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Introduction 

We consider a sequence (X,) of independent random variables (r.v.‘s) defined on 

a common probability space with EX,, = 0, EX: = 1 for all n. Let ( ali) be a symmetric 

double array of real numbers (i.e. aq = Uji for all i and j), A,, = (u~~)~,~=,,...,~. Put 

Qo-0, Q,, = f i a,(X,X,- EX,X,), 
r=l j=l 

Yn=Qs-Qnp1, B, =var Q,,. 

We assume throughout that B, + ~0. 

The quadratic forms (q.f.‘s) Q,, form a martingale with respect to the u-fields 

generated by X,, . . . , X,,. 

Results concerning the almost sure (as.) convergence (e.g. Varberg, 1966, 1968; 

Sjijgren, 1982; Cambanis et al., 1985; Krakowiak and Szulga, 1986; Kwapien and 

Woyczynski, 1987) and the strong law of large numbers (SLLN) (e.g. Wilmesmeyer 

and Wright, 1979, 1982; Fernholz and Teicher, 1980; Szulga and Woyczynski, 1981) 

show that q.f.‘s in independent r.v.‘s behave very much like weighted sums of 

independent r.v.‘s. Q.f.‘s satisfy a fairly general law of the iterated logarithm (LIL) 

(e.g. Mikosch, 1988a,b, 1989, 1990) and central limit theorem (CLT) (e.g. Rotar’, 

1973, 1975a,b; de Jong 1987; Guttorp and Lockhart, 1988; and the references cited 

therein) with nonrandom normalization. 
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In the present paper we consider the weak and strong limit behaviour of the q.f.‘s 

Q,,. More exactly, we prove functional CLT’s and LIL’s (FCLT’s and FLIL’s) 

provided that B,“‘Q,, converges weakly to a standard Gaussian law (in short, 

B,“*Qn +d N(0, 1)). We use exponential estimates for tail probabilities, an estimate 

of the distance between the distribution functions of q.f.‘s in Gaussian and non- 

Gaussian r.v.‘s, certain moment estimates as well as a strong invariance principle 

basing on an SLLN for random times. It is natural that we shall need some algebra 

for matrices and their eigenvalues, but also some elementary theory of random q.f.‘s. 

We refer to standard books (e.g. Gantmacher, 1971; Lancaster, 1982; Johnson and 

Kotz, 1980). 

1. The central limit theorem 

1.1. Preliminaries 

Beginning with Sevastyanov (1961) (who determined the class of possible limit 

distributions for q.f.‘s in Gaussian r.v.‘s) there have appeared quite a few papers 

concerning the CLT for q.f.‘s. 

De Jong (1987) and Guttorp and Lockhart (1988) gave surveys of results on this 

topic. From the papers cited therein Rotar’s (1975a,b) work is of special interest. 

He proved under quite general assumptions that the distribution of a q.f. in indepen- 

dent mean-zero, square-integrable r.v.‘s is close to the distribution of the q.f. in 

independent identically distributed (i.i.d.) Gaussian r.v.‘s with the same coefficient 

matrix and covariance structure. Rotar’s result suggests that the class of q.f.‘s in 

Gaussian r.v.‘s is of crucial importance. 

It is well known that Q,, permits the representation 

Q n = ; h’“‘((Z?“)2-l) (1.1) 
i=l 

where Zy”‘, i = 1, . . . , n, are orthogonal r.v.‘s with EZ)“’ = 0, E(Z$“‘)* = 1, and Al”‘, 

i=l,..., n, are the eigenvalues of A,,. We suppress the dependence on n in ZI”‘, 

AI”‘, in the sequel. 

The spectral norm of A,, is given by 

p., = .max Ihi”‘/. 
r=l,...,n 

For any matrix B = (b,i)i,j,,,.,_,, the Frobenius norm 11 BII is defined by 

Suppose for the moment that the X,, are i.i.d. N(0, 1) r.v.‘s. Then the Zi in (1.1) are 

i.i.d. N(0, 1) r.v.‘s for every fixed n. It is not difficult to see that 

B,“‘Q,, -r: N(0, 1) 
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if and only if 

R, $_+O. (1.2) 

(( 1.2) is equivalent to the Lindeberg condition; e.g. Petrov, 1972.) 

From Rotar’ (1975) (cf. also Guttorp and Lockhart, 1988) or from de Jong (1987, 

Theorem 5.2), we obtain a more general result: 

Theorem 1.1. Assume that (X,,) is a sequence of independent uniformly square 

integrable r.v.‘s with EX,, = 0, EXZ = 1 for all n and that a,,,, = 0 for all n. If (1.2) is 

satisfied then B,“‘Q +d N(0, 1). 0 

For an interpretation of condition (1.2) the following lemma is useful. To formulate 

it we need some further notations: 

A, = (a",j)i,,=l,...,n, a", = a,j if i >j, a’, = 0 otherwise. (1.3) 

Lemma 1.2. The following relations are equivalent: 

6) IIA, II-‘P,, + 0. 

(ii) IIA,II-” i$, JAi(“+O forsomev>2. 

(iii) /An (Iek llAill+ 0 for some integer k 3 2. 

Moreover, if 1 < lim inf EX: s lim sup EX: < 00 or if an,, = 0 for all n, then each of 

the conditions (i)-(iii) is equivalent to (1.2). 

If arm = 0 for all n, the condition 

(iv) Il~i,II~211&LII-~, 
implies (l)-(3). 

If ai, 2 0 for all i and j and if a,,,, = 0 for all n, then (i)-(iv) are equivalent. 

Each of the conditions (i)-(iii) implies that 

IIAnll-2 ,max f a$+O. 
I=1 ,..., n I=, (1.4) 

If arm = 0 for all n then (iv) implies (1.4). 

Remarks. (1) If (ii) (if (iii)) is satisfied for some v > 2 (some integer k 3 2), then 

(ii) (then (iii)) is true for every v > 2 (every integer k 2 2). 

(2) Condition (1.2) means that the array of rowwise independent r.v.‘s 

( B,“2A I”)( (ZI”‘)’ - 1)) satisfies the assumption of infinitesimality (cf. Petrov, 1972). 

Condition (1.4) is equivalent to the relation 

B,’ max var( Qi - Qi-,) + 0, 
i= L,...,n 

provided that a,,,, = 0 for all n or that 1 < lim inf EXZ =S lim sup EX: < 00. 
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Condition (1.4) is more general than (1.2). 

(3) It follows from Theorem 1.1 and Lemma 1.2 that (1.2) and the conditions 

(i)-(iv) are of crucial importance for the CLT-behaviour of q.f.‘s. The ratios B;‘pz, 

llAlI-211A~ll, ll~nll-211~~~nII fig ure explicitly or implicitly in most of the results 

given below. 

Proof of Lemma 1.2. It is an immediate consequence of Schur’s theorem (e.g. 

Lancaster, 1982) that 

(1.9 

For v > 2 we have 

llA,lI-“~:~ IlAnlI-” ii, IAil”~ IlAnlI-“+2~:--2. 

Then the equivalence of (i)-(iii) is obvious. Since 

IIA~l12= i (i ab)2+2 i2i (i, @ka,)i 
i=l ]=I 

the relation (1.4) follows from (iii) with k = 2. The equivalence of (i) and (1.2) 

under the assumptions of the lemma (i.e. unn = 0 for all n or 1 <lim inf EX: s 

lim sup EXZ <CO) is a consequence of the identity 

B, = i &(EX;-1)+4 i ‘f’ u;. 
i=* i=2 j=l 

(1.6) 

Now assume that an,, = 0 for all n and that (iv) is satisfied. Let vi < . . * G v, be the 

eigenvalues of &!,A,,. We have 

v; G i vf = II&J, j12. (1.7) 
i=l 

Since v iI2 is the spectral norm of A”, and since A, = 2, + Az we get by the triangular 

inequality for spectral norms that p,, G 2~:‘~. By (1.7), the relation (iv) implies that 

llAn JJplpu, + 0, i.e. (i) is satisfied. 

If uii 2 0 for all i and j, then IIAi;iA’, 112~ IIA~l(2, so that (iii) implies (iv). This 

concludes the proof of the lemma. 0 

Frequently we shall make use of the following estimates. 

Lemma 1.3. Assume that c, = sup,, E 1X,( p < 00 for some p > 1. Then 

EljiaiXi/ p~c(~la~)P’2 (1.8) 
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for any reals ai, some constant c depending on p and c,. If a,,,, =0 for all n or if the 

X,, are i.i.d. N(0, 1) r.zI.‘s, then 

EIQ,IIP~~((A,IIP=~2-p’2B~‘2 (1.9) 

for p s 2, some constant c depending on p and c, . 

Proof. (1.8) is a consequence of the Marcinkiewicz-Zygmund and Minkowski 

inequalities as well as of the uniform boundedness of EIXilP. By Burkholder’s and 

Minkowski’s inequalities and by (1.8) we obtain 

SC (ii, (El y.l”)‘i”> p’2 

sc(i2 (E /i$: a&j ( p)2’p)p’2 

provided that unn = 0 for all n. 

(Here and in the sequel c stands for constants which may be different from line 

to line and even from formula to formula and whose value is not of interest.) 

If the X,, are i.i.d. N(0, 1) r.v.‘s then (1.9) is a consequence of (l.l), (1.8) and 

(1.5) with k = 1. q 

1.2. A Berry- Esseen estimate 

Assume that (5,) is a sequence of i.i.d. N(0, 1) r.v.‘s. Put 

0(X,, . . . 3 xn)= i i a,xix,, 

i=L j=1 

Qn(5) = Q(5, >. ., 5n), Q,,(X) = Qtx, > . . . , Xl, 

Ft-,,tx) = PtQntS)<xL Fx,n(x) = P(Qn(W <xl. 

Using the representation (1.1) and a non-uniform version of the Berry-Esseen 

inequality in the CLT (e.g. Petrov, 1972) we get 

sup(1 +(xI~)~P(B,"~Q,, < X) - @(x)1 c Bi3’2 i IAil3 s cB,“~F~T (1.10) 
x I=, 

where Q(x) denotes the distribution function of el. Gamkrelidze, Rotar’ (1977) and 

Rota? and Shervashidze (1985) estimated the distance 

4 = suplF~,,(x) - Fx,n(x)l. x 
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We extend these results slightly. The proof is essentially due to Gamkrelidze, Rotar’ 

(1977). Put 

L~,~ = BiP12 i, (j, ai)pi2y P>O. 

Proposition 1.4. Assume that c, = sup E IX,1 p < 00 for some integer p > 2. Suppose 

thatE&=EXk, k=2,... , p - 1, and aii = 0, for all i. If B,‘pi + 0 then 

A,, = O(L~$p+‘)), n + 00. (1.11) 

Remarks. (1) Relation (1.11) can be rewritten in the form A,, c cLLi,(“+‘) for large 

n and for a constant c depending on c, and p. 

(2) By Lemma 1.2, the condition B,‘pi + 0 implies (1.4). Hence Lp,n + 0 as n + 00. 

Moreover, 

L 
P-H 

s B,’ max i ui 
( 

(p-2)/2 

i=l,.._, n i=, > 
. 

(3) The relation (1.11) remains true in more general situations, i.e. if the ratio 

B,‘pUZ, ’ IS bounded above by a ‘small’ constant (cf. Gamkrelidze and Rotar’, 1977; 

Rotar’ and Shervashidze, 1985). 

(4) According to Theorem 1.1, &,(BL”x+EQ,) and F,,(B!,‘2~+EQ,,) both 

tend to D(x) whenever B;‘,ui+O. 

Proof of Proposition 1.4. Without loss of generality assume that /IA,, II= 1. By 

Lemma 1.2, C:=, Ihil”+ 0. According to Gamkrelidze and Rotar’ (1977) this enables 

us to apply Esseen’s lemma (e.g. Petrov, 1972) for large n, 

lF,.(x)-f,.(x)l~c~~r t-‘lfx(t)-&(t)I dt+qT-’ 
I 

, T>O, (1.12) 
0 

with constants c, q > 0. Here fs, fx are the characteristic functions of F,,n(x), &,(x), 

respectively (we suppress the index n in fx and fC). Put f0 = fx, fn = fE and let f; 

denote the characteristic functions of di = Q(t,, . . . ,6, Xi+, , . . . , X,). Then 

IfxW-.!@)I~ i If;(t)-L1(t)l. i=l 
We have ojpI = X,V + Wj where V, and W, do not depend on Xj, e; = S,V + Wj. 

If;(t)-~-,(t)J~IE[exp{it~)E(exp{itX,Vi>-exp{it~,~}(~)]I 

s E~E(exp{itXjV,}-exp{it~~}~~j)) 

SE E I ([ l+itX,V$+* . .+ 
(itXjVj)p 

P! 
O( tX,Y) 1 

(it6Y)p $jct5,v.) 

P! 
I J II >I sj (1.13) 
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where IO(x)1 G 1, 16(x)] G 1, and Fi is the u-algebra generated by X,, 5, k #j. The 

moments of X, and 5, coincide up to order (p - 1). Hence 

I~~f~~-f;~~~t~l~cltlPEIvjlP~ (1.14) 

and by Lemma 1.3, 

(1.15) 

Now (1.12)-( 1.15) yield 

This concludes the proof. 0 

1.3. The FCLT 

Assume for the moment that (X,,) is a sequence of i.i.d. N(0, 1) r.v.‘s. Define the 

polygonal functions 

BP”’ ; h,(Zf- I), 

I? 

n for f =2B,‘(h:+. . .+A:), 
i=, 

‘c!,(t)= () for t = 0, 

linearly interpolated elsewhere, 0 G t G 1. 

Let W denote Brownialt motion on [0, l] and the symbol +d stands for weak 

convergence in C(0, 1). 

Proposition 1.5. g, +d W if and only if B,‘pz + 0. 0 

The necessity follows from the fact that g, +d W implies B,“2Q, +d N(0, 1). The 

sufficiency is a consequence of an FCLT for double arrays or rowwise independent 

r.v.‘s due to Prokhorov (1956) (see Billingsley, 1977, Exercise 1, Section 10). The 

polygonal functions g, are not convenient from a practical point of view: They 

require the knowledge of all eigenvalues of A,,. Therefore we define another sort 

of piecewise linear function which depends only on the Bi. 

Put t,, = B,’ Bk, k = 0, . . . , n, and define 

fn(t) = { B,“*Qk, for t = tkn, k = 0, . . . , n, 

lmearly interpolated elsewhere, 0 s t G 1. 

Theorem 1.6. Let (X,,) be a sequence of independent r.u.‘s, EX, = 0, EX; = 1 for all 

n. Assume that II& II-211~~& II --, 0. If an,, =0 for all n and sup ElX,,l”<~~_for some 

p>2 or if the X,, are i.i.d. N(0, 1) r.z.x’s and B,’ maxi =,,..., n af,+O, then fn +d W. 
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Remarks. (1) The matrices 2, were defined by (1.3). 

(2) The condition ~~~,))-*J~~;f~,~) + 0 implies that B,‘pi + 0 (cf. Lemma 1.2). 

Proof of Theorem 1.6. We show that the conditions of Brown’s (1971) FCLT for 

martingales are satisfied, i.e. 

B,’ i E( Y:/ 5Fi-,) -5 1, (1.16) 
i=l 

S,,=B,’ $ E(Yfl(Jk;l>EB~'*)I~i.-1)~0 V&>O. (1.17) 
i=l 

Here +” denotes convergence in probability, hi is the u-field generated by 

Xi,..., Xi, i 3 1, so is the trivial o-field. 

First assume that arm = 0 for all n. We have 

S,, < cB,’ i B;(P-2)‘2E 

i=l 

P 

a.s. 

ES,, 6 cBip'* 

i-l 

> 

(p-2)/* 

max C u’, 
i=2,...,n j=* 

By Lemma 1.2, the right-hand side of this inequality tends to zero. This implies (1.17). 

Next we show (1.16). It suffices to prove that 

2 

-150, 

or, equivalently, that 

n-1 n-, 

4%’ c c ai&j (XjXj - EXiXj) 
i=, .j=, k=ivl+l > 

n-, ,,-I 

= 4B;’ 1 1 (A”~~,Ji,(X;Xj - ,??X,X,) 5 0. 
i=l j-1 

Thus it suffices to show that 

“-1 
S,,,=B,’ C 

i=l 

and 

n i--l 

S,,, = B,' C C (&&X,X, 5 0. 
i-2 j=1 
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We have, by Lemma 1.3, 

ES,,< B,‘II~:&112. 

and the right-hand sides of both inequalities tend to zero because of Lemma 1.2. 

This concludes the proof for the case a,," = 0. 

Now assume that the X, are i.i.d. N(0, 1) r.v.‘s. Then (1.16) can be rewritten in 

the form 

The proof of (1.16) is then analogous to the case arm = 0. 

It suffices for (1.17) to show that 

Bi2 i EY;+O. 
i=l 

Now, 

SCE jg, at 2. 
( ) 

Hence 

I 

Bi2 i EYys cB,’ max c af, 
i=l i=l,...,n j=l 

and the right-hand side of this inequality tends to zero, by (1.4) and the assumption 

that B,’ maxi=, ,...,” af + 0. This concludes the proof of the theorem. q 

Remark. I conjecture that Theorem 1.6 remains valid if a,," = 0 for all n and if the 

r.v.‘s X,, are uniformly square integrable. I can prove this only under the assumption 

that av 2 0 for all i and j. The proof of this fact is analogous to the proof of Theorem 

5.1 in de Jong (1987). He used Brown’s (1971) FCLT and a truncation argument. 
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2. The law of the iterated logarithm 

2.1. Preliminaries 

Results of LIL-type depend heavily on estimates for tail probabilities and on maximal 

inequalities. In the case of q.f.‘s in Gaussian r.v.‘s these estimates depend on the 

asymptotic behaviour of the ratio B,‘pz(cf. Mikosch, 1988b, 1990). 

We cite some LIL-results for q.f.‘s in i.i.d. N(0, 1) r.v.‘s. Define log x = max( 1, In x), 

log, x = log log x, x > 0. 

For d > 1 and a > 1 let nk = nk( a, d) be an integer sequence satisfying the condition 

B;;,‘dk” + 1. (2.1) 

Such sequences are well defined for every d > 1, a > 1, e.g. if B,‘B,+, + 1. The latter 

condition is satisfied if B,‘pi + 0. Indeed, B,‘pt + 0 implies (1.4), by Lemma 1.2, 

so that B,‘B,+, + 1 is an immediate consequence. 

Theorem 2.1 (Mikosch, 1988b, 1990). Assume that (X,,) is a sequence of i.i.d. N(0, 1) 

r.v.‘s. Then the following statements are true: 

(A) lim sup(2B, log: B,)p”2(Q,I s 1 a.s. 

(B) lf 

pu’n = o(BJog 8,) (2.2) 

then 

lim sup (2B, log, B,)-“‘lQnl s 1 a.s. 

(C) Assume that (2.2) is satisfied and define sequences (nk) with (2.1) for some 

d>l andeverya>l. Zf 

“i-1 “1 

c c ai = o(B,kllogz B,,) 
i=l j=ni-,+l 

for every LY > 1, then 

lim sup *(2B, log, B,)-“‘Q,, = 1 a.s. 

(D) Assume that there exist sequences (nk) with (2.1) for some d > 1 and every 

a>l. Zf 

“I-1 “h 
c c a5 = o( B,,) 

i=l ,=tq-,+I 

for every (Y > 1, p,, 1~0 and lim inf /.L,,/ ((A, (( > 0, then 

lim sup (2~~ log: ~Un)-“2jQnl = 1 a.s. 0 
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Remark. The condition (2.2) is of crucial importance for the LIL-behaviour of 

Gaussian q.f.‘s. This condition is very much like Kolmogorov’s condition on the 

r.v.‘s in Kolmogorov’s LIL for sums of independent r.v.‘s; the exponential estimates 

are also very similar to the Kolmogorov case (see Mikosch, 1988b, 1990; cf. Petrov, 

1972). Condition (2.2) implies that I?,‘/J~ + 0, i.e. the CLT B,“‘Qn +d N(0, 1) holds. 

The cases (A) and (D) give some information about the LIL-behaviour if the 

condition B,‘t_~t +O is not satisfied. Then B,“‘Q,, shows ‘noncentral’ limit 

behaviour. 

We apply an approach to the FLIL basing on an embedding technique for the 

martingale Q,,. This method was used by Strassen (1964) in order to prove his 

well-known invariance principle and the FLIL for i.i.d. sum processes. 

Theorem 2.2 (e.g. Hall and Heyde, 1980, Theorem A.l). Let {S, = C:=, Y, %,,, n 3 l} 

be a zero-mean, square-integrable martingale. Then there exists a probability space 

supporting a (standard) Brownian motion W and a sequence of nonnegative r.v.‘s 

71,..., 7, with the following properties. Zf T,, = I:=, ri, Sk = W( T,,), Y’, = S;, YL = 

SA and W(t),Os tc T,, SL - SL_, , for n 2 2, and 9, is the a-field generated by S; , . . . 

then: 

(9 is,, n31}=d{S~,n31}. 

(ii) T,, is 9,,-measurable. 

(iii) For each real number r 2 1, 

E(T:[~~_,)~ C,E((Y;12’(~~_,)= C,E(IY;j2’I Y: 

for some constants C,. 

(iv) E(T, \y_r) = E(( YL)2jy_I) as. 0 

2.2. A strong law for random times 

Throughout it is assumed that 

. . . , YL-,) a.s. 

a nn = 0 for all n. 

It is possible to avoid this condition but the assumptions on (aV) will become more 

complicated then and we will also need higher moment conditions. According to 

Theorem 2.2 we may and do suppose that Brownian motion W and nonnegative 

r.v.‘s T,, r2,. . . are given on a common probability space such that Q, = W( T,,), 

T,, =C:=, 7i and the properties (i)-(iv) of Theorem 2.2 are satisfied. 

We use the notations 

Qn=i K, 
i-l 

Y, =x,x, V,=O, Vr=2 C a,X,, R,= i VT. 
i=l j=l i=l 
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Lemma 2.3. Assume that sup E]X,12p < ~0 for some p E (1,2]. Zf 

then 

B,‘(T,-R,)+O U.S. (2.4) 

Proof. Let XL, i = 1, 2, 3, be the a-fields generated by Qi, is n, and W(t), 

OstcT,,; by Yi, ien; by Xi, isn; respectively. Put 

(2.3) 

M;= f (E(7iIX!-l)- Y:), 
i=2 

M3,= i (Yf-V;). 
i=2 

Note that (ML, Xi), i = 1,2,3, are martingales. It suffices to show that lim B,‘ML = 0 

a.s., i = 1, 2, 3. According to a result of Chow (see Stout, 1974, Corollary 2.8.5) it 

suffices to show that 

C B,PE(IM:,-M~_,IPl~~_,)<co a.s., i=l,2,3, 

for some p E (1,2]. Using Theorem 2.2 and Lemma 1.3 we get 

i-l 

(2.5) 

EJM:,-M,~,lP~CElY,)2p~C c a’, . 
(. > 

P 
(2.6) 

,=1 

Now relation (2.4) is immediate from (2.5), (2.6) and (2.3). 0 

Lemma 2.4. Assume that B,‘B,+, + 1 and dejine for r > 0 the integers nk = nk (r) by 

Bnk_, s (l+ T)” < B,,. Suppose that for each E > 0 there exists a rO> 0 such that for 

7 E (0, 70), 

C P(lR,, - B,,I > eB,,) < KJ. 

Then 

B,‘R, + 1 U.S. 

Proof. Note that ER, = B,. It suffices to show that 

P max B,‘(R,-ER,I>&i.o. =0 
ll_,‘“‘?lC > 

(2.7) 
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(i.o. - infinitely often) for each E > 0, some r > 0. We have 

P max B;‘(R,-ER,J>& 
nk_,<“s”k > 

~PP(R,,‘(l+&)B,,_,)+P(R,,~,<-(l-E)B,,) 

~PP(R,,‘(~+~~)B,*)+P(R,,_,<-(~-?~E)B,,~,) (2.8) 

for r > 0 close to zero and k sufficiently large. Now the statement follows from 

(2.8), (2.7) and the Borel-Cantelli lemma. 0 

Proposition 2.5. Assume that (X,) is a sequence of i.i.d. N(0, 1) r.u.‘s. If 

then 

II%tzII = o(Bnllog2 &I, 

B,‘T,,+ 1 U.S. 

(2.9) 

(2.10) 

Remarks. (1) The matrices A, are defined by (1.3). 

(2) By (1.7), (2.10) implies that p; = o( B,/log, B,), i.e. condition (2.2) is satisfied 

(cf. Theorem 2.1). 

Proof of Proposition 2.5. The conditions of Lemma 2.3 are obviously satisfied. 1 

remains to show that Lemma 2.4 is applicable. From (2.9) we have 

n-l 
B,:,B, = l-2B,’ C at+ 1. 

,=I 

The r.v. R, is a q.f. in i.i.d. N(0, 1) r.v.‘s with ER, = B, and 

var R, =2jl~f&,jl’_ 

Indeed, 

r=2 j=l k=l 

n-, n-1 

= c 1 xjxk i a’,&, 

j=l k=l r=2 

n-, n--l 

= c c x,x, i aiiaik 
j=l k=l i=jvk+l 

(2.11) 

n--l n-1 

= c c xj&(ii;L&)jk. 
j=l k=l 

(2.12) 
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From Mikosch (1988b) we get 

P(B,‘IR,-ER,I>&)~Cexp 
(1--6)&B, 

(2 var R,,)“’ 

for 6 E (0, l), some C = C(6). Recalling (2.10), (2.11) and the definition of (nk) we 

get 

P(B;;JR,, -ER,+ E)< k-* 

for each E > 0, T > 0, k sufficiently large. An application of Lemma 2.4 yields the 

statement of the proposition. q 

Proposition 2.6. Assume that sup EX6, <CO. Suppose that (2.9) and (2.10) are 

satis$ed. lf the conditions 

; BZ i;, (j=g+, .t)‘<@J? (2.13) 

hold for r > 0 in a neighbourhood of the origin then 

B,‘T, + 1 a.s. 

Remarks. (1) Each of the following conditions implies (2.13): 

(2) (2.14) is satisfied if 

Proof of Proposition 2.6. The assumptions of Lemma 2.3 are satisfied. It remains 

to show that the conditions of Lemma 2.4 are fulfilled. Clearly, B,i, B, + 1. Recalling 

(2.12) we define 

R,,= 1 (&&)ii(X:-l), Rn2=(R,-ER,)-R,,. 
i=l 

By a non-uniform version of the Berry-Esseen estimate for sums of independent 
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r.v.‘s (cf. (l.lO), see Petrov, 1972) and by the uniform boundedness of 15x6, we get 

P(IR,,(>&Bn)=2 1-Q ( ( (var’~~,),,~)) +o(ZY=l $lAJi). (2.15) 

We have 

var R,, S CllLl&ll’ 

which together with (2.10) implies that 

Now the relation 

C NR,,,l> E&)<~ 
follows from (2.15), (2.16) and (2.13). It remains to show that 

C P(I R,,,zI > e&z,) < ~0. 

(2.16) 

(2.17) 

An application of Proposition 1.4 with p = 3 yields 

P(IR,,,I> dk) = P(IRn,(t)I> ~4,) 

where Rn2(l) is obtained from Rn2 by replacing all X, by i.i.d. N(0, 1) r.v.‘s 4. The 

convergence of the series 

can be proved analogously to the proof of Proposition 2.5. Thus (2.17) is a con- 

sequence of (2.18) and (2.14). This concludes the proof. 0 

Remarks. (1) The assumptions of the Propositions 2.5 and 2.6 are satisfied, for 

instance, for q.f.‘s of the form 

i “fh X,X,+/,, Ik>O, Sal. 
k=l i=L 

Generally speaking, the conditions of these propositions mean that ‘the main 

coefficient mass’ of the matrices A,, is concentrated ‘along the diagonal’. 

(2) The moment conditions of Proposition 2.6 can be weakened. Considering the 

proof we can see that the probability P(IR,,I > EB,), can be estimated by a non- 

uniform Berry-Esseen inequality that requires less than a third moment of the r.v.‘s 

X: (see e.g. Petrov, 1972). The simplest way to get an estimate for P(IR,21 > EB,) 
is to use Cebyshev’s inequality, i.e. 

P(IR,21 > EB,) G const B,211A~A, j12, 
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which requires only a second moment condition on the Xi. Better estimates of 

P((&( > EB,,) can be obtained from non-uniform Berry-Esseen inequalities for 

martingales which were proved by Hausler and Joos (1988). 

Clearly, if one uses other probability estimates, one has to modify the conditions 

(2.13), (2.14), i.e. one has to modify the conditions on the matrices A,. 

The conditions (2.13) and (2.14) are essentially conditions on the growth of 

B,’ max I=1 ,..., n Cy=, uf, (cf. Lemma 1.2). 

2.3. A strong invariance principle with applications 

Define the process Q(t), t 3 0, by 

fort=&, 

linear interpolation elsewhere. 

Theorem 2.7. Assume that the conditions of Proposition 2.5 or 2.6 are satisfied. There 

exists a probability space with Q(t) and Brownian motion W(t) de$ned on it such that 

yz$x IQ(t)- W(t)1 =o((s log, s)“~) U.S., s+a. 0 

The proof is an immediate consequence of the SLLN’s for T, given by the 

Propositions 2.5 and 2.6. It can be handled analogously as the i.i.d.-sum case (e.g. 

Stout, 1974, Theorem 5.3.2). 

We can apply Theorem 2.7 straightforwardly to get an FLIL for q.f.‘s. For 0 s t Q 1 

Put 

h,,(t) = (2B, log, B,)-“‘Q(B,t). 

Define 

1 
9. = 

1 
h E C(0, 1): h(0) = 0, h absolutely continuous, 

I 0 

the Strassen compact (cf. Stout, 1974). 

Theorem 2.8. Assume that the conditions of Propositions 2.5 or 2.6 are satisfied. 

Then, with probability 1, (h,) is relatively compact in C(0, 1) (with respect to the 

sup-norm) and its set of limit points coincides with 3. 0 

For the proof we may restrict ourselves to the consideration of 

(2B, log, B,,)“* W(B,t). Then the proof follows as in the Strassen case (e.g. Stout, 

1974). 

Corollary 2.9. Assume that the conditions of Proposition 2.5 or 2.6 are satisjied. Then 

the limit points of ((24, log, B,))“‘Qn) coincide with the interval [-1, +1] with 

probability 1. 0 
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