The Hamiltonian Property of Generalized de Bruijn Digraphs

D. Z. Du and D. F. Hsu*

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

F. K. Hwang

AT & T Bell Laboratories, Murray Hill, New Jersey 07974

And

X. M. Zhang

Nankai University, Tianjing, China

Communicated by the Editors

Received January 27, 1987

It has been shown that the generalized de Bruijn digraphs $G_B(n, d)$ and the Imase-Itoh digraphs $G_I(n, d)$ have Hamiltonian circuits if $\gcd(n, d) > 1$. For $\gcd(n, d) = 1$ the problem remains open except for $d = 1$ and 2. In this paper we give a unified proof for all $d \geq 3$ that both $G_B(n, d)$ and $G_I(n, d)$ have Hamiltonian circuits.

1. Introduction

A generalized de Bruijn digraph $G_B(n, d)$, first proposed independently by Imase and Itoh [5] and Reddy, Pradhan, and Kuhl [8], is a digraph with n nodes labeled by the residues of modulo n and the set of nd links $\{i \rightarrow di + r \pmod n: 0 \leq i \leq n - 1, 0 \leq r \leq d - 1\}$. The well-known de Bruijn digraph is a special case of $G_B(n, d)$ when n is a power of d. Imase and Itoh also proposed $G_I(n, d)$, known as Imase-Itoh digraph, which has the set of nd links $\{i \rightarrow d(n - 1 - i) + r \pmod n: 0 \leq i \leq n - 1, 0 \leq r \leq d - 1\}$, a reverse

* Also from Department of Computer Science, Fordham University, Bronx, NY.
type of $G_B(n,d)$. Various properties of $G_B(n,d)$ and $G_I(n,d)$ have been studied in [1–8]. One of the properties still unsettled is the Hamiltonian property, i.e., whether the graph contains a Hamiltonian circuit as a subgraph. As the loop or ring is widely used in parallel and distributed computing, it is important to know if the graphs considered contain a Hamiltonian cycle.

Let $gcd(n,d) = \lambda$. It was shown in [3] that if $\lambda > 1$, then both $G_B(n,d)$ and $G_I(n,d)$ are Hamiltonian and if $\lambda = 1$, then $G_B(n,2)$ is not Hamiltonian. In this paper we prove that if $\lambda = 1$ and $d > 2$, then both $G_B(n,d)$ and $G_I(n,d)$ are Hamiltonian. One of us (Hwang) also shows in the Appendix that if $\lambda = 1$ then $G_I(n,2)$ is Hamiltonian if and only if $n = 3^m$ for $m = 1, 2, ...$. Since it is trivial to verify that $G_B(n,1)$ and $G_I(n,1)$ are never Hamiltonian except for $G_I(2,1)$, we have completely settled the question when $G_B(n,d)$ and $G_I(n,d)$ are Hamiltonian.

2. The General Approach

We assume $\lambda = 1$ and $d \geq 3$ throughout this paper. While the argument is valid for both the $G_B(n,d)$ and the $G_I(n,d)$ case, the details are given only for $G_B(n,d)$.

Let L be the set of n links $\{i \rightarrow di + 1 \pmod{n}: i = 0, 1, ..., n - 1\}$. Since $\lambda = 1$, $i \neq j$ implies $di + 1 \neq dj + 1 \pmod{n}$. Therefore every node has one inlink and one outlink in L and L consists of a set of disjoint circuits $C_1, ..., C_m$. If $m = 1$, we are through. If $m > 1$, we propose a method to combine two circuits into one. By iteratively using this method eventually there is only one circuit left.

Suppose that $i \in C_x$ and $i + 1 \in C_y$, $x \neq y$. Let j and k be the two nodes preceding i and $i + 1$, respectively, on C_x and C_y. Then we can replace the two links $j \rightarrow i$ and $k \rightarrow i + 1$ by $j \rightarrow i + 1$ and $k \rightarrow i$, thus combining C_x and C_y into one circuit. Granted, the latter two links are not in L. But $i + 1 = (dj + 1) + 1 = dj + 2$ and $i = (i + 1) - 1 = dk + 1 - 1 = dk$. Therefore $j \rightarrow i + 1$ and $k \rightarrow i$ are indeed links of $G_B(n,d)$. We call the operation of replacing $j \rightarrow i$ and $k \rightarrow i + 1$ by $j \rightarrow i + 1$ and $k \rightarrow i$ the interchange of $(i,i+1)$.

In iteratively interchanging two adjacent nodes there is one constraint to observe. For example, suppose $d = 3$ and the pair $(i,i+1)$ has been interchanged. Then we cannot interchange $(i+1,i+2)$ any longer. To see this let $h \rightarrow i + 2$ be in L. Then the interchange yields the two new links $h \rightarrow i + 1$ and $j \rightarrow i + 2$. While $i + 1 = (i + 2) - 1 = dh$ implies that $h \rightarrow i + 1$ is in $G_B(n,d)$, $j \rightarrow i + 2$ is not a link in $G_B(n,d)$ since $i + 2 = dj + 3$. Hence the interchange is illegitimate. For the same reason we cannot have the interchange $(i - 1,i)$ after the interchange $(i,i+1)$ has taken place. Of course, if $d = 4$, then $j \rightarrow i + 2$ is a link in $G_B(n,d)$ and the exchange $(i+1,i+2)$ is
legitimate, but we cannot have the interchange \((i + 2, i + 3)\), or \((i - 1, i)\), after \((i, i + 1)\), \((i + 1, i + 2)\) have been interchanged. In general, let \(P = \{(i_1, i_1 + 1), \ldots, (i_p, i_p + 1)\}\) be the set of interchanged pairs. If we draw each pair as an edge (undirected) on the \(n\) nodes \(0, 1, \ldots, n-1\) arranged in a cycle, then no chain can contain more than \(d - 1\) nodes. Any \(P\) satisfying this constraint will be called a \textit{legitimate interchange set}. Let \(L^*\) denote the undirected version of \(L\).

Lemma 1. If \(P\) is a legitimate interchange set and \(L^* \cup P\) is a connected graph, then \(G_B(n, d)\) is Hamiltonian.

Proof. We give a procedure which merges the \(m\) circuits in \(L\) into one circuit in \(m - 1\) iterations. Set \(Q = P\) and \(C = L\) to initialize. At each iteration choose \((i, i + 1) \in Q\) such that \((i - 1, i) \notin Q\) (or \(i - 1\) and \(i\) are on the same circuit) and that \(i\) and \(i + 1\) are on different circuits \(C_x\) and \(C_y\) of \(C\). The connectivity of \(L^* \cup P\) guarantees the existence of such \((i, i + 1)\). Make the \((i, i + 1)\) interchange and merge \(C_x\) and \(C_y\) into one circuit (updating \(C\)). Update \(Q\) by setting \(Q = Q - \{i, i + 1\}\).

Remark. This procedure avoids the possibility of interchanging \((i - 1, i)\) after \((i, i + 1)\) has been interchanged (which may cause problems).

3. The Main Results

We first consider \(G_B(n, d)\). Let \(P^*\) be an interchange set which consists of all adjacent pairs \((i, i + 1)\) (including \((n - 1, 0)\)) except for \(i = w(d - 1)\) for \(w = 0, 1, \ldots, \lfloor n/(d - 1) \rfloor - 1\). Clearly, \(P^*\) is legitimate. Define \(P^* = P^* \cup \{(0, 1)\}\). Since \(0 \to 1\) is a link in \(L\), \(L^* \cup P^*\) is connected if and only if \(L^* \cup P^*\) is connected. Let \(M\) be a graph with \(n\) nodes and the edge set \(\{(di + 1, di + 1 + d) : (i, i + 1) \in P^*\}\). \((i, i + 1) \in P^*\) implies that \(di + 1\) is connected to \(di + 1 + d\) through the edges \((i, di + 1), (i, i + 1), (i + 1, d(i + 1) + 1)\) in \(L^* \cup P^*\). Therefore if \(M \cup P^*\) is connected, then \(L^* \cup P^*\) must be.

Lemma 2. Each node in \(M\) is incident to either one or two edges.

Proof. Since \(\gcd(n, d) = 1\), \(i \to id + 1 \pmod{n}\) is a one to one mapping from \(\{0, 1, \ldots, n - 1\}\) onto itself. By the definition of \(M\), \((di + 1, di + 1 + 1) \in M\) if and only if \((i, i + 1) \in P^*\). Therefore \(P^*\) is isomorphic to \(M\) under the mapping \(i \to di + 1\). Since each node in \(P^*\) is incident to either one or two edges, Lemma 2 follows.

Let \(S\) denote the set of nodes \(i\) in \(M\) which have no edge of the type \((i, i + d)\).
LEMMA 3. No consecutive \(d + 1\) nodes \(i, i + 1, \ldots, i + d\) can all be in \(S\).

Proof. From Lemma 2, \(i \in S\) implies \((i, i - d)\) is an edge in \(M\). Hence \(i - d \notin S\) by the definition of \(S\).

LEMMA 4. Let \(i, i + 1, \ldots, i + d - 1\) be a run of \(d\) (consecutive) \(S\)-nodes. Then \(i \neq w(d - 1)\) for \(w = 1, \ldots, \lceil n/(d - 1) \rceil - 1\).

Proof. Note that \(S = \{d[w(d - 1)] + 1: w = 1, \ldots, \lceil n/(d - 1) \rceil - 1\}\), i.e., the nodes in \(S\) form an arithmetic progression (mod \(n\)) with the first node \(d(d - 1) + 1\) and the difference \(d(d - 1)\). Since the arithmetic progression covers a total distance of
\[
\left(\left\lfloor \frac{n}{d-1}\right\rfloor - 2\right) d(d-1) < \left(\frac{n}{d-1} - 1\right) d(d-1) = nd - d(d-1),
\]

it covers the \(n\)-cycle at most \(d\) rounds (the last round may be incomplete). Clearly, if there exists a run of \(d\) \(S\)-nodes, the progression must send a node to this run in every round (or there wouldn't be \(d\) nodes in the run). This rules out the case that \(d(d - 1) > n\). Furthermore, let \(v_i\) denote the node in the run contributed by the \(i\)th round. Then \(v_i - v_{i+1}\) must be a constant for \(i - 1, \ldots, d - 1\). Clearly, the only constants to allow \((v_1, \ldots, v_d)\) to be a run are \(\pm 1\). Therefore, \(v_1\) must be an endpoint of the run. However, \(v_1 = ud(d-1) + 1\) for some \(u = 1, \ldots, \lfloor (n-1)/(d(d-1)) \rfloor\). Therefore \(v_1 \neq w(d - 1)\) for some \(w = 1, \ldots, \lceil n/(d - 1) \rceil - 1\). So Lemma 4 follows if \(v_1\) is the starting node of the run. If \(v_1\) is the ending node of the run, then the starting node is \(v_1 - d + 1 = (ud - 1)(d-1) + 1\), again not equal to \(w(d - 1)\) for some \(w = 1, \ldots, \lceil n/(d - 1) \rceil - 1\). Therefore, regardless of which endpoint is \(v_1\), Lemma 4 is true.

Note that \(P^*\) consists of a set of chains all of length \(d - 1\) except the chain containing nodes 0 and 1 is of length at least \(d\). Denote this long chain by \(W_0\) and let \(W_j\) denote the \(j\)th chain succeeding \(W_0\) in the counter-clockwise order. Note that the largest element in each \(W_j\) is of the form \(w(d - 1)\) for some \(w \in \{1, \ldots, \lceil n/(d - 1) \rceil - 1\}\).

THEOREM 1. \(G_\lambda(n, d)\) is Hamiltonian for \(\lambda = 1\) and \(d \geq 3\).

Proof. It suffices to prove that \(M \cup P^*\) is connected. We prove this by showing that \(W_j\) is connected to \(W_0\) through links of \(M\). Our proof is an induction proof on \(j\).

Let \(W_j = (i + 1, \ldots, i + d - 1)\). For \(j = 1\), if \(W_j\) contains a node \(i + k\) not in \(S\), then the edge \((i + k, i + k + d) \in M\), where \(i + k + d \in W_0\). Hence \(W_1\) is connected to \(W_0\). If all nodes of \(W_1\) are in \(S\), then \(W_1\) is connected to \(W_2\) through the edge \((i + 2, i + 2 - d)\). Furthermore, since \(i\) is the largest
element in W_2, $i = w(d - 1)$ for some $w \in \{1, ..., \lceil n/(d - 1) \rceil - 1$. By Lemma 4, i is not in S, i.e., the edge $(i, i + d) \in M$ where $i + d \in W_0$. Hence W_1 is connected to W_0 through W_2.

For general $j > 1$ the argument is similar. If W_j contains a node $i + k$ not in S, then the edge $(i + k, i + k + d) \in M$ where $i + k + d$ is either in W_{j-1} or W_{j-2}. By the induction assumption both W_{j-1} and W_{j-2} are connected to W_0. If all nodes of W_j are in S, then W_j is connected to W_{j+1} through the edge $(i + 2, i + 2 - d)$. Furthermore, by Lemma 4, i is not in S, i.e., the edge $(i, i + d) \in M$ where $i + d \in W_{j-1}$. Hence W_j is connected to W_{j-1}, and by induction, to W_0.

Theorem 2. $G_\lambda(n, d)$ is Hamiltonian for $\lambda = 1$ and $d \geq 3$.

Proof. Let $L^* = \{(i, d(n - 1 - i) + 1): i = 0, 1, ..., n - 1\}$ and let P be an interchange set consisting of all adjacent pairs $(i, i + 1)$ except for $i = \lfloor n - w(d - 1) \rfloor - 1$. Clearly, P is legitimate. Denote $P_1^* = P \cup \{(0, 1)\}$. Since $(n-1, 0) \in P$ and $(n-1, 1) \in L^*$, $L^* \cup P$ is connected if $L^* \cup P_1^*$ is connected. Let M_1 be a graph with n nodes and the edge set $\{(d(n - 1 - i) + 1, d(n - 1 - i) + 1 - d): (i, i + 1) \in P_1^*\}$. $(i, i + 1) \in P_1^*$ implies that $d(n - 1 - i) + 1$ is connected to $d(n - 1 - i) + 1 - d$ through edges in $L^* \cup P_1^*$. Therefore, if $M_1 \cup P_1^*$ is connected, then $L^* \cup P_1^*$ must be. It suffices to consider the case that $M_1 \cup P_1^*$ is not connected.

Let x be the smallest number such that W_x is not connected to W_0. Since W_0 has at least d nodes, M_1 does not contain the edge $[i - d, i]$ for any $i \in W_x$. Consequently, M_1 must contain the edge $[i, i + d]$, i.e., W_x is connected to W_{x+1}. Now let y be the smallest number such that W_y is not connected to W_x. Then we can show that W_y is connected to W_{y+1} similarly. Since an edge of M_1 skips only $d - 1$ nodes, the above argument implies that each connected component of $M_1 \cup P_1^*$ contains consecutive nodes.

Let $C = (i, i + 1, ..., i + j)$ be the nodes in a connected component of $M_1 \cup P_1^*$ and let k be the largest k such that $i \leq i + kd \leq i + j$. Then C contains neither the edge $(i - d, i)$ nor the edge $(i + kd, i + (k + 1)d)$. Consider the mapping from M_1 to P_1^*. This implies the existence of a component in P_1^* with at most k edges. But we know each component in P_1^* has at least $d - 2$ edges. Hence $k \geq d - 2$ and C contains at least $(d - 2)d + 1$ edges (a more careful analysis yields $(d - 1)d$ edges).

Define $P_2^* = \{(i, i + 1): (i, i + 1)$ is connected in $M_1 \cup P_1^*\}$. Define $M_2 = \{(d(n - 1 - i) + 1, d(n - 1 - i) + 1 - d): (i, i + 1) \in P_2^*\}$. Since we have just proved that a component in P_2^* has at least $(d - 2)d + 1$ edges, an analogous argument shows that a component of $P_2^* \cup M_2$ contains at least $[(d - 2)d + 1]d + 1$ edges. Since the minimum component size is growing
from $M_1 \cup P_1^*$ to $M_2 \cup P_2^*$, a recursive argument shows that there exists a $j, j < \log_d n$, such that $M_j \cup P_j^*$ is connected. This in turn implies that $L^* \cup P_1^*$ is connected. The proof is complete.

One referee gave the interesting example $n = 17$ and $d = 3$ such that $M_1 \cup P_1^*$ as defined in Theorem 2 is disconnected. This example forced us to look into $M_j \cup P_j^*$ for $j > 1$.

APPENDIX: THE CASE $d = 2$

Theorem 1. $G_1(n, 2)$ is Hamiltonian for odd n if and only if $n = 3^m$, $m = 1, 2, \ldots$.

Proof. Suppose that we proceed to construct a Hamiltonian circuit H of $G_1(n, 2)$. Because of symmetry we may assume that H contains the arc $(n - 1)/2 \to 0$ (as versus the arc $(n - 1)/2 \to n - 1$). Then the arc $(n - 1)/2 \to n - 1$ cannot be in H, hence the arc $0 \to n - 1$ must be in H. Consequently, the arc $n - 1 \to 0$ cannot be in H; hence, the arc $n - 1 \to 1$ must be in H. Repeating this argument it is easily seen that all arcs $i \to -2i - 2$ can be in H.

Define $f^0(x) = x, f(x) = 2x \cdot 1 \pmod{n}, f^k(x) = f(f^{k-1}(x))$. Then H is indeed a Hamiltonian circuit if $x, f(x), f^2(x), \ldots, f^{n-1}(x)$ are all distinct modulo n. Set $x = 0$. Then it is easily solved that

$$f^k(0) = \frac{2^k - 1}{3}, \quad k \text{ even}$$

$$= -\frac{2^k + 1}{3}, \quad k \text{ odd}.$$

Lemma. $f^{c3^m}(0)$ is divisible by 3^m but not by $3^m + 1$ for c an integer not a multiple of 3 and $m = 0, 1, \ldots$.

Proof. Write $c = 6a + b$ where $0 \leq b \leq 5$. Then

$$2^c = 2^{6a} \cdot b = 64^a 2^b = 2^b \pmod{9}.$$

Therefore it is easily verified that $f^c(0)$ is not divisible by 3 if c is not a multiple of 3. This verifies the lemma for $m = 0$. We now prove the general case by induction on m. For c even and not a multiple of 3

$$f^{c3^m}(0) = \frac{2^{c3^m} - 1}{3} = \frac{(2^{c3^{m-1}})^3 - 1}{3}$$

$$= \frac{(2^{3^{m-1}} - 1)(2^{3^{m-1}} + 2^{3^{m-1}} + 1)}{3}$$

$$= f^{c3^{m-1}}(0) \cdot (2^{2c3^{m-1}} + 2^{3^{m-1}} + 1).$$
It is easily verified that

$$2^{c \cdot 3^{m-1}} + 2^{c_3^{m-1}} + 1 \equiv 3 \pmod{9}$$

and by induction $f^{c \cdot 3^{m-1}}(0)$ is divisible by 3^{m-1} but not by 3^m, hence the lemma. The odd c case can be similarly proved.

Note that the Lemma implies that the smallest k such that $f^k(0)$ is divisible by 3^m is $k = 3^m$, which is the "if" part of the theorem. We next prove the "only if" part. Let n be an odd number and we write $n = 3^m n'$, where $n' > 1$ is not divisible by 3. By the Euler theorem

$$2^{\phi(n')} \equiv 1 \pmod{n'},$$

where ϕ is the Euler function.

Therefore

$$2^{3^m \phi(n')} - 1$$

is divisible by n'. Furthermore, since $\phi(n')$ is even,

$$f^{3^m \phi(n')}(0) = \frac{2^{3^m \phi(n')} - 1}{3}$$

is divisible by n'. On the other hand, $f^{3^m \phi(n')}(0)$ is divisible by 3^m by the lemma, hence it is divisible by $n = 3^m n'$. Since

$$3^m \phi(n') < 3^m n' = n,$$

n is not the smallest k such that $f^k(0)$ is divisible by n.

Corollary. $G_1(3^m, 2)$ has exactly two Hamiltonian circuits and they are arc-disjoint.

Proof. By symmetry, the set of arcs $i \rightarrow -2i - 2$, $i = 0, 1, ..., n - 1$, also constitutes a Hamiltonian circuit.

Acknowledgments

The authors thank the referees for many helpful suggestions.

References

1. J. C. Bermond, N. Hombono, and C. Peyrat, Large fault tolerant interconnection networks, Graph Combin., in press.