – 0.3 0.3
a4 0.1 0.7 0.2 – 0.1
a5 0.6 0.6 0.9 0.5 –

Table 19
The incomparability indexes.

a1 a2 a3 a4 a5

a1 – 0 0.3 0.5 0
a2 0 – 0 0 0
a3 0.3 0 – 0.3 0
a4 0.5 0 0.3 – 0.2
a5 0 0 0 0.2 –

Table 20
The observed belief dominances between alternatives on criterion g1.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 16
The observed belief dominances between alternatives on criterion g3.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 21
The observed belief dominances between alternatives on criterion g2.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –
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Table 22
The observed belief dominances between alternatives on criterion g3.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 23
The observed belief dominances between alternatives on criterion g4.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 24
The concordance indexes.

a1 a2 a3 a4 a5

a1 – 0.6 0.9 0.9 0.9
a2 0 – 0 0.2 0.1
a3 0 0.3 – 0.3 0.3
a4 0.2 0.3 0.5 – 0.3
a5 0.2 0.6 0.5 0.9 –

Table 25
The incomparability indexes.

a1 a2 a3 a4 a5

a1 – 0.4 0.1 0.1 0.1
a2 0.4 – 0.5 0.3 0.3
a3 0.1 0.5 – 0 0
a4 0.1 0.3 0 – 0
a5 0.1 0.3 0 0 –

Table 26
The observed belief dominances between alternatives on criterion g1.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 27
The observed belief dominances between alternatives on criterion g2.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –
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Table 28
The observed belief dominances between alternatives on criterion g3.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 29
The observed belief dominances between alternatives on criterion g4.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

Table 30
The concordance indexes.

a1 a2 a3 a4 a5

a1 – 0.6 0.6 0.2 0.6
a2 0.4 – 0.3 0.3 0.4
a3 0.1 0.7 – 0.3 0.3
a4 0.1 0.3 0.2 – 0.1
a5 0.3 0.6 0.9 0.5 –

Table 31
The incomparability indexes.

a1 a2 a3 a4 a5

a1 – 0 0.3 0.5 0.3
a2 0 – 0 0.2 0
a3 0.3 0 – 0.3 0
a4 0.5 0.2 0.3 – 0.2
a5 0.3 0 0 0.2 –
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Appendix C. Expert 3: The partial belief dominances between alternatives/The concordance and incomparability
indexes.

Tables 26–31.
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