Building a binary outranking relation in uncertain, imprecise and multi-experts contexts: The application of evidence theory

Mohamed Ayman Boujelben ${ }^{\mathrm{a}, *}$, Yves De Smet ${ }^{\mathrm{b}}$, Ahmed Frikha ${ }^{\mathrm{c}}$, Habib Chabchoub ${ }^{\text {a }}$
${ }^{\text {a }}$ Unité de recherche GIAD, Faculté des sciences économiques et de gestion de Sfax, Route de l’Aérodrome, BP 1088, 3018 Sfax, Tunisia
${ }^{\mathrm{b}}$ Unité CoDE-SMG, Université Libre de Bruxelles, Boulevard du Triomphe, BP 210-01, 1050 Brussels, Belgium
${ }^{\text {c }}$ Unité de Recherche LOGIQ, Institut supérieur de gestion industrielle de Sfax, Route Mharza, BP 954, 3018 Sfax, Tunisia

A R T I C L E IN F O

Article history:

Received 27 November 2008
Received in revised form 31 May 2009
Accepted 1 June 2009
Available online 7 June 2009

Keywords:

Multicriteria decision aid
Evidence theory
First belief dominance
ELECTRE I
Multi-experts context

Abstract

We consider multicriteria decision problems where the actions are evaluated on a set of ordinal criteria. The evaluation of each alternative with respect to each criterion may be uncertain and/or imprecise and is provided by one or several experts. We model this evaluation as a basic belief assignment (BBA). In order to compare the different pairs of alternatives according to each criterion, the concept of first belief dominance is proposed. Additionally, criteria weights are also expressed by means of a BBA. A model inspired by ELECTRE I is developed and illustrated by a pedagogical example.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Evidence theory [9,10], also called Dempster-Shafer theory or belief functions theory, is a convenient framework for modelling imperfection in data and for combining information. This formalism has been widely used in many fields. For instance, one may cite: classification [36], data mining [38], knowledge elicitation [26], etc. In multicriteria decision analysis [6], it has been incorporated in the analytic hierarchy process (AHP) method to permit a decision maker to make judgements on groups of decision alternatives and to allow for additional analysis including levels of uncertainty and conflict in the decisions made [23-25]. In addition, the evidential reasoning algorithm, which is an approach used to aggregate multiple attributes in uncertain context, has been developed on the basis of evidence theory [12,16,17]. Furthermore, a sorting method called DISSET has been modelled by this theory in the context where information about categories is represented by a set of alternatives of which their related labels are either precise or imprecise [22].

In this paper, we propose another application of evidence theory within the framework of multicriteria decision making. We consider multicriteria problems for which different experts collaborate to estimate the evaluation of alternatives according to ordinal criteria. The information provided can be uncertain and/or imprecise. For example, in risk assessment of investment projects, an expert may hesitate between two or more successive evaluation levels. He may be sure that the project is either "safe" or "extremely safe" without being able to refine his judgment.

The inter-criteria information, usually represented by "weights", may also be imprecise. For example, one could accept that the total importance allocated to the coalition of financial criteria, including investment costs and operational costs,

[^0]is equal to 0.6 while the importance related to each of the single criteria is not determined or is such that their sum is lower than 0.6.

Finally, information provided by several experts about the same alternative and the same criterion has to be combined. Evidence theory offers tools to combine information issued from several experts for instance the Dempster's rule [9] and the normalized cautious rule [34]. However, we will show that these combination operators do not respect the unanimity property which is a natural condition of an aggregation operator. Therefore, we have adapted the algorithm AL3 proposed by Jabeur and Martel [19].

In this work, we propose a model inspired by the ELECTRE I [5,13] method to address these kinds of problems. Evidence theory will be used to represent imprecise and/or uncertain data and to represent the inter-criteria information.

This paper is organized as follows: in Section 2 we introduce the key concepts of evidence theory, then the notion of first belief dominance is presented in Section 3 and a model inspired by ELECTRE I is proposed in Section 4. The model is illustrated by a pedagogical example in Section 5.

2. Evidence theory: some concepts

Evidence theory has been initially developed by Arthur Dempster in 1967 [4], formalized by Glenn Shafer in 1976 [9], and axiomatically justified by Philippe Smets in his transferable belief model [31]. This theory has been proposed as a generalization of the Bayesian theory. It allows representing uncertainty and imprecision in situations where the available information is imperfect. In this section, the basic notations of evidence theory are introduced and the main concepts that are necessary to understand the rest of the paper are briefly recalled.

2.1. Knowledge model

Let Θ be a finite set of mutually exclusive and exhaustive hypotheses, called the frame of discernment. Let 2^{Θ} be the set of all subsets of Θ. A basic belief assignment (BBA) [9] is a function m from 2^{Θ} to [0,1] verifying $\sum_{A \subseteq \Theta} m(A)=1$. The quantity $m(A)$ represents the belief that is committed exactly to A. When $m(A) \neq 0, A$ is called focal set.

A BBA m is said to be:

- Normal if \varnothing is not a focal set, i.e., $m(\varnothing)=0$. The initial works $[4,9]$ on evidence theory requires that $m(\varnothing)=0$, but this condition is not imposed in the transferable belief model [31]. In this paper, we will only consider normal BBAs.
- Dogmatic if Θ is not a focal set, i.e., $m(\Theta)=0$.
- Vacuous if Θ is the only focal set, i.e., if $m(\Theta)=1$ and $m(A)=0$ for all $A \neq \Theta$. This type of BBA is used to represent the state of total ignorance.
- Simple if $m(\Theta)=w$ and $m(A)=1-w$ for some $A \neq \Theta$ and $0 \leqslant w \leqslant 1$. When $w>1, m$ is not a BBA since it is no longer a function from 2^{Θ} to $[0,1]$. Such a function can be referred as an inverse simple BBA. Both simple and inverse simple BBAs are known as generalized simple BBAs and denoted as denoted $A^{w} . w$ is interpreted as the weight of evidence (these notions will be used later in the definition of the normalized cautious rule of combination).

A BBA can equivalently be represented by its associated belief (or credibility), plausibility and commonality functions [9] defined, respectively, as:

$$
\begin{align*}
& \operatorname{Bel}(A)=\sum_{B \subseteq A} m(B) \tag{1}\\
& P l(A)=\sum_{A \cap B \neq \varnothing} m(B) \tag{2}\\
& Q(A)=\sum_{A \subseteq B} m(B)
\end{align*}
$$

The quantity $\operatorname{Bel}(A)$ measures the total belief associated to A. The plausibility $P l(A)$ measures the belief that can potentially be placed in A whereas the commonality $Q(A)$ quantifies the belief that can be transferred to any element of A. The belief and plausibility functions can be connected by the equation $\operatorname{Pl}(A)=1-\operatorname{Bel}(\bar{A})$, where \bar{A} denotes the complement of A. Let us note that the weight of evidence [32] introduced above can be obtained from the commonality function using the following formula:

$$
\begin{equation*}
w(A)=\prod_{A \subseteq B} Q(B)^{(-1)^{B|-|A|+1}} \tag{4}
\end{equation*}
$$

Evidence theory has been proposed as a generalization of the Bayesian theory. In fact, if all the belief masses of a given BBA are associated to singletons, the induced belief function is nothing else than a probability function and it called a Bayesian belief function. In his transferable belief model, Smets has proposed a technique called the pignistic transformation [29] for translating the belief functions models to probability models in order to make decisions [30]. This transformation consists in distributing equally each belief mass $m(A)$ among the elements of A. This leads to the pignistic probability function BetP defined as follows:

$$
\begin{equation*}
\operatorname{BetP}\left(H_{i}\right)=\sum_{A \subseteq \Theta / H_{i} \in A} \frac{m(A)}{|A|}, \quad \forall H_{i} \in \Theta \tag{5}
\end{equation*}
$$

where $|A|$ is the cardinal of the subset A. This function is considered as a measure of probability used to make decisions. However, it is not a probability function suitable for representing beliefs.

2.2. Combination

The combination is an operation that plays a central role in evidence theory. The BBAs induced by several sources are aggregated using a combination rule in order to yield a global BBA that synthesizes the knowledge of the different sources. Within this context, several combinations rules have been proposed to aggregate independent and dependant sources. Among others, we can mention the Dempster's rule, the Dubois and Prade's rule, the Yager's rule, the cautious rule (normalized and unnormalized), etc. [28,34]. In this section, we will only present the Dempster's and the normalized cautious rules that are used, respectively, to combine independent and dependant sources.

The Dempster's rule [9], also known as the normalized conjunctive rule, has been the first combination operator proposed in evidence theory. This rule allows the combination of BBAs provided by independent sources, i.e., distinct BBAs. Let m_{1} and m_{2} be two distinct BBAs to combine, the Dempster's rule is defined as follows:

$$
\begin{equation*}
m(A)=\frac{\sum_{B \cap C=A} m_{1}(B) \cdot m_{2}(C)}{1-k}, \quad \forall A \subseteq \Theta \tag{6}
\end{equation*}
$$

where k is defined by $k=\sum_{B \cap C=\varnothing} m_{1}(B) \cdot m_{2}(C)$. The coefficient k represents the mass that the combination assigns to \varnothing and reflects the conflict between the sources. The quotient $(1-k)^{-1}$ is a term of normalization that guaranties $m(\varnothing)=0$ and $\sum_{A \subseteq \Theta} m(A)=1$.

The Dempster's rule has several interesting mathematical proprieties. It can be proved to be both commutative and associative. That is why it has been used in expert systems [24]. However, it should not be applied to combine BBAs given by dependant sources, i.e., nondistinct BBAs. To perform the combination in such situations, Denoeux introduced the normalized cautious rule [34]. This operator combines nondogmatic BBAs. In practice, the cautious combination of two nondogmatic BBAs m_{1} and m_{2} is computed as follows:

- Compute the commonality functions Q_{1} and Q_{2} using Eq. (3).
- Compute the weight functions w_{1} and w_{2} that are obtained from the commonalities using Eq. (4).
- Determine the generalized simple BBAs $A^{w_{1} \wedge w_{2}}$ for all $A \subset \Theta$ such that $w_{1} \wedge w_{2} \neq 1$.
- Combine the induced generalized simple BBAs using the normalized Dempster's rule.

The normalized cautious rule is also commutative and associative and it is has been also used to combine expert opinions. The interesting reader can refer to [26] that gives an application of this rule to climate sensitivity assessment.

3. First belief dominance

The stochastic dominance is an approach used to perform comparisons between probability distributions. This concept has been addressed fundamentally in [8,11,14,27,37]. It has been applied in several domains especially in the field of multicriteria decision aid to compare evaluations of alternatives with respect to criteria.

Initially, the stochastic dominance concept has been used in comparing the evaluations expressed by probability distributions in order to build some outranking relations that reflect the decision maker's preferences [15]. Then, the use of stochastic dominance has been extended to ambiguous probability distributions in ranking problem [3]. Recently, this concept has been employed to compare mixed evaluations, i.e., evaluations expressed by probability distributions, fuzzy membership functions, possibility measures and belief masses [33]. However, the use of this concept necessitates the transformation of these functions to others of which the proprieties are similar to those of probability functions. For instance, the pignistic transformation [29] developed essentially to make decisions in evidence theory [30] is used to transform a BBA into a pignistic probability function.

In this section, we present a new concept called the first belief dominance [21] in the context of multicriteria decision problems. This approach allows comparing evaluations expressed by BBAs and generalizes the first stochastic dominance concept which is the simplest case of the stochastic dominance approach. Before presenting this concept, it is worth mentioning that similar extensions of stochastic ordering to belief functions, called credal orderings, have been developed by Thierry Denoeux and have been published recently in [35]. Some of these orderings have been introduced, without development, in [1,2] in the context of novelty detection. Let us note that the credal orderings and the concept of first belief dominance have been developed simultaneously and independently, i.e., we have been not aware of the Denoeux's orderings when our concept has been developed. In Section 3.2, we will present the relationship between our approach and two of the credal orderings.

3.1. Problem formulation

We consider a multicriteria problem which can be represented by three elements: the actions, the ordinal criteria and the criteria assessment grades. At first, we will consider situations where only one expert evaluates the alternatives. In what follows, let:

- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be the set of actions.
- $G=\left\{g_{1}, g_{2}, \ldots, g_{q}\right\}$ be the set of ordinal criteria.
- $X^{h}=\left\{x_{1}^{h}, x_{2}^{h}, \ldots, x_{r_{h}}^{h}\right\}$ be the set of the ordinal assessment grades of the criterion g_{h}.

The n alternatives are assessed, on each criterion g_{h}, using the same set of the r_{h} ordinal assessment grades x_{j}^{h} (with $j=1,2, \ldots, r_{h}$) which are required to be mutually exclusive and exhaustive. The r_{h} ordinal assessment grades constitute the frame of discernment in evidence theory and are defined such as the first ordinal grade x_{1}^{h} is less preferred than the second ordinal grade x_{2}^{h} and so on, i.e., $x_{1}^{h} \prec x_{2}^{h} \prec \cdots \prec x_{r_{h}}^{h}$. Thus, we have a total order of the ordinal assessment grades on each criterion g_{h}.

The evaluation of each action a_{i} with respect to each criterion g_{h} is given by a normal BBA of which the focal sets are subsets of the set X^{h}. Formally, this BBA is defined as a function $m_{i}^{h}: 2^{X^{h}} \rightarrow[0,1]$ such as $m_{i}^{h}(\varnothing)=0$ and $\sum_{c \subseteq X^{h}} m_{i}^{h}(C)=1$. In the case where the expert is unable to express the assessment of action a_{i} on criterion g_{h}, the evaluation of a_{i} is represented by a vacuous BBA, i.e., the total mass is assigned to the frame X^{h}.

In order to compare the BBAs that represent the evaluations of alternatives with respect to each criterion, we propose a new concept called "the first belief dominance". This is naturally inspired by the concept of first stochastic dominance. Before describing it, some notations should be clarified.

Let a_{i} and $a_{i^{\prime}}$ be two different actions and let m_{i}^{h} and $m_{i^{\prime}}^{h}$ be, respectively, the BBAs of a_{i} and $a_{i^{\prime}}$ defined on the frame X^{h} of each criterion g_{h}.

For all $h \in\{1,2, \ldots, q\}$ and for all $k \in\left\{0,1, \ldots, r_{h}\right\}$, let:

$$
A_{k}^{h}= \begin{cases}\varnothing & \text { if } k=0 \tag{7}\\ \left\{x_{1}^{h}, \ldots, x_{k}^{h}\right\} & \text { otherwise }\end{cases}
$$

and let $\vec{S}\left(X^{h}\right)$ denote the set $\left\{A_{1}^{h}, A_{2}^{h}, \ldots, A_{r_{h}}^{h}\right\}$. Similarly, for all $h \in\{1,2, \ldots, q\}$ and for all $l \in\left\{0,1, \ldots, r_{h}\right\}$ such as $l=r_{h}-k$, let:

$$
B_{l}^{h}= \begin{cases}\varnothing & \text { if } l=0 \tag{8}\\ \left\{x_{r_{h}-l+1}^{h}, \ldots, x_{r_{h}}^{h}\right\} & \text { otherwise }\end{cases}
$$

and let $\overleftarrow{S}\left(X^{h}\right)$ denote the set $\left\{B_{1}^{h}, B_{2}^{h}, \ldots, B_{r_{h}}^{h}\right\}$.
$\bar{A}^{h} k$ and l represent, respectively the number of elements of the sets A_{k}^{h} and B_{l}^{h}. Obviously, $\left|\vec{S}\left(X^{h}\right)\right|=\left|\overleftarrow{S}\left(X^{h}\right)\right|=r_{h}$, $\overline{A_{k}^{h}}=B_{r_{h}-k}^{h}=B_{l}^{h}$ for all $k \in\left\{0,1, \ldots, r_{h}\right\}$ and $\overline{B_{l}^{h}}=A_{r_{h}-l}^{h}=A_{k}^{h}$ for all $l \in\left\{0,1, \ldots, r_{h}\right\}$.

3.2. Definitions

Definition 1. The ascending belief function noted $\overrightarrow{B e l_{i}^{h}}$, induced by m_{i}^{h} and associating to the evaluation of action a_{i} with respect to criterion g_{h}, is a function $\overrightarrow{B e l_{i}^{h}}: \vec{S}\left(X^{h}\right) \rightarrow[0,1]$ defined such as $\overrightarrow{B e l_{i}^{h}}\left(A_{k}^{h}\right)=\sum_{C \subseteq A_{k}^{h}} m_{i}^{h}(C)$ for all $A_{k}^{h} \in \vec{S}\left(X^{h}\right)$.
Definition 2. The descending belief function noted $\overleftarrow{B e l_{i}^{h}}$, induced by m_{i}^{h} and associating to the evaluation of action a_{i} with respect to criterion g_{h}, is a function $\overleftarrow{\operatorname{Bel}_{i}^{h}}: \overleftarrow{S}\left(X^{h}\right) \rightarrow[0,1]$ defined such as $\overleftarrow{B e l_{i}^{h}}\left(B_{l}^{h}\right)=\sum_{C \subseteq B_{l}^{h}} m_{i}^{h}(C)$ for all $B_{l}^{h} \in \overleftarrow{S}\left(X^{h}\right)$.

The third definition is that of the first belief dominance. This condition holds between two BBAs m_{i}^{h} and $m_{i^{\prime}}^{h}$ whenever the two following conditions are verified simultaneously:

- The ascending belief function $\overrightarrow{\text { Bel }_{i}^{h}}$ lies, entirely or partly, below the ascending belief function $\overrightarrow{B_{l}^{h} l_{i}^{h}}$.
- The descending belief function $\overleftarrow{B e l_{i}^{h}}$ lies, entirely or partly, above the descending belief function $\overleftarrow{B e l_{i}^{h}}$.

Definition 3. m_{i}^{h} is said to dominate $m_{i^{\prime}}^{h}$ according the first belief dominance if and only if the following two conditions are verified simultaneously:

- For all $A_{k}^{h} \in \vec{S}\left(X^{h}\right), \overrightarrow{\operatorname{Bel}_{i}^{h}}\left(A_{k}^{h}\right) \leqslant \overrightarrow{\operatorname{Bel}_{i^{\prime}}}\left(A_{k}^{h}\right)$.
- For all $B_{l}^{h} \in \overleftarrow{S}\left(X^{h}\right), \overleftarrow{\operatorname{Bel}_{i}^{h}}\left(B_{l}^{h}\right) \geqslant \overleftarrow{\operatorname{Bel}_{i^{\prime}}^{h}}\left(B_{l}^{h}\right)$.

The first condition means that there is greater belief mass under $\overrightarrow{\operatorname{Bel}_{i^{h}}}$ than $\overrightarrow{\operatorname{Bel}_{i}^{h}}$ for all $A_{k}^{h} \in \vec{S}\left(X^{h}\right)$. On the contrary, the second condition means that there is greater belief mass under $\overleftarrow{B e l_{i}^{h}}$ then $\overleftarrow{B e l_{i^{\prime}}^{h}}$ for all $B_{l}^{h} \in \overleftarrow{S}\left(X^{h}\right)$.

In the case where the two conditions are not verified simultaneously, then m_{i}^{h} does not dominate m_{i}^{h} according the first belief dominance concept. As a conclusion, two situations are identified in our approach: FBD identifies first belief dominance situations consistent with the conditions imposed by Definition 3, and $\overline{\mathrm{FBD}}$ designates those which are not consistent with these conditions. In what follows, we denote:

- $m_{i}^{h} \mathrm{FBD} m_{i^{\prime}}^{h}$ if m_{i}^{h} dominates $m_{i^{\prime}}^{h}$ according the first belief dominance approach,
- $m_{i}^{h} \overline{\mathrm{FBD}} m_{i^{\prime}}^{h}$ if m_{i}^{h} does not dominate $m_{i^{\prime}}^{h}$ according the first belief dominance approach.

There is a relationship between the first belief dominance concept and two of Denoeux's orderings. Denoting A_{k}^{h} and B_{l}^{h}, respectively as $\left[x_{1}^{h}, x_{k}^{h}\right]$ and $\left[x_{r_{h}-l+1}^{h}, x_{r_{h}}^{h}\right]$, we have:
$\overrightarrow{\operatorname{Bel}_{i}^{h}}\left(A_{k}^{h}\right)=\operatorname{Bel}_{i}^{h}\left(\left[x_{1}^{h}, x_{k}^{h}\right]\right)= \begin{cases}1-\operatorname{Pl}_{i}^{h}\left(\left[x_{k+1}^{h}, x_{r_{h}}^{h}\right]\right) & \begin{array}{l}\text { if } k<r_{h} \\ 1\end{array} \\ \text { otherwise },\end{cases}$

- $\overleftrightarrow{\operatorname{Bel}_{i}^{h}}\left(B_{l}^{h}\right)=\operatorname{Bel}_{i}^{h}\left(\left[x_{r_{h}-l+1}^{h}, x_{r_{h}}^{h}\right]\right)=\operatorname{Bel}_{i}^{h}\left(\left[x_{k+1}^{h}, x_{r_{h}}^{h}\right]\right)$ if $k<r_{h}$.
Consequently, m_{i}^{h} dominates $m_{i^{\prime}}^{h}$ according to the first belief dominance if and only if for all $k \in\left\{1,2, \ldots, r_{h}\right\}, P l_{i}^{h}\left(\left[x_{k}^{h}, x_{r_{h}}^{h}\right]\right) \geqslant P l_{i^{\prime}}^{h}\left(\left[x_{k}^{h}, x_{r_{h}}^{h}\right]\right)$ and $\operatorname{Bel}_{i}^{h}\left(\left[x_{k}^{h}, x_{r_{h}}^{h}\right]\right) \geqslant \operatorname{Bel}_{i^{\prime}}^{h}\left(\left[x_{k}^{h}, x_{r_{h}}^{h}\right]\right)$. Using Denoeux's notations, m_{i}^{h} dominates $m_{i^{\prime}}^{h}$ if and only if $m_{i}^{h}>m_{i^{\prime}}^{h}$ and $m_{i}^{h} \geqslant m_{i^{\prime}}^{h}$.

3.3. Partial preferences between alternatives

As indicated above, the performances of the alternatives with respect to each criterion are expressed by BBAs. In multicriteria decision problems, it is always necessary to determine the preferences between alternatives on each criterion in order to apply a multicriteria procedure.

The first belief dominance concept allows concluding if m_{i}^{h} dominates $m_{i^{\prime}}^{h}$ or not and consequently if the evaluation of a_{i} is at least as good as the evaluation of $a_{i^{\prime}}$ or not. Furthermore, it permits establishing four partial preference situations between the actions performances:

- If $m_{i}^{h} \mathrm{FBD} m_{i^{\prime}}^{h}$ and $m_{i \prime}^{h} \mathrm{FBD} m_{i}^{h}$, then m_{i}^{h} is indifferent to $m_{i^{\prime}}^{h}$. So, a_{i} is indifferent to $a_{i^{\prime}}$ on criterion g_{h}.
- If $m_{i}^{h} \mathrm{FBD} m_{i^{\prime}}^{h}$ and $m_{i j}^{h} \overline{\mathrm{FBD}} m_{i}^{h}$, then m_{i}^{h} is strictly preferred to $m_{i^{\prime}}^{h}$. So, a_{i} is strictly preferred to $a_{i^{\prime}}$ on criterion g_{h}.
- If $m_{i}^{h} \overline{\mathrm{FBD}} m_{i^{\prime}}^{h}$ and $m_{i j}^{h} \mathrm{FBD} m_{i}^{h}$, then $m_{i^{\prime}}^{h}$ is strictly preferred to m_{i}^{h}. So, $a_{i^{\prime}}$ is strictly preferred to a_{i} on criterion g_{h}.
- If $m_{i}^{h} \overline{\mathrm{FBD}} m_{i^{h}}^{h}$ and $m_{i,}^{h} \overline{\mathrm{FBD}} m_{i}^{h}$, then m_{i}^{h} and $m_{i^{h}}^{h}$ are incomparable. So, a_{i} and $a_{i^{\prime}}$ are incomparable on criterion g_{h}.

The incomparability situation appears between two alternatives when their evaluations given by BBAs differ significantly. This information may be important especially in decision problems where incomparability is allowed.

Example 1. In order to illustrate the first belief dominance concept, let us consider the following simple example in which three actions are evaluated on the basis of two ordinal criteria g_{1} and g_{2}. Let $X^{1}=\left\{x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right\}$ and $X^{2}=\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\}$ be, respectively the assessment grades sets of g_{1} and g_{2} such as $x_{1}^{1} \prec x_{2}^{1} \prec x_{3}^{1}$ and $x_{1}^{2} \prec x_{2}^{2} \prec x_{3}^{2}$. The evaluations are expressed by BBAs and given in Table 1.

To apply the first belief dominance approach, it is first necessary to determine on each criterion the ascending and descending belief functions:

Table 1
BBA's characterizing the actions performances.

	g_{1}	g_{2}
a_{1}	$m_{1}^{1}\left(x_{1}^{1}\right)=0.2$	$m_{1}^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=0.7$
	$m_{1}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.4$	$m_{1}^{2}\left(x_{2}^{2}, x_{3}^{2}\right)=0.3$
	$m_{1}^{1}\left(x_{3}^{1}\right)=0.4$	
a_{2}	$m_{2}^{1}\left(x_{1}^{1}\right)=0.2$	$m_{2}^{2}\left(x_{1}^{2}\right)=0.64$
	$m_{2}^{1}\left(x_{2}^{1}\right)=0.4$	$m_{2}^{2}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right)=0.36$
a_{3}	$m_{2}^{1}\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right)=0.4$	$m_{3}^{2}\left(x_{1}^{2}\right)=0.6$
	$m_{3}^{1}\left(x_{2}^{1}, x_{3}^{1}\right)=1$	$m_{3}^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=0.4$

- On criterion g_{1} :

$$
\begin{aligned}
& a_{1}\left\{\begin{array}{l}
\overrightarrow{\operatorname{Bel}_{1}^{1}}\left(A_{1}^{1}\right)=\overrightarrow{\operatorname{Bel}_{1}^{1}}\left(\left\{x_{1}^{1}\right\}\right)=0.2 \\
\overrightarrow{\operatorname{Bel}_{1}^{1}}\left(A_{2}^{1}\right)=\overrightarrow{\operatorname{Bel}_{1}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}\right\}\right)=0.6 \\
\overrightarrow{\operatorname{Bel}}\left(A_{3}^{1}\right)=\overrightarrow{\operatorname{Bel}_{1}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right\}\right)=1
\end{array}\right. \\
& a_{2}\left\{\begin{array}{l}
\overrightarrow{\operatorname{Bel}_{2}^{1}}\left(A_{1}^{1}\right)=\overrightarrow{\operatorname{Bel}_{2}^{1}}\left(\left\{x_{1}^{1}\right\}\right)=0.2 \\
\overrightarrow{\operatorname{Bel}_{2}^{1}}\left(A_{2}^{1}\right)=\overrightarrow{\operatorname{Bel}_{2}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}\right\}\right)=0.6 \\
\overrightarrow{\operatorname{Bel}_{2}^{1}}\left(A_{3}^{1}\right)=\overrightarrow{\operatorname{Bel}_{2}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right\}\right)=1
\end{array}\right. \\
& a_{3}\left\{\begin{array}{l}
\overrightarrow{\operatorname{Bel}_{3}^{1}}\left(A_{1}^{1}\right)=\overrightarrow{\operatorname{Bel}_{3}^{1}}\left(\left\{x_{1}^{1}\right\}\right)=0 \\
\overrightarrow{\operatorname{Bel}_{3}^{1}}\left(A_{2}^{1}\right)=\overrightarrow{\operatorname{Bel}_{3}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}\right\}\right)=0 \\
\overrightarrow{\operatorname{Bel}_{3}^{1}}\left(A_{3}^{1}\right)=\overrightarrow{\operatorname{Bel}_{3}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right\}\right)=1
\end{array}\right. \\
& a_{1}\left\{\begin{array}{l}
\overleftarrow{\operatorname{Bel}_{1}^{1}}\left(B_{1}^{1}\right)=\overleftarrow{\operatorname{Bel}_{1}^{1}}\left(\left\{x_{3}^{1}\right\} 1\right)=0.4 \\
\overleftarrow{\operatorname{Bel}_{1}^{1}}\left(B_{2}^{1}\right)=\overleftarrow{\operatorname{Bel}_{1}^{1}}\left(\left\{x_{2}^{1}, x_{3}^{1}\right\}\right)=0.4 \\
\overleftarrow{\operatorname{Bel}_{1}^{1}}\left(B_{3}^{1}\right)=\overleftarrow{\operatorname{Bel}_{1}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right\}\right)=1
\end{array}\right. \\
& a_{2}\left\{\begin{array}{l}
\overleftarrow{\operatorname{Bel}_{2}^{1}}\left(B_{1}^{1}\right)=\overleftarrow{\operatorname{Bel}_{2}^{1}}\left(\left\{x_{3}^{1}\right\}\right)=0 \\
\overleftarrow{\operatorname{Bel}_{2}^{1}}\left(B_{2}^{1}\right)=\overleftarrow{\operatorname{Bel}_{2}^{1}}\left(\left\{x_{2}^{1}, x_{3}^{1}\right\}\right)=0.4 \\
\overleftarrow{\operatorname{Bel}_{2}^{1}}\left(B_{3}^{1}\right)=\overleftarrow{\operatorname{Bel}_{2}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right\}\right)=1
\end{array}\right. \\
& a_{3}\left\{\begin{array}{l}
\overleftarrow{\operatorname{Bel}_{3}^{1}}\left(B_{1}^{1}\right)=\overleftarrow{\operatorname{Bel}_{3}^{1}}\left(\left\{x_{3}^{1}\right\}\right)=0 \\
\overleftarrow{\operatorname{Bel}_{3}^{1}}\left(B_{2}^{1}\right)=\overleftarrow{\operatorname{Bel}_{3}^{1}}\left(\left\{x_{2}^{1}, x_{3}^{1}\right\}\right)=1 \\
\overleftarrow{\operatorname{Bel}_{3}^{1}}\left(B_{3}^{1}\right)=\overleftarrow{\operatorname{Bel}_{3}^{1}}\left(\left\{x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right\}\right)=1
\end{array}\right.
\end{aligned}
$$

- On criterion g_{2} :

$$
\begin{aligned}
& a_{1}\left\{\begin{array} { l }
{ \vec { \operatorname { B e l } _ { 1 } ^ { 2 } } (A _ { 1 } ^ { 2 }) = \vec { \operatorname { B e l } _ { 1 } ^ { 2 } } (\{ x _ { 1 } ^ { 2 } \}) = 0 } \\
{ \vec { \operatorname { B e l } _ { 1 } ^ { 2 } } (A _ { 2 } ^ { 2 }) = \vec { \operatorname { B e l } _ { 1 } ^ { 2 } } (\{ x _ { 1 } ^ { 2 } , x _ { 2 } ^ { 2 } \}) = 0 . 7 } \\
{ \vec { \operatorname { B e l } _ { 1 } ^ { 2 } } (A _ { 3 } ^ { 2 }) = \vec { \operatorname { B e l } _ { 1 } ^ { 2 } } (\{ x _ { 1 } ^ { 2 } , x _ { 2 } ^ { 2 } , x _ { 3 } ^ { 2 } \}) = 1 }
\end{array} \quad a _ { 2 } \quad \left\{\begin{array}{l}
\overrightarrow{\operatorname{Bel}_{2}^{2}}\left(A_{1}^{2}\right)=\overrightarrow{\operatorname{Bel}_{2}^{2}}\left(\left\{x_{1}^{2}\right\}\right)=0.64 \\
\overrightarrow{\operatorname{Bel}_{2}^{2}}\left(A_{2}^{2}\right)=\overrightarrow{\operatorname{Bel}_{2}^{2}}\left(\left\{x_{1}^{2}, x_{2}^{2}\right\}\right)=0.64 \\
\overrightarrow{\operatorname{Bel}_{2}^{2}}\left(A_{3}^{2}\right)=\overrightarrow{\operatorname{Bel}_{2}^{2}}\left(\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\}\right)=1
\end{array}\right.\right. \\
& a_{3}\left\{\begin{array}{l}
\overrightarrow{\operatorname{Bel}_{3}^{2}}\left(A_{1}^{2}\right)=\overrightarrow{\operatorname{Bel}_{3}^{2}}\left(\left\{x_{1}^{2}\right\}\right)=0.6 \\
\overrightarrow{\operatorname{Bel}_{3}^{2}}\left(A_{2}^{2}\right)=\overrightarrow{\operatorname{Bel}_{3}^{2}}\left(\left\{x_{1}^{2}, x_{2}^{2}\right\}\right)=1 \\
\overrightarrow{\operatorname{Bel}_{3}^{2}}\left(A_{3}^{2}\right)=\overrightarrow{\operatorname{Bel}_{3}^{2}}\left(\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\}\right)=1
\end{array}\right. \\
& a_{1}\left\{\begin{array}{l}
\overleftarrow{\operatorname{Bel}_{1}^{2}}\left(B_{1}^{2}\right)=\overleftarrow{\operatorname{Bel}_{1}^{2}}\left(\left\{x_{3}^{2}\right\}\right)=0 \\
\overleftarrow{\operatorname{Bel}_{1}^{2}}\left(B_{2}^{2}\right)=\overleftarrow{\operatorname{Bel}_{1}^{2}}\left(\left\{x_{2}^{2}, x_{3}^{2}\right\}\right)=0.3 \\
\overleftarrow{\operatorname{Bel}_{1}^{2}}\left(B_{3}^{2}\right)=\overleftarrow{\operatorname{Bel}_{1}^{2}}\left(\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\}\right)=1
\end{array}\right. \\
& a_{2}\left\{\begin{array}{l}
\overleftarrow{\operatorname{Bel}_{2}^{2}}\left(B_{1}^{2}\right)=\overleftarrow{\operatorname{Bel}_{2}^{2}}\left(\left\{x_{3}^{2}\right\}\right)=0 \\
\overleftarrow{\operatorname{Bel}_{2}^{2}}\left(B_{2}^{2}\right)=\overleftarrow{\operatorname{Bel}_{2}^{2}}\left(\left\{x_{2}^{2}, x_{3}^{2}\right\}\right)=0 \\
\overleftarrow{\operatorname{Bel}_{2}^{2}\left(B_{3}^{2}\right)=\overleftarrow{\operatorname{Bel}_{2}^{2}}\left(\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\}\right)=1}
\end{array}\right. \\
& a_{3}\left\{\begin{array}{l}
\overleftarrow{\operatorname{Bel}_{3}^{2}}\left(B_{1}^{2}\right)=\overleftarrow{\operatorname{Bel}_{3}^{2}}\left(\left\{x_{3}^{2}\right\}\right)=0 \\
\overleftarrow{\operatorname{Bel}_{3}^{2}}\left(B_{2}^{2}\right)=\overleftarrow{\operatorname{Bel}_{3}^{2}}\left(\left\{x_{2}^{2}, x_{3}^{2}\right\}\right)=0 \\
\overleftarrow{\operatorname{Bel}_{3}^{2}}\left(B_{3}^{2}\right)=\overleftarrow{\operatorname{Bel}_{3}^{2}}\left(\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\}\right)=1
\end{array}\right.
\end{aligned}
$$

Then, the first belief dominance concept is applied to compare on each criterion the actions performances. The observed belief dominances on each criterion are illustrated on Tables 2 and 3.

Finally, based on the observed belief dominances on each criterion, the partial preference situations between the actions are established:

- On criterion g_{1} :
- $m_{1}^{1} \mathrm{FBD} m_{2}^{1}$ and $m_{2}^{1} \overline{\mathrm{FBD}} m_{1}^{1}$, then a_{1} is strictly preferred to a_{2};
- $m_{1}^{1} \overline{\mathrm{FBD}} m_{3}^{1}$ and $m_{3}^{1} \overline{\mathrm{FBD}} m_{1}^{1}$, then a_{1} and a_{3} are incomparable;

Table 2
Observed belief dominances between the alternatives on criterion g_{1}.

	a_{1}	a_{2}	a_{3}
a_{1}	-	$\overline{\mathrm{FBD}}$	
a_{2}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	
a_{3}	$\overline{\mathrm{FBD}}$	-	FBD

Table 3
Observed belief dominances between the alternatives on criterion g_{2}.

	a_{1}	a_{2}	a_{3}
a_{1}	-	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$
a_{2}	$\overline{\mathrm{FBD}}$	-	$\overline{\mathrm{FBD}}$
a_{3}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	

- $m_{2}^{1} \overline{\mathrm{FBD}} m_{3}^{1}$ and $m_{3}^{1} \mathrm{FBD} m_{2}^{1}$, then a_{3} is strictly preferred to a_{2}.
- On criterion g_{2} :
- $m_{1}^{2} \overline{\mathrm{FBD}} m_{2}^{2}$ and $m_{2}^{2} \overline{\mathrm{FBD}} m_{1}^{2}$, then a_{1} and a_{2} are incomparable;
- $m_{1}^{2} \mathrm{FBD} m_{3}^{2}$ and $m_{3}^{2} \overline{\mathrm{FBD}} m_{1}^{2}$, then a_{1} is strictly preferred to a_{3};
- $m_{2}^{2} \overline{\mathrm{FBD}} m_{3}^{2}$ and $m_{3}^{2} \overline{\mathrm{FBD}} m_{2}^{2}$, then a_{2} and a_{3} are incomparable.

3.4. First stochastic dominance: a particular case of first belief dominance

Of course, it seems natural that the first belief dominance definition coincides with the first stochastic dominance definition in the context of Bayesian belief functions. This result is contained in Denoeux's paper [35].

The first stochastic dominance is defined as follows. Let p_{i}^{h} and $p_{i^{\prime}}^{h}$ denote the probability functions associating to the evaluations of actions a_{i} and $a_{i^{\prime}}$ with respect to criterion g_{h}, and let P_{i}^{h} and $P_{i^{\prime}}^{h}$ be, respectively their cumulative distributions. According to [14], p_{i}^{h} is said to dominate $p_{i^{\prime}}^{h}$ according the first stochastic dominance if and only if for all $x_{j}^{h} \in X^{h}, P_{i}^{h}\left(x_{j}^{h}\right) \leqslant P_{i^{\prime}}^{h}\left(x_{j}^{h}\right)$.
Proposition 1. If Bel l_{i}^{h} and Bel $_{i^{\prime}}^{h}$ are two Bayesian belief functions over the frame X^{h}, then the two conditions of Definition 3 are equivalent.
Proof 1. If $B e l_{i}^{h}$ is a Bayesian belief function over the frame X^{h}, then $\overrightarrow{B e l_{i}^{h}}\left(A_{k}^{h}\right)+\overrightarrow{B e l_{i}^{h}}\left(\overrightarrow{A_{k}^{h}}\right)=1$ for all $k=0,1, \ldots, r_{h}$. Or, we have $\overrightarrow{A_{k}^{h}}=B_{r_{h}-k}^{h}=B_{l}^{h}$ for all $k=0,1, \ldots, r_{h}$, thus $\overrightarrow{\operatorname{Bel}_{i}^{h}}\left(A_{k}^{h}\right)+\overleftarrow{\operatorname{Bel}_{i}^{h}}\left(B_{l}^{h}\right)=1$. The first condition of Definition 3 can be written as $1-\overrightarrow{\operatorname{Bel}_{i}^{h}}\left(A_{k}^{h}\right) \geqslant 1-\overrightarrow{\operatorname{Bel}_{i^{\prime}}^{h}}\left(A_{k}^{h}\right)$ for all $k=1,2, \ldots, r_{h}$, then $\overleftarrow{\operatorname{Bel}_{i}^{h}}\left(B_{l}^{h}\right) \geqslant \overleftarrow{\operatorname{Bel}_{i^{\prime}}^{h}}\left(B_{l}^{h}\right)$ for all $l=0,1, \ldots, r_{h}-1$. As a result, the two conditions of Definition 3 are equivalent when $B e l_{i}^{h}$ and $B e l_{i^{\prime}}^{h}$ are Bayesian belief functions.

Proposition 2. If Bel i_{i}^{h} and Bel $_{i^{\prime}}^{h}$ are two Bayesian belief functions over the frame X^{h}, then the first stochastic dominance is a particular case of the first belief dominance.

Proof 2. According to Proposition 1, since the two conditions of Definition 3 are equivalent, then m_{i}^{h} dominates $m_{i^{\prime}}^{h}$ according the first belief dominance if and only if $\overrightarrow{\operatorname{Bel}_{i}^{h}}\left(A_{k}^{h}\right) \leqslant \overrightarrow{\operatorname{Bel}_{i^{\prime}}}\left(A_{k}^{h}\right)$ for all $A_{k}^{h} \in \vec{S}\left(X^{h}\right)$. Bel l_{i}^{h} is a Bayesian belief function, then all the focal sets of m_{i}^{h} are singletons. As a result, $\overrightarrow{\operatorname{Bel}_{i}^{h}}\left(A_{k}^{h}\right)=\sum_{j=1}^{k} m_{i}^{h}\left(x_{j}^{h}\right)=P_{i}^{h}\left(x_{k}^{h}\right)$ for all $A_{k}^{h} \in \vec{S}\left(X^{h}\right)$. Therefore, m_{i}^{h} dominates $m_{i^{\prime}}^{h}$ according our approach if and only if $P_{i}^{h}\left(x_{j}^{h}\right) \leqslant P_{i^{\prime}}^{h}\left(x_{j}^{h}\right)$ for all $x_{j}^{h} \in X^{h}$. So, the first stochastic dominance is a particular case of the first belief dominance.

Before ending this section, let us note that the first belief dominance approach provides a uniform treatment not only for evaluations expressed by BBAs and probability functions, but also for evaluations given by possibility measures. In this case, the close connection between possibility distributions and consonant belief structures is exploited to transform the distribution containing the possible evaluations into a consonant belief structure, i.e., a BBA with nested focal sets [7].

Similarly, it is worth mentioning that the dominance (the non dominance, resp.) according the first belief dominance approach does not imply necessarily the dominance (the non dominance, resp.) according the stochastic one when applying the second approach on the pignistic probability functions associated to the considered BBAs. Indeed, it is possible to have
two BBAs such that the first one dominates (does not dominate, resp.) the second one according the first belief dominance approach whereas this does not hold according the stochastic ordering. Example 2 illustrates these situations.

Example 2. The objective of this example is to show the difference between the first belief and stochastic dominance approaches when using the second approach to compare the pignistic probability functions derived from the considered BBAs.

Let us consider again the data of Example 1. It is easy to build for each BBA its related pignistic probability function BetPh using the pignistic transformation. Table 4 presents the pignistic probability distributions related to the BBAs that describe the actions performances.

The first stochastic dominance concept is used to compare the actions according to each criterion. In order to apply this approach, the cumulative distributions associated to the pignistic probability functions are computed. Then, the observed stochastic dominances between alternatives are determined on each criterion. Two situations are identified: FSD identifies the situations consistent with the first stochastic dominance theorem, and $\overline{\text { FSD }}$ designates those which are not consistent with this theorem. The observed stochastic dominances on each criterion are given respectively on Tables 5 and 6.

Based on these results and those achieved in Example 1, we remark that the first belief and stochastic dominance approaches lead to similar results except in the following cases:

- $m_{1}^{1} \mathrm{FBD} m_{2}^{1}$ whereas $\operatorname{Bet} P_{1}^{1} \overline{\mathrm{FSD}} \operatorname{Bet} P_{2}^{1}$,
- $m_{3}^{1} \overline{\mathrm{FBD}} m_{1}^{1}$ whereas $\operatorname{BetP}_{3}^{1}$ FSDBet P_{1}^{1},
- $m_{1}^{2} \overline{\mathrm{FBD}} m_{2}^{2}$ whereas $\operatorname{Bet} P_{1}^{2} \mathrm{FSDBetP}_{2}^{2}$,
- $m_{2}^{2} \overline{\mathrm{FBD}} m_{3}^{2}$ whereas $\operatorname{Bet} P_{2}^{2} \mathrm{FSDBetP}_{3}^{2}$.

Therefore, the dominance (the non dominance, resp.) according the first belief dominance approach does not imply necessarily the dominance (the non dominance, resp.) according the stochastic one when using the last approach on the pignistic probability functions.

4. The model

In this section, we propose a model inspired by ELECTRE I method [5,13] to build a binary outranking relation in uncertain imprecise and multi-experts contexts.

Table 4
Pignistic probability functions associated to the BBA's characterizing the actions performances.

	g_{1}	g_{2}
a_{1}	$\operatorname{Bet} P_{1}^{1}\left(x_{1}^{1}\right)=0.4$	$\operatorname{Bet} P_{1}^{2}\left(x_{1}^{2}\right)=0.35$
	$\operatorname{Bet} P_{1}^{1}\left(x_{2}^{1}\right)=0.2$	$\operatorname{Bet} P_{1}^{2}\left(x_{2}^{2}\right)=0.5$
	$\operatorname{Bet} P_{1}^{1}\left(x_{3}^{1}\right)=0.4$	$\operatorname{Bet} P_{1}^{2}\left(x_{3}^{2}\right)=0.15$
		$\operatorname{Bet} P_{2}^{2}\left(x_{1}^{2}\right)=0.76$
$a_{2}\left(x_{1}^{1}\right)=0.333$	$\operatorname{Bet} P_{2}^{2}\left(x_{2}^{2}\right)=0.12$	
	$\operatorname{Bet} P_{2}^{1}\left(x_{2}^{1}\right)=0.533$	$\operatorname{Bet} P_{2}^{2}\left(x_{3}^{2}\right)=0.12$
	$\operatorname{Bet} P_{2}^{1}\left(x_{3}^{1}\right)=0.133$	$\operatorname{Bet} P_{3}^{2}\left(x_{1}^{2}\right)=0.8$
a_{3}	$\operatorname{Bet} P_{3}^{1}\left(x_{2}^{1}\right)=0.5$	$\operatorname{Bet} P_{3}^{2}\left(x_{2}^{2}\right)=0.2$

Table 5
Observed stochastic dominances between the alternatives on criterion g_{1}.

	a_{1}	a_{2}	
a_{1}	-	$\overline{\text { FSD }}$	a_{3}
a_{2}	$\overline{\text { FSD }}$	-	
a_{3}	FSD	$\overline{\text { FSD }}$	

Table 6
Observed stochastic dominances between the alternatives on criterion g_{2}.

	a_{1}	a_{2}	a_{3}
a_{1}	-	FSD	FSD
a_{2}	$\overline{\text { FSD }}$	-	FSD
a_{3}	$\overline{\mathrm{FSD}}$	$\overline{\text { FSD }}$	-

ELECTRE I is a multicriteria outranking method that consists in choosing a subset of actions considered as the best according to the criteria set. It is close to the Condorcet rule that has been developed in the context of voting theory. The underlying idea is first to build a binary relation denoted S between pairs of alternatives and then to exploit this relation to select the subset of "best" actions. Intuitively, $a_{i} S a_{i^{\prime}}$ is interpreted as " a_{i} is at least as good as $a_{i^{\prime}}$ ". Therefore, a_{i} must be at least as good as $a_{i^{\prime}}$ on a sufficiently important coalition of criteria without being much worst on any criterion. More formally, we assume that:

- All the criteria have to be maximized.
- The decision maker has provided a set of weights, denoted w_{h}, representing the relative importance of the criteria. Furthermore, we assume that $w_{h} \geqslant 0(h=1,2, \ldots, q)$ and $\sum_{h=1}^{q} w_{h}=1$.
- The decision maker has provided an acceptability threshold denoted c and a veto threshold denoted v.

Following the intuition explained before, both a concordance index denoted $C\left(a_{i} S a_{i^{\prime}}\right)$, and a discordance index denoted $D\left(a_{i} S a_{i^{\prime}}\right)$, are computed as follows:

$$
\begin{align*}
& C\left(a_{i} S a_{i^{\prime}}\right)=\sum_{\left\{h: g_{h}\left(a_{i}\right) \geqslant g_{h}\left(a_{i^{\prime}}\right)\right\}} w_{h} \tag{9}\\
& D\left(a_{i} S a_{i^{\prime}}\right)=\max _{\left\{h: g_{h}\left(a_{i}\right)<g_{h}\left(a_{i^{\prime}}\right)\right\}}\left(g_{h}\left(a_{i^{\prime}}\right)-g_{h}\left(a_{i}\right)\right) \tag{10}
\end{align*}
$$

Based on these two indices, one is able to define the S relation in the following way:

$$
a_{i} S a_{i^{\prime}} \Longleftrightarrow\left\{\begin{array}{l}
C\left(a_{i} S a_{i^{\prime}}\right) \geqslant c \tag{11}\\
D\left(a_{i} S a_{i^{\prime}}\right) \leqslant v
\end{array}\right.
$$

The selection of "best" alternatives is based on the kernel of the graph induced by all the binary outranking relations.
In what follows, we will describe our model inspired by ELECTRE I. For the sake of simplicity, we will only consider the concordance index when the binary outranking relations are built. At first, we assume that the experts are non-equivalent in their importance within the group. We further assume that several experts have expressed their assessments for actions set with respect to criteria set. This information is provided on the form of BBAs. In what follows, let:

- w_{f} be the importance of expert E_{f} within the group (with $f=1,2, \ldots, s$);
- $m_{i f f}^{h}$ be the BBA that represents the evaluation of action a_{i} according criterion g_{h} and given by expert E_{f}.

Furthermore, we propose to model the criteria weights by means of a BBA. Let m_{G} be the BBA that defines the inter-criteria information and Bel_{G} its associated belief function. Intuitively, $m_{G}(T)$ represents the weight committed exactly to the criteria set T and $\operatorname{Bel}_{G}(T)$ represents the total weight assigned to this set. Thus, in addition to the usual weights on criteria taken separately, weights on coalitions of criteria can also be defined. The weight assigned to a criteria set quantifies the synergy between the criteria that compose this set. Of course, if Bel_{G} is as Bayesian belief function, m_{G} is nothing else than the weighted sum. In this case, we consider that there is no synergy between criteria.

The steps of the proposed model are the following. At first, the first belief dominance approach is applied by each expert to compare his/her individual BBAs. Based on the observed individual belief dominances on each criterion, each expert builds his/her individual binary outranking relations between the actions and so his/her individual outranking graph. Then, the algorithm AL3 proposed by Jabeur and Martel [19] is used to aggregate the individual outranking graphs in order to establish a collective one which is at minimum distance from those. This algorithm takes into account the coefficients of the experts' relative importance. Finally, the collective outranking graph is exploited to determine the subset of the "best" alternatives.

4.1. Comparison between the individual BBAs

In the first step of the model, the individual BBAs given by each expert and characterizing the actions performances on each criterion are compared. The first belief dominance concept is used by each expert to perform comparisons between the pairs of alternatives on each criterion.

As indicated previously, this approach allows concluding clearly if a given action is at least as good as another action on a given criterion or not, i.e., if there is a dominance according the first belief dominance approach or not. Once the belief dominances between the alternatives on each criterion are determined by each expert, they are exploited in the next step to build the individual binary outranking relations.

4.2. Building the individual outranking graphs

The use of the first belief dominance concept by each expert E_{f} allows identifying the coalition of criteria, denoted D_{f}, for which a given action a_{i} is at least as good as another action $a_{i^{\prime}}$. More formally:

$$
\begin{equation*}
D_{f}=\left\{g_{h} \in G \mid m_{i \mid f}^{h} \text { FBD } m_{i^{\prime} \mid f}^{h}\right\} \tag{12}
\end{equation*}
$$

Intuitively, $\operatorname{Bel}_{G}\left(D_{f}\right)$ quantifies the total belief associated to the fact that the action a_{i} is at least as good as the action $a_{i^{\prime}}$ for all the criteria in D_{f} according expert E_{f}. Thus, we will call $\operatorname{Bel}_{G}\left(D_{f}\right)$ the concordance index.

Of course, if the BBAs are such that the total belief is restricted to a unique singleton and if Bel_{G} is as Bayesian belief function, $\operatorname{Bel}_{G}\left(D_{f}\right)$ is nothing else than the concordance index computed as in the ELECTRE I method.

In the same way, the application of the first belief dominance approach by each expert E_{f} permits identifying the coalition of criteria, denoted Q_{f}, for which the actions a_{i} and $a_{i^{\prime}}$ are incomparable (i.e., $m_{i f f}^{h}$ and $m_{i^{\prime} \mid f}^{h}$ do not dominate each other). More formally:

$$
\begin{equation*}
Q_{f}=\left\{g_{h} \in G \mid m_{i \mid f}^{h} \overline{\operatorname{FBD}} m_{i^{\prime} \mid f}^{h} \text { and } m_{i^{\prime} \mid f}^{h} \overline{\mathrm{FBD}} m_{i \mid f}^{h}\right\} \tag{13}
\end{equation*}
$$

Therefore, we define a new degree called the incomparability index and denoted $\operatorname{Bel}_{G}\left(Q_{f}\right)$. This degree quantifies the total belief associated to the fact that the actions a_{i} and $a_{i^{\prime}}$ are incomparable for all the criteria in Q_{f} according expert E_{f}.

The concordance and incomparability indexes are exploited to build the individual binary outranking relations. These indexes are compared, respectively to concordance and incomparability thresholds denoted, respectively c and r and which are fixed according the type of the application. Therefore, a_{i} outranks $a_{i^{\prime}}$ (denoted $a_{i} S a_{i^{\prime}}$) if and only if $B e l_{G}\left(D_{f}\right)$ is greater than or equal to the concordance threshold and $\operatorname{Bel}_{G}\left(Q_{f}\right)$ is lesser than or equal to the incomparability threshold. More formally:

$$
a_{i} S a_{i^{\prime}} \Longleftrightarrow\left\{\begin{array}{l}
\operatorname{Bel}_{G}\left(D_{f}\right) \geqslant c \tag{14}\\
\operatorname{Bel}_{G}\left(Q_{f}\right) \leqslant r
\end{array}\right.
$$

The experts can agree on the values of thresholds or cannot. In such situation, each expert can propose and use his/her own values of thresholds. Finally, based on his/her individual binary outranking relations, each expert builds his/her individual outranking graph.

4.3. Aggregation of the individual outranking graphs

In this step, the individual outranking graphs are aggregated in order to establish a collective one from which the "best" alternatives subset is determined. The aggregation is performed using the algorithm AL3 that has been applied in the context of group decision making [18].

The algorithm AL3 takes into account the coefficients of the experts' relative importance within the group. Furthermore, it allows determining for each pair of alternatives the collective preference relation $H^{*} \in\{\succ, \prec, \approx$, ?\} where \succ is the strict preference relation, \prec is the inverse strict preference relation, \approx the indifference relation and ? is the incomparability relation. So before aggregating, the individual outranking graphs should be transformed into individual preference graphs where the alternatives are represented by nodes and individual binary preference relations [18]. The only difference between these graphs is in the representation of the indifference relation. In fact, in an outranking graph, the indifference is represented by two arrows which have opposite direction while it is represented by an arrow with double directions in a preference graph [18]. The algorithm AL3 determines, for each pair of alternatives $\left(a_{i}, a_{i^{\prime}}\right)$, the nearest collective preference relation $H^{*} \in\left\{\succ, \prec, \approx\right.$,?\} to the individual ones. For this purpose, a divergence index $\Phi^{H}\left(a_{i}, a_{i^{\prime}}\right)$ that measures the deviation between the collective preference relation $H \in\left\{\succ, \prec, \approx\right.$, ?\} and each individual one $H_{f}\left(a_{i}, a_{i^{\prime}}\right)$ is calculated as follows:

$$
\begin{equation*}
\Phi^{H}\left(a_{i}, a_{i^{\prime}}\right)=\sum_{f=1}^{s} w_{f} \cdot \Delta\left(H, H_{f}\left(a_{i}, a_{i^{\prime}}\right)\right) \tag{15}
\end{equation*}
$$

where w_{f} is the importance of expert E_{f} within the group and $\Delta\left(H, H_{f}\left(a_{i}, a_{i^{\prime}}\right)\right)$ is the distance measure between the collective preference relation H and the individual one $H_{f}\left(a_{i}, a_{i^{\prime}}\right)$ suggested in [20]. The numerical values of the distance measure are given in Table 7.

Then, we identify the collective relation $H^{*}\left(a_{i}, a_{i^{\prime}}\right)$ that minimizes the divergence indexes, i.e.:

$$
\begin{equation*}
H^{*}=\underset{H \in\{\succ, \alpha, \sim,\}\}}{\operatorname{Arg} \min } \Phi^{H}\left(a_{i}, a_{i}\right) \tag{16}
\end{equation*}
$$

Table 7
Numerical values of the distance measure Δ.

Δ	$a_{i} \approx a_{i^{\prime}}$	$a_{i} \succ a_{i^{\prime}}$	$a_{i} ? a_{i^{\prime}}$
$a_{i} \approx a_{i^{\prime}}$	$\Delta(\approx, \approx)=0$	$\Delta(\approx, \succ)=1$	$\Delta(\approx, ?)=4 / 3$
$a_{i} \succ a_{i^{\prime}}$	$\Delta(\succ, \approx)=1$	$\Delta(\succ, \succ)=0$	$\Delta(\succ, ?)=4 / 3$
$a_{i} ? a_{i^{\prime}}$	$\Delta(?, \approx)=4 / 3$	$\Delta(?, \succ)=4 / 3$	$\Delta(?, ?)=0$
$a_{i} \prec a_{i^{\prime}}$	$\Delta(\prec, \approx)=1$	$\Delta(\prec, \succ)=5 / 3$	$\Delta(\prec, ?)=4 / 3$

Once the collective preference relations between all pairs of alternatives are determined, we build the collective preference graph. Therefore, it is easy to deduce the collective outranking graph.

Finally, let us note that the application of the algorithm AL3 may produce several collective preference relations at minimum distance from the individual ones. Then, several collective outranking graphs can be obtained.

4.4. Determination of the "best" alternatives subset

In the last step of the model, the collective outranking graph is exploited to identify the "best" alternatives. Since several collective outranking graphs can be deducted, several subsets of "best" alternatives can be proposed. For both situations, the experts can either not accept the unique subset obtained by a mathematical processing or fail to build, from several subsets, a single subset of the "best" alternatives. In order to treat both of these situations, Jabeur and Martel propose an interactive and iterative procedure that helps the experts to reach a consensus on the "best" alternatives subset. More details can be found in [18].

Finally, it is worth mentioning that another manner to the aggregation problem is the use of a combination rule offered by evidence theory to aggregate the individual BBAs given by the experts. Let m_{i}^{h} be the BBA resulting from the combination of $m_{i \mid 1}^{h}, m_{i \mid 2}^{h}, \ldots$ and $m_{i \mid s}^{h}$. Obviously, m_{i}^{h} represents the collective evaluation of action a_{i} according criterion g_{h}.

The combination rule used for the aggregation of the individual BBAs should be commutative and associative. Therefore:

- If the BBAs are distinct, we suggest the Dempster's rule of combination to take into account independencies between experts.
- If the BBAs are nondistinct, we suggest the normalized cautious rule of combination to take into account dependencies between experts.

Once the collective BBAs are determined, the first belief dominance approach is used to compare these BBAs and so to build the collective outranking graph of which the "best" alternatives subset is identified. However, both combination rules that we have suggested do not respect in some situations the unanimity property which is a natural condition of an aggregation operator. Formally, this property means that:

- If $m_{i \mid f}^{h}$ FBD $m_{i i^{\prime} f}^{h}$ for all $f \in\{1,2, \ldots, s\}$, then m_{i}^{h} FBD m_{i}^{h}.
- If $m_{i \mid f}^{h} \overline{\mathrm{FBD}} m_{i^{h} \mid f}^{h}$ for all $f \in\{1,2, \ldots, s\}$, then $m_{i}^{h} \overline{\mathrm{FBD}} m_{i^{\prime}}^{h}$.

That's why we have adapted the algorithm AL3 for the aggregation.
Two counter-examples to the unanimity property are introduced below (see Examples 3 and 4). In the first one, we have used the Dempster's rule to combine distinct BBAs. In the second one, we have used the normalized cautious rule to aggregate nondistinct BBAs.

Example 3. Let us consider two alternatives of which the evaluations are expressed by distinct BBAs and given by two experts. In this example, we will consider only the evaluations on criterion g_{1}. Let $x_{1}^{1}, x_{2}^{1}, x_{3}^{1}$ and x_{4}^{1} be the assessment grades set of g_{1} such as $x_{1}^{1} \prec x_{2}^{1} \prec x_{3}^{1} \prec x_{4}^{1}$.

The Dempster's rule of combination is used in this example to aggregate the BBAs induced by the experts for every action on criterion g_{1}. The objective is to yield a combined BBA that represents the performance of every action on criterion g_{1}. Then, the first belief dominance approach is applied to compare the BBAs given by each expert and the combined BBAs. The results are given in Table 8.

As can be noticed, the experts agree that a_{1} dominates a_{2} on criterion g_{1} according the first belief dominance concept. However, when we apply this approach on the combined BBAs, we obtain: a_{1} does not dominate a_{2} on g_{1}. Then, the Dempster's rule does not respect the unanimity property.

Table 8
Counter-example to the unanimity property: case of distinct BBAs.

	a_{1}	a_{2}	The observed belief dominances
The BBA's given by expert 1	$m_{1 \mid 1}^{1}\left(x_{2}^{1}, x_{3}^{1}\right)=0.5$	$m_{2 \mid 1}^{1}\left(x_{2}^{1}\right)=0.5$	$m_{2 \mid 1}^{1}\left(x_{3}^{1}\right)=0.5$
$m_{1 \mid 1}^{1}\left(x_{4}^{1}\right)=0.5$	$m_{2 \mid 2}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.5$	$m_{2 \mid 2}^{1}\left(x_{2}^{1}, x_{3}^{1}\right)=0.5$	$m_{2 \mid 1}^{1} \mathrm{FBD} m_{2 \mid 2}^{1}$
The BBA's given by expert 2	$m_{1 \mid 2}^{1}\left(x_{2}^{1}, x_{3}^{1}\right)=1$	$m_{2}^{1}\left(x_{2}^{1}\right)=0.67$	$m_{1}^{1} \overline{\mathrm{FBD}} m_{2}^{1}$
The combined BBA's given by the two experts	$m_{1}^{1}\left(x_{2}^{1}, x_{3}^{1}\right)=1$		

Table 9
Counter-example to the unanimity property: case of nondistinct BBAs.

	a_{1}	a_{2}	The observed belief dominances
The BBA's given by expert 1	$m_{1 \mid 1}^{1}\left(x_{2}^{1}\right)=0.1$	$m_{2 \mid 1}^{1}\left(x_{1}^{1}\right)=0.6$	$m_{1 \mid 1}^{1} \mathrm{FBD} m_{2 \mid 1}^{1}$
	$m_{1 \mid 1}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.9$	$m_{2 \mid 1}^{1}\left(x_{2}^{1}\right)=0.2$	
	$m_{12}^{1}\left(x_{1}^{1}\right)=0.5$	$m_{2 \mid 1}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.2$	
The BBA's given by expert 2	$m_{1 \mid 2}^{1}\left(x_{2}^{1}\right)=0.2$	$m_{2 \mid 2}^{1}\left(x_{2}^{1}\right)=0.1$	
	$m_{1 \mid 2}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.3$	$m_{2 \mid 2}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.9$	$m_{1 \mid 2}^{1} \overline{\mathrm{FBD}} m_{2 \mid 2}^{1}$
	$m_{1}^{1}\left(x_{1}^{1}\right)=0.5$	$m_{2}^{1}\left(x_{1}^{1}\right)=0.6$	
The combined BBA's given by the two experts	$m_{1}^{1}\left(x_{2}^{1}\right)=0.2$	$m_{2}^{1}\left(x_{2}^{1}\right)=0.2$	$m_{1}^{1} \mathrm{FBD} m_{2}^{1}$
	$m_{1}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.3$	$m_{2}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.2$	

Example 4. Let us consider two alternatives of which the evaluations are expressed by nondistinct BBAs and given by two experts. In this example, we will consider only the evaluations on criterion g_{1}. Let x_{1}^{1} and x_{2}^{1} be the assessment grades set of g_{1} such as $x_{1}^{1} \prec x_{2}^{1}$.

The normalized cautious rule of combination is used in this example to aggregate the BBAs induced by the experts for every action on criterion g_{1}. The objective is to yield a combined BBA that represents the performance of every action on criterion g_{1}. Then, the first belief dominance approach is applied to compare the BBAs given by each expert and the combined BBAs. The results are given in Table 9.

As can be noticed, the experts agree that a_{1} does not dominate a_{2} on criterion g_{1} according the first belief dominance concept. However, when we apply this approach on the combined BBAs, we obtain: a_{1} dominates a_{2} on g_{1}. Then, the normalized cautious rule does not respect the unanimity property.

5. Illustrative example

In order to illustrate the model, let us consider the following example. A public establishment, which has for mission to sustain the innovation and the growth of the SME (small and medium enterprises), announces its call for bids destined to the industrial enterprises.

The projects transmitted by the enterprises are submitted to a committee composed of three experts referred to as experts 1,2 and 3 . The coefficients of their relative importance within the group are, respectively $0.5,0.3$ and 0.2 .

The projects are evaluated on the basis of four ordinal criteria to maximize which are the following:

- Originality of the project or the activity, i.e., the innovation degree brought by the project (new products, new procedures, improved products, improved procedures).
- Competitiveness, i.e., the capacity of the enterprise to face with success the concurrence on the national and/or international markets. The evaluation of the project on this criterion is determined by analysing the product supply and its adequacy in relation to the market, the market and the concurrence related to the activity, ...
- Profitability, i.e., the capacity of the enterprise to generate positive results by using rationally the resources.

Table 10
Criteria and the assessment grades.

Criterion	Assessment grades
$g_{1}:$ Originality of the project or the activity	x_{1}^{1} : No innovation in the project
	$x_{2}^{1}:$ There is the improvement in the project
$x_{3}^{1}:$ There is the innovation in the project	
$x_{4}^{1}:$ Absolutely an original project	
$g_{2}:$ Competitiveness	x_{1}^{2} : Not competitive
$x_{2}^{2}:$ Competitive	
$g_{3}:$ Profitability	x_{1}^{3} : Very low
	$x_{2}^{3}:$ Low
	$x_{3}^{3}:$ Average
	$x_{4}^{3}:$ High
	$x_{5}^{3}:$ Very High
$g_{4}:$ Creation of employment	$x_{1}^{4}:$ Limited number of jobs
	$x_{2}^{4}:$ Average number of jobs
	$x_{3}^{4}:$ High number of jobs

- Creation of employment, i.e., the capacity of the enterprise to generate jobs on several levels (strategic, intermediate, operational).

The criteria are proposed by the public establishment. Table 10 presents the assessment grades of each criterion which are given from the least preferred to the most preferred.

Finally, the inter-criteria information is given by a BBA defined as follows:

$$
\begin{aligned}
& m_{G}\left(g_{1}\right)=0.2 \\
& m_{G}\left(g_{2}\right)=0.2 \\
& m_{G}\left(g_{1}, g_{2}\right)=0.2 \\
& m_{G}\left(g_{3}\right)=0.3 \\
& m_{G}\left(g_{4}\right)=0.1
\end{aligned}
$$

As can be noticed, the total importance allocated to the coalition of criteria g_{1} and g_{2} (the originality of the project or the activity and the competitiveness) is equal to 0.6 while the importance related to each of the single criteria is equal to 0.2 , i.e., their sum is lower than 0.6.

We propose to consider 5 projects. The evaluation of each project with respect to each criterion is given by a BBA. We suppose that each expert can express individually the assessments for all the projects with respect to all the criteria. Tables 11-13 present the BBAs characterizing the evaluations of the projects given, respectively by experts 1,2 and 3 . For instance, the evaluations of project a_{1} are established by the experts as follows:

- On criterion g_{1}, experts 1 and 3 hesitate between the third and the fourth assessment grades. They are sure that the project is either innovating or absolutely original without being able to refine their judgment whereas expert 2 is certain that the project is innovating.

Table 11
BBA's characterizing the evaluations of the projets given by expert 1.

	g_{1}	g_{2}	g_{3}	g_{4}
a_{1}	$\begin{aligned} & m_{1 \mid 1}^{1}\left(x_{3}^{1}\right)=0.8 \\ & m_{1 \mid 1}^{1}\left(x_{3}^{1}, x_{4}^{1}\right)=0.2 \end{aligned}$	$m_{1 \mid 1}^{2}\left(x_{2}^{2}\right)=1$	$\begin{aligned} & m_{1 \mid 1}^{3}\left(x_{1}^{1}\right)=0.1 \\ & m_{1 \mid 1}^{3}\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}\right)=0.9 \end{aligned}$	$m_{1 \mid 1}^{4}\left(x_{1}^{4}\right)=1$
a_{2}	$\begin{aligned} & m_{2 \mid 1}^{1}\left(x_{1}^{1}\right)=0.6 \\ & m_{2 \mid 1}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.4 \end{aligned}$	$m_{2 \mid 1}^{2}\left(x_{1}^{2}\right)=1$	$\begin{aligned} & m_{2 \mid 1}^{3}\left(x_{4}^{3}\right)=0.6 \\ & m_{2 \mid 1}^{3}\left(x_{4}^{3}, x_{5}^{3}\right)=0.4 \end{aligned}$	$m_{2 \mid 1}^{4}\left(x_{2}^{4}\right)=1$
a_{3}	$m_{3 \mid 1}^{1}\left(x_{2}^{1}\right)=1$	$\begin{aligned} & m_{311}^{2}\left(x_{1}^{2}\right)=0.3 \\ & m_{3 \mid 1}^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=0.7 \end{aligned}$	$\begin{aligned} & m_{31}^{3}\left(x_{2}^{3}\right)=0.6 \\ & m_{311}^{3}\left(x_{3}^{3}\right)=0.4 \end{aligned}$	$\begin{aligned} & m_{314}^{4}\left(x_{2}^{4}\right)=0.7 \\ & m_{311}^{4}\left(x_{2}^{4}, x_{3}^{4}\right)=0.3 \end{aligned}$
a_{4}	$m_{4 \mid 1}^{1}\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, x_{4}^{1}\right)=1$	$m_{4 \mid 1}^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=1$	$\begin{aligned} & m_{4 \mid 1}^{3}\left(x_{1}^{3}, x_{2}^{3}\right)=0.7 \\ & m_{4 \mid 1}^{3}\left(x_{2}^{3}, x_{3}^{3}\right)=0.3 \end{aligned}$	$\begin{aligned} & m_{411}^{4}\left(x_{2}^{4}\right)=0.8 \\ & m_{4 \mid 1}^{4}\left(x_{3}^{4}\right)=0.2 \end{aligned}$
a_{5}	$m_{5 \mid 1}^{1}\left(x_{2}^{1}\right)=1$	$m_{5 \mid 1}^{2}\left(x_{2}^{2}\right)=1$	$\begin{aligned} & m_{5 / 1}^{3}\left(x_{3}^{3}\right)=0.6 \\ & m_{5 / 1}^{3}\left(x_{3}^{3}, x_{4}^{3}\right)=0.4 \end{aligned}$	$\begin{aligned} & m_{514}^{4}\left(x_{1}^{4}\right)=0.9 \\ & m_{5 \mid 1}^{4}\left(x_{1}^{4}, x_{2}^{4}\right)=0.1 \end{aligned}$

Table 12
BBA's characterizing the evaluations of the projets given by expert 2.

	g_{1}	g_{2}	g_{3}	g_{4}
a_{1}	$m_{1 \mid 2}^{1}\left(x_{3}^{1}\right)=1$	$m_{1 \mid 2}^{2}\left(x_{2}^{2}\right)=1$	$m_{1 \mid 2}^{3}\left(x_{3}^{3}, x_{4}^{3}\right)=0.8$	
		$m_{1 \mid 2}^{3}\left(x_{5}^{3}\right)=0.2$	$m_{1 \mid 2}^{4}\left(x_{1}^{4}, x_{2}^{4}, x_{3}^{4}\right)=1$	
a_{2}	$m_{2 \mid 2}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=1$	$m_{2 \mid 2}^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=1$	$m_{2 \mid 2}^{3}\left(x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, x_{4}^{3}, x_{5}^{3}\right)=1$	
a_{3}	$m_{3 \mid 2}^{1}\left(x_{2}^{1}\right)=0.6$	$m_{32}^{2}\left(x_{1}^{2}\right)=0.2$	$m_{3 \mid 2}^{3}\left(x_{3}^{3}\right)=1$	$m_{2 \mid 2}^{4}\left(x_{2}^{4}\right)=1$
	$m_{3 \mid 2}^{1}\left(x_{3}^{1}\right)=0.4$	$m_{3 \mid 2}^{2}\left(x_{2}^{2}\right)=0.8$	$m_{4 \mid 2}^{3}\left(x_{3}^{3}\right)=0.9$	$m_{32}^{4}\left(x_{2}^{4}\right)=0.7$
a_{4}	$m_{4 \mid 2}^{1}\left(x_{1}^{1}\right)=1$	$m_{4 \mid 2}^{2}\left(x_{2}^{2}\right)=1$	$m_{4 \mid 2}^{3}\left(x_{3}^{3}, x_{4}^{3}\right)=0.1$	$m_{3 \mid 2}^{4}\left(x_{2}^{4}, x_{3}^{4}\right)=0.3$
		$m_{5 \mid 2}^{2}\left(x_{2}^{2}\right)=1$	$m_{5 \mid 2}^{3}\left(x_{3}^{3}, x_{4}^{3}\right)=1$	$m_{4 \mid 2}^{4}\left(x_{2}^{4}\right)=0.8$
a_{5}			$m_{4 \mid 2}^{4}\left(x_{2}^{4}, x_{3}^{4}\right)=0.2$	
			$m_{5 \mid 2}^{4}\left(x_{1}^{4}\right)=0.5$	

Table 13
BBA's characterizing the evaluations of the projets given by expert 3 .

	g_{1}	g_{2}	g_{3}	g_{4}
a_{1}	$\begin{aligned} & m_{1 \mid 3}^{1}\left(x_{3}^{1}\right)=0.94 \\ & m_{1 \mid 3}^{1}\left(x_{3}^{1}, x_{4}^{1}\right)=0.06 \end{aligned}$	$m_{1 \mid 3}^{2}\left(x_{2}^{2}\right)=1$	$\begin{aligned} & m_{1 \mid 3}^{3}\left(x_{1}^{3}\right)=0.04 \\ & m_{1 \mid 3}^{3}\left(x_{3}^{3}\right)=0.6 \\ & m_{1 \mid 3}^{3}\left(x_{1}^{3} x_{2}^{3}, x_{3}^{3}\right)=0.36 \end{aligned}$	$m_{1 \mid 3}^{4}\left(x_{1}^{4}\right)=1$
a_{2}	$\begin{aligned} & m_{2 \mid 3}^{1}\left(x_{1}^{1}\right)=0.6 \\ & m_{2 \mid 3}^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=0.4 \end{aligned}$	$m_{2 \mid 3}^{2}\left(x_{1}^{2}\right)=1$	$\begin{aligned} & m_{2 \mid 3}^{3}\left(x_{4}^{3}\right)=0.6 \\ & m_{2 \mid 3}^{3}\left(x_{4}^{3}, x_{5}^{3}\right)=0.4 \end{aligned}$	$m_{2 \mid 3}^{4}\left(x_{2}^{4}\right)=1$
a_{3}	$m_{3 \mid 3}^{1}\left(x_{2}^{1}\right)=1$	$\begin{aligned} & m_{3 \mid 3}^{2}\left(x_{1}^{2}\right)=0.28 \\ & m_{3 \mid 3}^{2}\left(x_{2}^{2}\right)=0.44 \\ & m_{3 \mid 3}^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=0.28 \end{aligned}$	$\begin{aligned} & m_{3 \mid 3}^{3}\left(x_{2}^{3}\right)=0.33 \\ & m_{3 \mid 3}^{3}\left(x_{3}^{3}\right)=0.67 \end{aligned}$	$\begin{aligned} & m_{3 \mid 3}^{4}\left(x_{2}^{4}\right)=0.84 \\ & m_{3 \mid 3}^{4}\left(x_{2}^{4}, x_{3}^{4}\right)=0.16 \end{aligned}$
a_{4}	$\begin{aligned} & m_{4 \mid 3}^{1}\left(x_{1}^{1}\right)=0.67 \\ & m_{4 \mid 3}^{1}\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, x_{4}^{1}\right)=0.33 \end{aligned}$	$\begin{aligned} & m_{4 \mid 3}^{2}\left(x_{2}^{2}\right)=0.67 \\ & m_{4 \mid 3}^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=0.33 \end{aligned}$	$\begin{aligned} & m_{4 \mid 3}^{3}\left(x_{1}^{3}, x_{2}^{3}\right)=0.44 \\ & m_{4 \mid 3}^{3}\left(x_{2}^{3}, x_{3}^{3}\right)=0.19 \\ & m_{4 \mid 3}^{3}\left(x_{3}^{3}\right)=0.37 \end{aligned}$	$\begin{aligned} & m_{4 \mid 3}^{4}\left(x_{2}^{4}\right)=0.9 \\ & m_{4 \mid 3}^{4}\left(x_{3}^{4}\right)=0.1 \end{aligned}$
a_{5}	$m_{5 \mid 3}^{1}\left(x_{2}^{1}\right)=1$	$m_{5 \mid 3}^{2}\left(x_{2}^{2}\right)=1$	$\begin{aligned} & m_{5 \mid 3}^{3}\left(x_{3}^{3}\right)=0.6 \\ & m_{5 \mid 3}^{3}\left(x_{3}^{3}, x_{4}^{3}\right)=0.4 \end{aligned}$	$\begin{aligned} & m_{5 \mid 3}^{4}\left(x_{1}^{4}\right)=0.9 \\ & m_{5 \mid 3}^{4}\left(x_{2}^{4}\right)=0.05 \\ & m_{5 \mid 3}^{4}\left(x_{1}^{4}, x_{2}^{4}\right)=0.05 \end{aligned}$

- On criterion g_{2}, the three experts are certain that the enterprise is competitive.
- On criterion g_{3}, experts 1 and 3 hesitate between the first, the second and the third assessment grades whereas expert 2 hesitates between the third, the fourth and the fifth ones. The formers are sure that the project profitability is very low, low or average whereas the latter is sure that it is average, high or very high. The three experts are unable to refine their judgments.

Fig. 1. The outranking graph induced by expert 1.

Fig. 2. The outranking graph induced by expert 2.

Fig. 3. The outranking graph induced by expert 3 .

Fig. 4. Collective outranking graphs.

- On criterion g_{4}, experts 1 and 3 are certain that the project creates a limited number of jobs whereas expert 2 does not express his/her assessments on the project. That's why the total masse is assigned to the set of assessment grades, i.e., the frame X^{4} (total ignorance case).

The first belief dominance approach is applied by each expert to compare, on each criterion, the different pairs of alternatives. Based on the observed individual belief dominances on each criterion, the concordance and incomparability indexes are computed by each expert for each pair of alternatives using the BBA representing the inter-criteria information. Appendixs A, B and C illustrate the partial belief dominances between alternatives as well as the concordance and incomparability indexes given, respectively by experts 1,2 and 3 .

Therefore, each expert builds his/her individual binary outranking relations between the actions and so his/her individual outranking graph. In this example, we suppose that the experts agree on the values of the concordance and incomparability thresholds which are equal, respectively to 0.6 and 0.4 . Figs. 1-3 give the outranking graphs built, respectively by experts 1,2 and 3.

Then, the individual outranking graphs are aggregated using the algorithm AL3 to obtain the collective outranking graph. The application of this algorithm produces for the pair of alternatives $\left(a_{2}, a_{4}\right)$ two distinct preference relations which are at
minimum distance from the individual ones. In fact, we can consider a_{2} and a_{4} as incomparable or we can accept that a_{4} is strictly preferred to a_{2}. So, we obtain two collective outranking graphs that differ between them on the arrow (a_{4}, a_{2}). Fig. 4 shows these two collective outranking graphs.

Finally, the collective outranking graphs are exploited to identify the subset of the "best" alternatives. In both situations, the collective decision is to choose alternatives a_{1} and a_{4}.

As we remark, the collective decision reflects well the individual ones since alternative a_{1} is chosen individually by each expert and alternative a_{4} is chosen by experts 1 and 3 . Alternative a_{5} is among the best alternatives according expert 1 whereas it is not chosen by experts 2 and 3 .

6. Conclusion

In this paper, we have addressed the question of building a binary outranking relation in uncertain, imprecise and mul-ti-experts contexts. Evidence theory offers convenient tools to tackle such kind of problems. At first, the concept of BBA allows experts to express freely their assessments and even to represent the total ignorance. In order to compare the BBAs associated to two actions for a given criterion, the concept of the first belief dominance has been introduced. We have shown that it is a natural extension of the first stochastic dominance approach. In addition, the concept of BBA has been used to represent the criteria weights. Finally, a model inspired by ELECTRE I has been proposed and illustrated on a pedagogical example.

At this point, we have illustrated the benefits of using evidence theory in these kinds of problems. Of course there are still many directions for future research. Among others, we can mention the extension of the first belief dominance concept to second and third degrees or the development of combination rules that respect the unanimity principle.

Acknowledgement

The authors thank the anonymous referees for their valuable comments and suggestions that helped to improve this paper. Thanks also to Professor Thierry Denoeux for his constructive comments regarding the concept of first belief dominance.

Appendix A. Expert 1: The partial belief dominances between alternatives/The concordance and incomparability indexes

Tables 14-19.

Appendix B. Expert 2: The partial belief dominances between alternatives/The concordance and incomparability indexes

Tables 20-25.

Table 14
The observed belief dominances between alternatives on criterion g_{1}.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	FBD	-	FBD	$\overline{\mathrm{FBD}}$
a_{2}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$		
a_{3}	$\overline{\mathrm{FBD}}$	FBD	$\overline{\mathrm{FBD}}$		
a_{4}	$\overline{\mathrm{FBD}}$	FBD	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	
a_{5}		$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$		

Table 15
The observed belief dominances between alternatives on criterion g_{2}.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	FBD	-	$\overline{F B D}$	$\overline{\mathrm{FBD}}$
a_{2}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$			
a_{3}	$\overline{\mathrm{FBD}}$	FBD	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	
a_{4}	FBD	FBD	-		
a_{5}		FBD	$\overline{\mathrm{FBD}}$		

Table 16
The observed belief dominances between alternatives on criterion g_{3}.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	
a_{2}	-	FBD	FBD		
a_{3}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	FBD		
a_{4}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	-	$\overline{\mathrm{FBD}}$	
a_{5}	$\overline{\mathrm{FBD}}$	FBD			

Table 17
The observed belief dominances between alternatives on criterion g_{4}.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	
a_{2}	FBD	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$		
a_{3}	FBD	$\overline{\mathrm{FBD}}$	-		
a_{4}	FBD	$\overline{\mathrm{FBD}}$			
a_{5}	FBD	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	

Table 18
The concordance indexes.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	0.6	0.6	0.2	0.3
a_{2}	0.4	-	0.3	0.3	
a_{3}	0.1	0.7	-	0.6	
a_{4}	0.1	0.7	0.2	0.4	
a_{5}	0.6	0.6	0.9	0.3	

Table 19
The incomparability indexes.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	0	0.3	0.5	
a_{2}	0	-	0	0	
a_{3}	0.3	0	-	0.3	
a_{4}	0.5	0	0.3	-	0
a_{5}	0	0	0	0	

Table 20
The observed belief dominances between alternatives on criterion g_{1}.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	FBD	-	FBD	FBD
a_{2}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	FBD		
a_{3}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$		
a_{4}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	-		
a_{5}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	FBD		

Table 21
The observed belief dominances between alternatives on criterion g_{2}.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	FBD	-	$\overline{F B D}$	$\overline{F B D}$
a_{2}	$\overline{\text { FBD }}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$		
a_{3}	$\overline{\mathrm{FBD}}$	FBD	$\overline{\mathrm{FBD}}$		
a_{4}	FBD	FBD	-	$\overline{\mathrm{FBD}}$	
a_{5}	FBD	FBD	$\overline{\mathrm{FBD}}$		

Table 22
The observed belief dominances between alternatives on criterion g_{3}.

| | a_{1} | a_{2} | a_{3} | a_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a_{1} | - | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ |
| a_{2} | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | |
| a_{3} | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | |
| a_{4} | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | |
| a_{5} | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | | |

Table 23
The observed belief dominances between alternatives on criterion g_{4}.

	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	-	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$
a_{2}	-	$\overline{\mathrm{FBD}}$		
a_{3}	$\overline{\mathrm{FBD}}$	-	$\overline{\mathrm{FBD}}$	
a_{4}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	-	
a_{5}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$

Table 24
The concordance indexes.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	0.6	0.9	0.9	
a_{2}	0	-	0	0.2	0.9
a_{3}	0	0.3	-	0.1	
a_{4}	0.2	0.3	0.5	0.3	
a_{5}	0.2	0.6	0.5	0.3	

Table 25
The incomparability indexes.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	0.4	0.1	0.1	
a_{2}	0.4	-	0.5	0.3	0
a_{3}	0.1	0.5	-	0.1	
a_{4}	0.1	0.3	0	0	
a_{5}	0.1	0.3	0	0	

Table 26
The observed belief dominances between alternatives on criterion g_{1}.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	FBD	-	$\overline{F B D}$	$\overline{\mathrm{FBD}}$
a_{2}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$		
a_{3}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$		
a_{4}	$\overline{\mathrm{FBD}}$	FBD	$\overline{\mathrm{FBD}}$		
a_{5}	$\overline{\mathrm{FBD}}$	$\overline{\mathrm{FBD}}$			

Table 27
The observed belief dominances between alternatives on criterion g_{2}.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	FBD	-	FBD	$\overline{\mathrm{FBD}}$
a_{2}	$\overline{\mathrm{FBD}}$	FBD	$\overline{\mathrm{FBD}}$		
a_{3}	$\overline{\mathrm{FBD}}$	-	$\overline{\mathrm{FBD}}$	-	
a_{4}	$\overline{\mathrm{FBD}}$	FBD	FBD		
a_{5}	FBD	FBD	$\overline{\mathrm{FBD}}$		

Table 28
The observed belief dominances between alternatives on criterion g_{3}.

| | a_{1} | a_{2} | a_{3} | a_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a_{1} | - | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ |
| a_{2} | - | FBD | FBD | |
| a_{3} | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | |
| a_{4} | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | - | $\overline{\mathrm{FBD}}$ |
| a_{5} | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | | |

Table 29
The observed belief dominances between alternatives on criterion g_{4}.

| | a_{1} | a_{2} | a_{3} | a_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a_{1} | - | $\overline{\text { FBD }}$ | $\overline{\text { FBD }}$ | $\overline{\mathrm{FBD}}$ |
| a_{2} | FBD | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | |
| a_{3} | FBD | - | $\overline{\mathrm{FBD}}$ | |
| a_{4} | FBD | $\overline{\mathrm{FBD}}$ | - | |
| a_{5} | FBD | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ | $\overline{\mathrm{FBD}}$ |

Table 30
The concordance indexes.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
a_{1}	-	0.6	0.6	0.2	0.6
a_{2}	0.4	-	0.3	0.3	
a_{3}	0.1	0.7	-	0.3	
a_{4}	0.1	0.3	0.2	0.3	
a_{5}	0.3	0.6	0.9	-	

Table 31
The incomparability indexes.

	a_{1}	a_{2}	a_{3}	a_{4}	
a_{1}	-	0	0.3	0.5	0.2
a_{2}	0	-	0	0.3	
a_{3}	0.3	0	-	0	
a_{4}	0.5	0.2	0.3	0	
a_{5}	0.3	0	0	0.2	

Appendix C. Expert 3: The partial belief dominances between alternatives/The concordance and incomparability indexes.

Tables 26-31.

References

[1] A. Aregui, T. Denoeux, Fusion of one-class classifiers in the belief function framework, in: Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada, July 2007.
[2] A. Aregui, T. Denoeux, Novelty detection in the belief functions framework, in: Proceedings of IPMU’06, Paris, July 2006.
[3] A. Langewish, F. Choobineh, Stochastic dominance tests for ranking alternatives under ambiguity, European Journal of Operational Research 95 (1996) 139-154.
[4] A.P. Dempster, Upper and lower probabilities induced by a multi-valued mapping, Annual Mathematics and Statistics 38 (1967) 325-339.
[5] B. Roy, Classement et choix en présence de points de vue multiples (la méthode ELECTRE), R.I.R.O. Operations Research 2 (1968) 57-75.
[6] B. Roy, Méthodologie Multicritère d'Aide à la Décision, Economica, Paris, 1985.
[7] D. Dubois, H. Prade, S. Sandri, On possibility/probability transformations, in: R. Lowen, M. Roubens (Eds.), Fuzzy Logic: State of the Art, Kluwer Academic Publishers, Dordrecht, 1993, pp. 103-112.
[8] G. Hanoch, H. Levy, The efficiency analysis of choices involving risk, Review of Economic Studies 36 (1969) 335-346.
[9] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.
[10] G. Shafer, Perspectives on the theory and practice of belief functions, International Journal of Approximate Reasoning 4 (1990) $323-362$.
[11] G.A. Whitmore, Third-degree stochastic dominance, American Economic Review 60 (1970) 457-459.
[12] J.B. Yang, M.G. Singh, An evidential reasoning approach for multiattribute decision making with uncertainty, IEEE Transactions on Systems, Man and Cybernetics 24 (1994) 1-18.
[13] J. Figueira, V. Mousseau, B. Roy, ELECTRE methods, in: J. Figueira, S. Greco, M. Ehrgott (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer-Verlag, Boston, Dordrecht, London, 2005, pp. 133-162.
[14] J. Hadar, W.R. Russell, Rules for ordering uncertain prospects, American Economic Review 59 (1969) 25-34.
[15] J.M. Martel, K. Zaras, Stochastic dominance in multicriterion analysis under risk, Theory and Decision 39 (1995) 31-49.
[16] J.B. Yang, D.L. Xu, Nonlinear information aggregation via evidential reasoning in multiattribute decision analysis under uncertainty, IEEE Transactions on Systems, Man and Cybernetics Part A: Systems and Humans 32 (2002) 376-393.
[17] J.B. Yang, D.L. Xu, On the evidential reasoning algorithm for multiattribute decision analysis under uncertainty, IEEE Transactions on Systems, Man and Cybernetics Part A: Systems and Humans 32 (2002) 289-304.
[18] K. Jabeur, J.M. Martel, A collective choice method based on individual preferences relational systems (p.r.s.), European Journal of Operational Research 177 (2005) 469-485.
[19] K. Jabeur, J.M. Martel, Détermination d'un (ou plusieurs) systèmes(s) relationnel(s) de préférence (s.r.p) collectif(s) à partir des s.r.p individuels, Document de travail \# 011-2002, Faculté des Sciences de l’Administration (FSA), Université Laval, 2002.
[20] K. Jabeur, J.M. Martel, S. Ben Khélifa, A distance-based collective pre-order integrating the relative importance of the group's members, Group Decision and Negotiation 13 (2004) 327-349.
[21] M.A. Boujelben, Y. De Smet, A. Frikha, H. Chabchoub, Building a binary outranking relation in uncertain, imprecise and multi-experts contexts: the application of evidence theory, Rapport technique \# 04-2008, Unité CoDE-SMG, Université Libre de Bruxelles, 2008.
[22] M.A. Boujelben, Y. De Smet, A. Frikha, H. Chabchoub, DISSET: a disjunctive sorting method based on evidence theory, Foundations of Computing and Decision Sciences 32 (2007) 253-274.
[23] M. Beynon, B. Curry, P. Morgan, The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling, Omega 28 (2000) 37-50.
[24] M. Beynon, D. Cosker, D. Marshall, An expert system for multicriteria decision making using Dempster-Shafer theory, Expert Systems with Applications 20 (2001) 357-367.
[25] M. Beynon, DS/AHP method: A mathematical analysis including an understanding of uncertainty, European Journal of Operational Research 140 (2002) 148-164.
[26] M. Ha-Duong, Hierarchical fusion of expert opinions in the transferable belief model: application to climate sensitivity, International Journal of Approximate Reasoning 49 (2008) 555-574.
[27] M. Rothschild, J.E. Stiglitz, Increasing risk: I.A definition, Journal of Economic Theory 2 (1970) 225-243.
[28] Ph. Smets, Analyzing the combination of conflicting belief functions, Information Fusion 8 (2007) 387-412.
[29] Ph. Smets, Constructing the pignistic probability function in a context of uncertainty, in: M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 5, Elsevier Science Publishers, 1990, pp. 29-39.
[30] Ph. Smets, Decision making in the TBM: the necessity of the pignistic transformation, International Journal of Approximate Reasoning 38 (2005) 133147.
[31] Ph. Smets, R. Kennes, The transferable belief model, Artificial Intelligence 66 (1994) 191-234.
[32] Ph. Smets, The canonical decomposition of a weighted belief, in: International Joint Conference on Artificial Intelligence, Morgan Kaufman, San Mateo, CA, 1995, pp. 1896-1901.
[33] S. Ben Amor, K. Jabeur, J.M. Martel, Multiple criteria aggregation procedure for mixed evaluations, European Journal of Operational Research 181 (2007) 1506-1515.
[34] T. Denoeux, Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence, Artificial Intelligence 172 (2008) 234-264.
[35] T. Denoeux, Extending stochastic ordering to belief functions on the real line, Information Sciences 179 (2009) 1362-1376.
[36] T. Denoeux, Ph. Smets, Classification using belief functions: the relationship between the case-based and model-based approaches, IEEE Transactions on Systems, Man and Cybernetics B 36 (2006) 1395-1406.
[37] V.S. Bawa, Stochastic dominance: a research bibliography, Management Science 28 (1982) 698-712.
[38] W.-Z. Wu, Attribute reduction based on evidence theory in incomplete decision systems, Information Sciences 178 (5) (2008) 1355-1371.

[^0]: * Corresponding author. Tel.: +216 74653764.

 E-mail addresses: ayman_boujelben@yahoo.fr (M.A. Boujelben), yves.de.smet@ulb.ac.be (Y.D. Smet), ahmed.frikha@isgis.rnu.tn (A. Frikha), habib.chabchoub@fsegs.rnu.tn (H. Chabchoub).

