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The present study aims to investigate the potential of the random forests ensemble classification and regression
technique to improve rainfall rate assignment during day, night and twilight (resulting in 24-hour precipitation
estimates) based on cloud physical properties retrieved from Meteosat Second Generation (MSG) Spinning
Enhanced Visible and InfraRed Imager (SEVIRI) data.
Random forests (RF) models contain a combination of characteristics that make themwell suited for its applica-
tion in precipitation remote sensing. One of the key advantages is the ability to capture non-linear association of
patterns between predictors and response which becomes important when dealing with complex non-linear
events like precipitation. Due to the deficiencies of existing optical rainfall retrievals, the focus of this study is
on assigning rainfall rates to precipitating cloud areas in connection with extra-tropical cyclones in mid-
latitudes including both convective and advective-stratiform precipitating cloud areas. Hence, the rainfall rates
are assigned to rain areas previously identified and classified according to the precipitation formation processes.
As predictor variables water vapor-IR differences and IR cloud top temperature are used to incorporate informa-
tion on cloud top height. ΔT8.7–10.8 and ΔT10.8–12.1 are considered to supply information about the cloud phase.
Furthermore, spectral SEVIRI channels (VIS0.6, VIS0.8, NIR1.6) and cloud properties (cloud effective radius, cloud
optical thickness) are used to include information about the cloud water path during daytime, while suitable
combinations of temperature differences (ΔT3.9–10.8, ΔT3.9–7.3) are considered during night-time.
The development of the rainfall rate retrieval technique is realised in three steps. First, an extensive tuning study
is carried out to customise each of the RFmodels. The daytime, night-time and twilight precipitation events have
to be treated separately due to differing information content about the cloud properties between the different
times of day. Secondly, the RFmodels are trained using the optimum values for the number of trees and number
of randomly chosen predictor variables found in the tuning study. Finally, the final RFmodels are used to predict
rainfall rates using an independent validation data set and the results are validated against co-located rainfall
rates observed by a ground radar network. To train and validate themodel, the radar-based RADOLAN RWprod-
uct from the German Weather Service (DWD) is used which provides area-wide gauge-adjusted hourly precip-
itation information.
Regarding the overall performance, as indicated by the coefficient of determination (Rsq), hourly rainfall rates
show already a good correlationwith Rsq = 0.5 (day and night) and Rsq = 0.48 (twilight) between the satellite
and radar based observations. Higher temporal aggregation leads to better agreement. Rsq rises to 0.78 (day),
0.77 (night) and 0.75 (twilight) for 8-h interval. By comparing day, night and twilight performance it becomes
evident that daytime precipitation is generally predicted best by the model. Twilight and night-time predictions
are generally less accurate but only by a small margin. Thismay due to the smaller number of predictor variables
during twilight and night-time conditions as well as less favourable radiative transfer conditions to obtain the
cloud parameters during these periods.
However, the results show that with the newly developedmethod it is possible to assign rainfall rates with good
accuracy even on an hourly basis. Furthermore, the rainfall rates can be assigned during day, night and twilight
conditions which enables the estimation of rainfall rates 24 h day.
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1. Introduction

Many ecological and biodiversity-oriented projects require area-
wide information on precipitation distribution and quantity at high
temporal and spatial resolution. For this purpose satellite-based rainfall
retrievals are often the only option. Traditionally, precipitation is
observed locally by conventional instruments such as rain (or snow)
gauges and where available, weather radar systems. However, the
most obvious limitations of station-based precipitation measurements
are their spatial incoherencies, uneven global distribution and highly
variable density with some regions having a relatively dense network
while others have only a few or no gauges. Over oceans, gauges are al-
most non-existent apart from a few island locations. Ground-based
weather radar systems like the ones in Europe, Japan or North
America provide spatial measurements of precipitation (100 km from
the radar). They are located over land and generally concentrated in
regions that are also well covered with rain gauges. In this context,
precipitation retrievals from optical sensors aboard geostationary
(GEO) weather satellites may be an alternative to fill the information
gap by providing area-wide data about rainfall distribution and amount
at high spatial and temporal resolutions.

During the last decades, several satellite-based rainfall retrieval
techniques for the detection of precipitating clouds and assignment of
rainfall rates from optical sensors available on GEO platforms have
been developed (see valuable overviews by e.g. Kidd & Huffman,
2011; Kidd & Levizzani, 2011; Prigent, 2010; Thies & Bendix, 2011).
Traditionally, GEO system-based retrieval schemes were restricted by
the spectral resolution of the sensors, which only allowed concepts
that rely on a relationship between cloud top temperatures measured
in an infrared (IR) channel and rainfall probability/intensity (e.g. Adler
& Mack, 1984; Arkin & Meisner, 1987). These concepts are based on
the assumption that cold cloud tops are associated with high rainfall
probabilities/intensities. More advanced IR retrieval methods are able
to divide these precipitating cloud areas into different sub-areas,
to which rainfall intensities are assigned (e.g. Adler & Negri, 1988;
Hong, Hsu, Sorooshian, & Hiaogang, 2004; Hsu, Gao, & Sorooshian,
2002; O'Sullivan, Wash, Stewart, & Motell, 1990; Porcu & Levizzani,
1992; Reudenbach, 2003; Reudenbach, Nauss, & Bendix, 2007; Wu,
Weinman, & Chin, 1985). Such IR retrievals showgood results in regions
withmainly convective clouds, especially in the tropics and sub-tropics,
but exhibit considerable drawbacks concerning the detection and quan-
tification of rainfall from stratiform clouds in connection with extra-
tropical cyclones (e.g. Adler, Kidd, Petty, Morissey, & Goodman, 2001;
Amorati, Alberoni, Levizzani, & Nanni, 2000; Ebert, Janowiak, & Kidd,
2007; Früh et al., 2007; Levizzani, Porcu, & Prodi, 1990; Negri & Adler,
1993; Pompei, Marrocu, Boi, & Dalu, 1995). This type of precipitating
clouds is characterised by relatively warm and spatially homogeneous
cloud top temperatures that do not differ significantly from raining to
non-raining regions. Therefore, retrieval techniques based solely on IR
cloud top temperature led to uncertainties concerning the assigned
rainfall rate (e.g. Ebert et al., 2007; Früh et al., 2007).

With the upcoming of new generation GEO systems, several authors
suggested the use of optical and microphysical cloud parameters
derived from thenowavailablemultispectral data set to improve optical
rainfall retrievals (e.g. Ba & Gruber, 2001; Kühnlein, Thies, Nauss, &
Bendix, 2010; Nauss & Kokhanovsky, 2006; Roebeling & Holleman,
2009; Rosenfeld & Gutman, 1994; Rosenfeld & Lensky, 1998; Thies,
Nauss, & Bendix, 2008a, 2008b, 2008c). They were able to show that
cloud areas with a high optical thickness and a large effective particle
radius possess a high amount of cloud water, and are characterised by
a higher rainfall probability and intensity than cloud areas with a low
optical thickness and a small effective particle radius.

Thies et al. (2008c) showed the possibility to separate areas of differ-
ing precipitation processes and rainfall intensities within the rain area
by means of cloud properties retrieved with SEVIRI aboard MSG. The
day andnight technique for precipitation process separation and rainfall
rate differentiation relies on information about the cloud top height, the
cloud water path and the cloud phase in the upper parts. It is based on
the assumption that areas with higher cloud water path and more ice
particles in the upper parts are characterised by higher rainfall intensi-
ties. Recently, Kühnlein et al. (2010) used MSG SEVIRI reflection values
in the 0.56–0.71 μm (VIS0.6) and 1.5–1.78 μm (NIR1.6) channels, which
provide information about the optical thickness and the effective radius,
to estimate rainfall rates over the northern German lowlands. This
approach is based on the assumption that high rainfall rates are linked
to high optical thickness and large effective particle radius, whereas
low rainfall rates are linked to a low optical thickness and a small effec-
tive particle radius. The encouraging validation results of both retrievals
indicate the high potential for an improved rainfall rate retrieval in the
mid-latitudes using optical and microphysical cloud properties derived
from MSG SEVIRI data which provide the enhanced spectral resolution
that is needed (Levizzani, 2003; Levizzani et al., 2001). Furthermore,
the relatively high spatial (3 km × 3 km at sub satellite point) and
especially temporal resolution (15 min) permits a quasi-continuous
observation of rainfall distribution and rainfall rate in near-real time.

In order to relate the retrieved cloud properties to precipitation,
parametric statistics are generally used (e.g. Adler & Negri, 1988;
Cheng & Brown, 1995; Kühnlein et al., 2010; Levizzani et al., 1990;
Thies et al., 2008c). The application is rather straight-forward if only a
few input variables are considered. However, cloud-top properties to
precipitation relationship is very complex and non-linear, and it is likely
beyond the skill of parametric tests and the related conceptual model.

Machine learning algorithms such as support vector machines
(Mountrakis, Im, & Ogole, 2011), artificial neural networks (Mas &
Flores, 2008), decision trees (Breiman, Friedman, Olshen, & Stone,
1984) or ensemble classifiers (Breiman, 1996) have been successfully
adopted to remote sensing and rainfall applications (Capacci &
Conway, 2005; Grimes, Coppola, Verdecchia, & Visconti, 2003; Rivolta,
Marzano, Coppola, & Verdecchia, 2006) and may be suitable to
overcome the limitations of the parametric techniques. When faced
with high dimensional and complex data, machine learning algorithms
provide efficient alternatives and generally show a higher accuracy
(Foody, 1995; Friedl & Brodley, 1997; Hansen, Dubayah, & Defries,
1996). In addition, the developments in parallel computing with ma-
chine learning offer new possibilities in terms of training and predicting
speed resulting in improved real time systems.

In recent years, machine learning techniques which use ensembles
of classifications or regressions (e.g. random forests, neural network
ensembles, bagging and boosting, see Friedl, Brodley, & Strahler, 1999;
Krogh & Vedelsby, 1995; Rodriguez-Galiano, Ghimire, Rogan, Chica-
Olmo, & Rigol-Sanchez, 2012; Ruiz-Gazen & Villa, 2007; Steele, 2000)
have received increasing interest. They are based on the assumption
that a whole set of trees or networks produce a more accurate predic-
tion than a single tree or network (Dietterich, 2002). A new, powerful
and promising ensemble classification and regression technique is
random forests (Breiman, 2001). It is one of the most accurate learning
algorithms available and it offers specific features thatmake it attractive
for remote sensing applications. For example, it runs efficiently on large
data sets, it is simple and can easily be applied to parallel computing
platforms and it can capture non-linear association patterns between
predictors and response. Although widely applied in other disciplines
such as bioinformatics (e.g. Cutler & Stevens, 2006), some land-cover
classifications using hyper spectral and multispectral satellite data,
radar and lidar data (Ghimire, Rogan, & Miller, 2010; Guo, Chehata,
Mallet, & Boukir, 2011; Pal, 2005; Rodriguez-Galiano et al., 2012) and
also in a few ecological studies (e.g. Cutler et al., 2007; Mota, Jiménez,
Amate, & Peñas, 2002; Prasad, Iverson, & Liaw, 2006), the utilisation of
random forests in climatology remains rare. This is one of the reasons
it has led us to investigate the usefulness of RF approaches for rain
rate delineation from satellite platforms.

In summary, the enhanced information content on cloud properties
at high spectral, spatial and temporal resolution offered by current and
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upcoming GEO systems along with the encouraging results concerning
rainfall rate differentiation and rainfall rate assignment shown by
Thies et al. (2008c) and Kühnlein et al. (2010) point to a promising po-
tential of optical sensors as basis for reliable rainfall rate retrievals.
However, this potential will likely remain unexploited using common
parametric approaches. In addition, and not explicitly stated above, all
existing optical retrievals that are based on optical and microphysical
cloud parameters are restricted to daytime and night-time conditions
and do not cover twilight conditions (see e.g. Kidd & Levizzani, 2011;
Prigent, 2010).

In this studywe show the potential of the random forestsmethod for
an improved rainfall rate assignment during day, night and twilight
based on MSG SEVIRI data which provide information on cloud proper-
ties at high temporal and spatial resolution.

Based on the precipitation processes in connection with extra-
tropical cyclones, the retrieval process consists of three steps: (i) identi-
fication of precipitating cloud areas, (ii) separation of precipitating areas
into predominantly convective and advective-stratiform cloud regions,
(iii) individual assignment of rainfall rates to these cloud areas. Since
this study focuses on an improved assignment of rainfall rates based
on random forests and not on the development of an optimised precip-
itation retrieval (which includes the delineation of raining from non-
raining areas), radar data is used for the first two steps. This means
that the derivation of the rain area as well as the rain process is based
on observations from the radar network rather than MSG SEVIRI.
Rainfall rates are then assigned to the already identified stratiform and
convective precipitating areas.

Germany was chosen as study area for the development and valida-
tion of the new technique. The region can be regarded as sufficiently
representative for mid-latitudes precipitation formation processes
since it is dominated by frontally induced precipitation processes
in connection with extra-tropical cyclones and shows a prominent
maritime to continental gradient from west to east. Moreover, the
radar network based and gauge-adjusted, hourly precipitation data
set (RADOLAN RW) provided by the German Weather Service (DWD)
provides a reliable training and validation basis.

The structure of this paper is as follows: the underlying data sets and
methods are introduced in Section 2. Section 3 gives a presentation of
the theoretical background and conceptual design providing the basis
for the selection of random forests predictors. In Section 4, the adjust-
ment of the random forests models as well as the appraisal of the new
rainfall rate assignment technique is introduced. The paper is closed
with a summary and some conclusions in Sections 5.

2. Data and methods

2.1. Satellite observations

For this study, MSG SEVIRI data are used. SEVIRI scans the full
disk every 15 min and measures reflected and emitted radiance in 12
channels, three channels at visible and very near infrared wavelengths
(between 0.6 and 1.6 μm), eight from near-infrared to thermal infrared
wavelengths (between 3.9 and 14 μm), and one high-resolution visible
channel. The nominal spatial resolution at the sub-satellite point is 1
by 1 km for the high-resolution channel, and 3 by 3 km for the other
channels (Aminou, 2002; Schmetz et al., 2002). Over the study area in
Germany, the satellite viewing zenith angles of SEVIRI range from 56°
to 64°. As a consequence, the above mentioned spatial resolution is
reduced in the present study. The follow up mission Meteosat Third
Generation is intended to be launched in 2018 (EUMETSAT, 2013).
This ensures these data availability and utilisation of applications devel-
oped for MSG SEVIRI for the next decades. The MSG SEVIRI data
required for this study were downloaded from the EUMETSAT data
centre (www.eumetsat.int). Processing has been performed based on
a newly designed Meteosat processing scheme which has been imple-
mented by Tobias Ebert and Johannes Drönner in co-operation with
the working group of Bernhard Seeger from the computer science
department atMarburg University. The processing schemewill be avail-
able online at http://umweltinformatik-marburg.de/software/ shortly.
Until then please contact the author for a copy of the software.

Cloud properties such as cloud effective radius and cloud optical
thickness are retrieved using the semi-analytical approach SLALOM
(SimpLe Approximations for cLOudy Media) developed by Nauss and
Kokhanovsky (2011). This forwardmodel is based on approximated so-
lutions of the asymptotic radiative transfer theory (e.g. Germogenova,
1963; King, 1987) and provides increased computation speed since
the equations can be efficiently solved during runtime. In order to
retrieve cloud optical thickness and cloud effective droplet radius from
MSG SEVIRI data, a combination of reflectance measurements at visible
(0.65 μm) and near-infrared (1.64 μm) wavelengths is used. For the
background albedo, a minimum composite of the reflectance in the
visible (0.65 μm) and near-infrared (1.64 μm) channel over one month
was calculated. A validation of SLALOM over sea and land surface against
the well-known NASA MODIS cloud property product (Platnick et al.,
2003) as well as the CloudSat 2B-TAU product (Polonsky, Labonnote, &
Cooper, 2008) showed good agreement and can be found in Kühnlein,
Appelhans, Thies, Kokhanovsky, and Nauss (2013). The present version
of SLALOM is limited to water clouds. Cloud masks and cloud phase
were derived using the algorithm by Cermak (2006) and Cermak and
Bendix (2008) which have kindly been provided by the authors and are
also implemented in the newMeteosat processing scheme.

2.2. Weather radar observations

For the development and validation of the new rainfall rate tech-
nique, radar-based precipitation data of the German Weather Service
is used. The RADOLAN RW product is based on measurements with a
C-band Doppler radar. Rain intensity adapted Z–R relationships, statisti-
cal clutter filtering and shadowing effects are treated within an online
calibration process. Furthermore, precipitation intensities are adapted
with ground-based precipitation measurements. The final precipitation
product is available at temporal resolution of one hour and is a compos-
ite consisting of 16 German radar stations and some from neighbouring
countries (e.g. Nancy/France) covering the entire area of Germany at a
spatial resolution of 1 by 1 km (Bartels et al., 2004).

2.3. Pre-processing of satellite and weather radar observations

The different temporal and spatial characterises of the satellite data
(15 min; 3 by 3 km at sub-satellite point) and weather radar data
(more or less continuously over 1 h; 1 by 1 km) must be addressed to
ensure the pixel matching between satellite and radar data. An average
of the satellite-based products is aggregated over a time interval of one
hour. This is doneby taking the arithmeticmeanof the four scenes avail-
able every hour. To assure that only cloudy pixels within the time inter-
val are incorporated, the cloud mask developed and implemented by
Cermak (2006) and Cermak and Bendix (2008) is applied. Only those
SEVIRI pixels that are classified as cloudy over the entire time interval
are taken into account. Because of the differing viewing geometries
between both systems, the radar product was projected and spatially
aggregated (mean) to the geometry of SEVIRI.

The final data set consists of 1150 scenes of precipitation events
between April and September 2010. Scenes with at least 2000 rainy
pixels were chosen as precipitating events based on the RADOLAN RW
product. Hereby pixels with higher than 0.06 mm/h are considered as
rainy. The data set is split into daytime, night-time and twilight data
sets. To ensure sufficient solar illumination in the VIS and NIR channels,
scenes with a corresponding solar zenith angle less than 70° belong to
the daytime data set. Scenes with a solar zenith angle greater than 70°
and less than 108° are assigned to the twilight, and those greater than
108° are assigned to the night-time data set. The resulting daytime

http://www.eumetsat.int
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data set consists of 525 scenes, the night-time data set has 274 and the
twilight data set has 351 scenes.

2.4. Random forests

The ensemble technique random forests which has been shown to
perform verywell in a variety of environmental investigations, contains
a combination of characteristics that make it well suited for its applica-
tion in remote sensing. RF runs efficiently on large data sets, can easily
be parallelised and is relatively robust to outliers and noise. Further-
more, it does not require the specification of an underlying data
model, it offers the ability to capture non-linear association patterns
between predictors and response and it is able to deal with highly
correlated predictor variables. It also generates an internal unbiased
estimate of the generalisation error (OOB error) and has the ability to
determine which variables are important in the regression. Finally, it
offers the flexibility to perform several types of statistical data analysis
(e.g. regression and classification) and it is computationally lighter
than other tree ensemble methods.

Below, a brief overview of the RF procedure is given. For more theo-
retical details the reader is referred to the literature (Boulesteix, Janitza,
Kruppa, & König, 2012; Breiman, 2001; Breiman & Cutler, 2008; Malley,
Malley, & Pajevic, 2011; Strobl, Malley, & Tutz, 2009).

In general, the RF algorithm for regression works as follows:

1. ntree bootstrap samples are randomly selected from the data
set with replacement. For each bootstrap, a different subset of
the data set is used to develop the decision tree model. About
one-third of the cases are left out of the sample. This out-of-bag
(OOB) is used to get unbiased estimates of the regression error
and to get estimates of the importance of the variables used for con-
structing the tree.

2. A regression tree for each of the bootstrap samples is grown
(resulting in ntree trees) with the following modification: at each
node, a subset of the predictor variables (mtry) is selected randomly
to create the binary rule. In otherwords,mtry specifies the number of
randomly chosen variables uponwhich the decision for the best split
at each node is made. Variable selection is based on the residual sum
of squares i.e. the predictorwith the lowest residual sumof squares is
chosen for the split.mtry is held constant during the forest growing.

3. Each of the ntree trees is grown to the largest extent possible. There is
no pruning.

4. Finally, predictions are calculated by putting each OOB observation
or observation of the test data set down each of the ntree trees.
Then the predictions of all regression trees are averaged to produce
the final estimate (Breiman, 2001).

The OOB error is an important feature of RF. As mentioned before,
each tree is built on a bootstrap sample that comprises roughly two-
third of the training data. The remaining one-third (OOB) of the training
data is not included in the learning sample for this tree and can be used
to test it. Therefore, the RF model is applied to the OOB data. Then, the
deviations between predicted and observed values are used to calculate
the OOB error, which is for regression themean square error (MSE), and
is given by

MSE ¼ 1
N

XN
i¼1

RRPredi−RRObsið Þ2 ð1Þ

where RRPredi is the ith prediction and RRObsi is the ith observation. This
resulting OOB error provides an unbiased estimate of the generalised
error and can be considered as an internal validation. As long as enough
trees have been grown, OOB's estimate of error rate is quite accurate
(Breiman, 1996, 2001). Otherwise the OOB estimate can bias upward
(see Bylander, 2002).
While bagging uses all predictor variables at each node (bagging =
mtry = number of predictors), RF constructs a tree using different train-
ing data subsets created through bagging and bootstrap of the data. By
making the tree grow from different bootstrap samples, the diversity of
the trees is increased. This increases generality, makes the regression
more robust when facing slight variations in the training data and gener-
ally increases the overall prediction accuracy (Breiman, 2001). Several
studies have shown that methods based on bagging are not sensitive to
noise (Briem, 2002; Chan & Paelinckx, 2008). When RF makes a tree
grow, it uses the best split based on a number of randomly sampled pre-
dictor variables. If all variableswere used for each tree, the treeswould be
very identical and therefore highly correlated (Breiman, 2001). Thus, the
randomly chosen subsets of predictor variables at each split of each tree
ensure lower correlation between trees that in turn increases model
robustness.

Beside the favourable features of RF, some limitations need also be
mentioned. One of the most significant drawbacks of RF is that it does
lack interpretability. Since the predictions are derived using a forest of
trees, it is not possible to easily illustrate how the predictions are
made (i.e. no single tree can be drawn to illustrate the decisions upon
which the predictions are based). Furthermore, averaging over all
trees means that it is neither possible to predict beyond the range of
response values in the training data, nor to predict the entire range of
response values. As a result, RF tends to overestimate low values and
underestimate high values. Furthermore, RF is a truly random statistical
method which entails a number of methodological issues related to re-
peatability and generalisability of the analyses. For in depth descriptions
and generally accepted solutions of how to address these issues, the
reader is referred to the fundamental statistical literature provided for
the method. At the very least, the complete RF procedure needs to be
repeated several times to evaluate the general robustness of the obtain-
ed predictions.

For our calculations we used an R implementation of the RF library,
which was created by Liaw and Wiener (2002) based on the original
Fortran code by Leo Breiman and Adele Cutler (for information on the
open source software R see R Development CoreTeam (2008)).
The package is called “randomForest”. The algorithm falls into the
embarrassingly parallel category. This means that the number of trees
to grow within a RF model can be divided into independent subsets,
since each tree in the forest depends only on the given data set and
not on the other trees. The subsets can be built on all available cores
or on different machines. Then the resulting RF objects are combined
to get the final forest. The parallel execution was realised by using
the “foreach” and “doSNOW” packages. The R code used for the analysis
at hand is available on our homepage (http://umweltinformatik-
marburg.de/software/).

3. Selection of predictor variables

Similar to parametric approaches, RF also requires a set of predictor
variables to estimate a response variable. While the selection of the
response variable i.e. the rainfall rate is obvious for the study objective,
thedefinition of predictor variables should reflect the conceptual frame-
work of the rainfall assignment technique which in turn must consider
themid-latitudinal precipitation processeswith a strong focus on extra-
tropical cyclones.

Houze (1993) summarised the conceptual model of rainbands dom-
inated by different rainfall processes in connection with extra-tropical
cyclones. Following this conceptual model of rainbands, the precipita-
tion field can be decomposed into areas dominated by different rainfall
processes: (i) advective-stratiform background and intermediary pre-
cipitation which are linked to light precipitation intensities (further re-
ferred as advective-stratiform precipitation process) and (ii) narrow
cold-frontal, wide cold-frontal and warm-frontal rain bands which are
characterised by high rainfall intensities (further referred as convective
precipitation process). Hence, rainbands dominated by different rainfall

http://umweltinformatik-marburg.de/software/
http://umweltinformatik-marburg.de/software/


Table 1
Overview of RF predictor variables.

Daytime Night-time Twilight

Stratiform Convective Stratiform Convective Stratiform Convective

CTH ΔT6.2–10.8 ΔT6.2–10.8 ΔT6.2–10.8 ΔT6.2–10.8 ΔT6.2–10.8 ΔT6.2–10.8
ΔT7.3–12.1 ΔT7.3–12.1 ΔT7.3–12.1 ΔT7.3–12.1 ΔT7.3–12.1 ΔT7.3–12.1

CTH/CTT IR10.8 IR10.8 IR10.8 IR10.8 IR10.8 IR10.8
CP ΔT8.7–10.8 ΔT8.7–10.8 ΔT8.7–10.8 ΔT8.7–10.8 ΔT8.7–10.8 ΔT8.7–10.8

ΔT10.8–12.1 ΔT10.8–12.1 ΔT10.8–12.1 ΔT10.8–12.1 ΔT10.8–12.1 ΔT10.8–12.1
CWP VIS0.6 VIS0.6 ΔT3.9–10.8 ΔT3.9–10.8

VIS0.8 VIS0.8 ΔT3.9–7.3 ΔT3.9–7.3
NIR1.6 NIR1.6
aef
τ
CWP

SEVIRI
chan-
nels

WV6.2 WV6.2 WV3.9 WV3.9 WV6.2 WV6.2

WV7.3 WV7.3 WV6.2 WV6.2 WV7.3 WV7.3

IR8.7 IR8.7 WV7.3 WV7.3 IR8.7 IR8.7
IR12.1 IR12.1 IR8.7 IR8.7 IR12.1 IR12.1

IR12.1 IR12.1

Abbreviations are as follows: CTH, cloud top height; CTT, cloud top temperature; CP, cloud
phase; CWP, cloud water path.
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processes lead to differing rainfall rates. For this reason the rainfall
rate assignment is realised in a three step approach (identification of
precipitating cloud areas, separation according to their process, final
rainfall rate assignment).

Regarding the vertical cloud extension, convectively dominated
precipitation areas with higher rainfall intensities are characterised by
larger cloud depths and cloud tops reaching higher into the tropo-
sphere. On the other hand, advective-stratiform precipitation areas are
not necessarily connected to cold cloud top temperatures and are also
not colder than surrounding non-precipitating cloud areas which
explains the limited accuracy of the traditional IR retrievals presented
in the introduction. Therefore, several authors have successfully used
either optical and microphysical cloud parameters derived from multi-
spectral satellite data or a suitable selection of spectral channels and
channel combinations which provide information about cloud parame-
ters, for an improved rain area delineation (Lensky & Rosenfeld, 2003;
Nauss & Kokhanovsky, 2006, 2007; Rosenfeld & Lensky, 1998; Thies
et al., 2008a, 2008b), rainfall intensity differentiation (Thies et al.,
2008c) and rainfall rate assignment (Kühnlein et al., 2010). They were
able to show that cloud areas with a high cloud water path (i.e. large
enough combination of the optical thickness and effective particle radi-
us) possess a higher rainfall probability and higher rainfall rates than
cloud areaswith a small cloudwater path. Since effective rain formation
processes are mainly coupled to ice particles in the upper parts of
the clouds and the “seeder-feeder” effect (Houze, 1993), advective-
stratiform precipitation areas with a higher cloud water path and a
higher amount of ice particles in the upper cloud regions are also
characterised by higher rainfall intensities (Thies et al., 2008c).

Considering the dominant precipitation processes for convective
and advective-stratiform rainfall areas within extra-tropical cyclones,
the following cloud physical parameters are chosen for this study:

• Cloud top height (CTH)
• Cloud top temperature (CTT)
• Cloud phase (CP)
• Cloud water path (CWP)

A proper SEVIRI spectral channel selection can be used as surrogates
for these cloud physical parameters and therefore as predictor variables
for the random forest model.

As a good proxy for the cloud top temperature, the brightness
temperature in the 10.8 μm channel (BT10.8) can be used. In addition
to the cloud top temperature, the brightness temperature difference
between the water vapour (WV) and the IR channels are used to gain in-
formation about the cloud top height relative to the tropopause level
which enables a reliable identification of deep convective clouds
(Heinemann, Reudenbach, Heuel, Bendix, & Winiger, 2001; Schmetz,
Tjemkes, Gube, & van de Berg, 1997; Tjemkes, van de Berg, & Schmetz,
1997). Thies, Nauss, and Bendix (2008d) showed that theWV–IR combi-
nations of MSG SEVIRI perform differently for different cloud-top height
to tropopause level settings. To include different sensitivities on cloud
top height the two channel differences ΔTWV6.2–IR10.8 and ΔTWV7.3–IR12.1

have been chosen.
Since effective rain formation processes are mainly coupled to ice

particles in the upper parts of the cloud, the cloud phase is incorporated.
The channel differences between 8.7 μm and 10.8 μm (ΔT8.7–10.8) as
well as between 10.8 μm and 12.1 μm (ΔT10.8–12.1) can be used to gain
information about the cloud phase (Ackermann et al., 1998; Strabala,
Ackerman, & Menzel, 1994; Thies et al., 2008a). At these two wave-
lengths, the absorption of ice and water is different (Baum & Platnick,
2006). The increase of water particle absorption is greater between 11
and 12 μm than between 8 and 11 μm. On the other hand the increase
of ice particle absorption is greater between 8 and 11 μm than between
11 and 12 μm (Strabala et al., 1994). Therefore the difference ΔT8.7–10.8
of ice clouds are greater than coincident ΔT10.8–12.1 differences and the
opposite is true for water clouds.
For day-time observations, the SLALOM retrieval is used to derive
optical andmicrophysical cloud properties such as cloud effective radius
(aef) and cloud optical thickness (τ) which are used as predictor vari-
ables for advective-stratiform rainfall rates. Because the application of
the commonly available cloud property retrievals to ice clouds requires
the a-priori definition of ice particle geometries, which in turn heavily
influences the retrieved values (see also Kokhanovsky & Nauss, 2005),
the authors decided to use the reflectance at 0.6 μm (VIS0.6), 0.8 μm
(VIS0.8) and 1.6 μm (NIR1.6) channel directly as input variables for the
assignment of rainfall rates to convectively dominated precipitation
areas. For night-time, there are MSG SEVIRI retrievals that can compute
optical and microphysical cloud properties (e.g. VISST–SIST algorithms
developed byNASA Langley Cloud andRadiationGroup). Unfortunately,
these algorithms derive reliable properties only for non-raining optical-
ly thin clouds (Minnis et al., 2011). However, several case studies have
shown that implicit information about microphysical and optical cloud
properties is available in the emissive channels (Baum et al., 2000;
Inoue, 1985; Lensky & Rosenfeld, 2003; Ou, Liou, Gooch, & Takano,
1993; Ou et al., 2002; Stone, Stephens, Platt, & Banks, 1990; Strabala
et al., 1994). Based on these studies Thies et al. (2008d) demonstrated
that the SEVIRI channel differences ΔT3.9–10.8, ΔT3.9–7.3, ΔT8.7–10.8 and
ΔT10.8–12.1 provide information about the CWP that can be used for rain-
fall retrieval. Therefore, the respective channel differences are incorpo-
rated instead of retrieved cloud properties during night-time. During
twilight conditions neither the reflectances of VIS and NIR channels
(due to insufficient solar illumination) nor the SEVIRI channel differ-
ences ΔT3.9–10.8 and ΔT3.9–7.3 can be used as surrogates for the CWP.
The 3.9 μm channel radiance contains both reflected solar radiance
and thermal emitted radiance. To use the 3.9 μmchannel the solar com-
ponent must be quantified and eliminated. This itself has been investi-
gated by several studies (Rao, Ou, & Liou, 1995; Rosenfeld & Lensky,
1998) and they showed that simplifications and assumptions are neces-
sary which are only acceptable for a certain kind of cloud. To prevent
misinterpretation, predictors containing the 3.9 μm channel are not
used to gain information about the CWP and therefore there are no pre-
dictor variables available representing the CWP during twilight.

In summary, a different set of predictor variables with respect to
the degree of solar illumination (day, night, twilight) and the dominant
precipitation processes within each cloud region is utilised. An over-
view is given in Table 1. Since the RF approach is not limited to a certain
number of predictor variables, all channels which are part of the afore-
mentioned channel combinations (e.g. ΔT10.8–12.1), are also incorporat-
ed in the test.
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4. Estimation of rainfall rates

4.1. General methodology

On the basis of the theoretical background introduced in Section 3,
the rainfall rate assignment technique is realised in three steps: (i) pre-
cipitating cloud areas are identified, (ii) the precipitating cloud areas are
separated into convective and advective-stratiform dominated precipi-
tation areas and (iii) rainfall rates are assigned to the convective and
advective-stratiform dominated precipitation areas, respectively.

As mentioned in the introduction, the focus of the present study lies
upon the development of a new technique for the assignment of rainfall
rates. In order to develop and evaluate such a rainfall rate assignment
technique, the RADOLAN RW product of the DWD is used to realise
the first and second step. This means that both the rain areas, as
well as the rain processes, are derived from the radar observations rath-
er than from satellite images. Precipitation areas with more than
1.8 mm/h are considered as convectively dominated and areas between
0.06 and 1.8 mm/h are considered as advective-stratiform dominated
(see Thies et al., 2008c). Hence, the proposed technique aims to assign
rainfall rates to precipitating cloud areas that are already identified as
being convective and advective-stratiform.

For the development and validation of the technique, a data set
consisting of 525 daytime, 274 night-time and 351 twilight satellite
scenes of precipitation events between April and September 2010 are
used. The data set is split into daytime, night-time and twilight data
sets which have to be treated separately due to differing illumination
conditions. During night-time the channels at visible and very near in-
frared wavelengths (0.6 to 1.6 μm) are not available. During twilight
and daytime the use of the 3.9 μm channel is complicated due to the
varying solar component in this channel. This means that depending
on the time of the day different random forest models are built and
adapted. Each of these three data sets are randomly split into training
(¼of the scenes) and validation data sets (¾of the scenes). The training
data sets are used to train the according RF model, whereas the valida-
tion data sets are used to validate the predictions afterwards. The pre-
cipitation events taken for training are independent from those taken
for validation. Since the technique aims to assign rainfall rates to precip-
itating cloud areas already classified as convective or advective-
stratiform, each data set is split into cases of convectively dominated
rainfall and cases of advective-stratiform dominated rainfall and treated
Fig. 1. Effect of number of trees (ntree) and random split variables (mtry) on OOB error (MSE). R
respectively.
separately (day = day-C and day-S, night = night-C and night-S,
twilight = twilight-C and twilight-S; where C = convective and S =
advective-statiform).

The development of the rainfall rate technique is realised in three
steps:

(1) Tuning: the optimal values of ntree andmtry are assessed for each
RF model.

(2) Training: the RFmodels are trained using the optimum values of
model parameters found in the tuning study.

(3) Validation: the RF models are applied to the validation data sets
and the predicted rainfall rates are validated against co-located
rainfall rates observed by the radar.

All these steps are described in the following sections.

4.2. Model tuning

There are basically two parameters to adjust in the R-package
“randomForest”, the overall number of trees in a forest (ntree) and the
number of predictor variables randomly sampled for use at each split
(mtry). The tuning is based on performance of OOB data.

An important consideration is how many trees to grow within the
random forestmodel. Breiman (2001) suggested that the generalisation
error converges as the number of trees increases. Adding more and
more trees to the model does not result in over-adjustment. The main
limitation of increasing ntree is the extra computation time. Therefore,
the number of trees is not a real parameter in the sense that there is
an optimum value, rather the number should be as large as computa-
tionally feasible.

To assess the optimal value of ntree, a large number of RF models
using randomly selected subsets of each data set (day-C, day-S, night-
C, night-S, twilight-C, twilight-S) is created. Each RF model is created
using 1000 trees for all possible values ofmtry (mtry = 1 tomaximum).
Then the MSE values of every possible value of mtry is averaged. Fig. 1
shows how the error rate changes with the number of trees for mtry
equal to the minimum (mtry = 1), mean (mtry = 6) and maximum
value of mtry (mtry = 12/15, for details see below). From around 500
trees onwards, the MSE of each data set stabilises and the addition of
trees neither increases nor decreases the MSE. Therefore, the number
of trees in the forest can be regarded as sufficient using ntree larger
than 500. In order to reduce extra computation time, ntree is set to
esults shown for (a) convective and (b) stratiform day, night and twilight tuning data sets,
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500 in all models as this value is large enough to produce a stable
prediction.

In comparison to ntree, the number of predictor variables randomly
sampled for use at each split (mtry) is a real parameter. The suggested
default value of mtry for regression is p/3 (with p total number of
predictors) (Breiman, 2001). In practice the best values for mtry will
depend on the problem at hand and the parameter should be treated
as tuning parameter. If the recommendedmtry is too small in the pres-
ence of a large number of noise predictors, then it ismore likely to select
non-informative predictors. On the other hand, a small value of mtry
might offer the possibility for strong predictors to be chosen in a scenar-
io with many informative predictors (Boulesteix et al., 2012). Reducing
the number of predictor variables reduces the correlation between
the trees, but also causes each individual tree to be more biased
(Goldstein, Polley, & Briggs, 2011).

To assess the optimal values ofmtry, a large number of RFmodels are
created for each data set using different possible values of splitting
variables (mtry = 1 to maximum number of mtry) while keeping
ntree = 500 constant. First, the RF model is computed with mtry = 1.
Then, mtry is increased by 1 and a new forest is built with the new
mtry. This is done until the maximum number of mtry is reached. This
whole process is repeated several times using randomly selected sub-
sets of the data sets. The effect ofmtry on the OOB error is exemplarily
shown for the day-time models in Fig. 2. Based on these results, the
value of mtry leading to the smallest OOB error of a forest is selected
for the according RF model. Regarding the convective data sets,
mtry = 7 leads to the highest prediction accuracy whereas mtry = 8
leads to the highest prediction accuracy for the stratiform data sets.

4.3. Model training

The training of the RFmodels is done on a pixel and hourly basis by a
comparison with the ground-based radar precipitation data using the
different training data sets. Hence, various satellite-based products
Fig. 2.Effect of thenumber of randomsplit variables (mtry) onOOB error (using ntree = 500) fo
25th, 50th and 75th percentiles. Whiskers extend to the most extreme data point within 1.5 ti
(see Section 3) are combined with spatially and temporally co-located
radar data from which the corresponding rainfall rates are extracted.
The RF models are trained with ntree and mtry found in the tuning
study (Section 4.2). All this is realised for daytime, night-time and twi-
light scenes as well as for convective and stratiform cases separately.

4.4. Model validation

Once the RF models are established, it is possible to assign rainfall
rates based on the same predictors used for training. In order to assess
the quality of the model, the established RF models are applied to the
day, night and twilight validation data sets, respectively. Then the pre-
dicted rainfall rates (RRPred) are validated against the co-located rainfall
rates observed by the radar (RRObs). For this, the hourly rainfall rates of
RRObs and RRPred are also summed over 3-h and 8-h intervals where the
latter contains all scenes of the day from the daytime, night-time and
twilight time intervals respectively. For the appraisal of the retrieval
technique, standard continuous verification scores are calculated. As
measures of the agreement between observed and predicted values
mean error (ME = bias),mean absolute error (MAE), rootmean square
error (RMSE) and coefficient of determination (Rsq) are calculated.
These scores are given by:

ME ¼ 1
N

XN
i¼1

RRPredi−RRObsið Þ ð2Þ

MAE ¼ 1
N

XN
i¼1

RRPredi−RRObsij j ð3Þ
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r thedaytime scenes (where C = convective and S = advective-statiform). Boxes indicate
mes the interquartile range (75th‐25th percentiles). Outliers shown as stars.
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Rsq ¼ ∑N
i¼1 RRPredi � RRPredð Þ RRObsi � RRObsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1 RRPredi � RRPredð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 RRObsi � RRObsð Þ2
q

0
B@

1
CA

2

ð5Þ

where RRPredi is the ith prediction and RRObsi is the ith observation.
In order to assess the model performances four different evaluation

strategies are employed:

(a) The overall performance of the rainfall rate assignment tech-
nique during daytime, night-time and twilight conditions is in-
vestigated.

(b) The performance of the rainfall rate assignment technique is
investigated on a scene-by-scene basis.

(c) The diurnal performance of the RF models is investigated.
(d) The influence of different training data sets on themodel perfor-

mances is investigated.

First, the overall performance of the rainfall rate retrieval during day-
time, night-time and twilight conditions is investigated. By extracting the
data pairs of the validation data sets on a pixel basis, a total of 1309721
pairs of RRObs and RRPred are made available on an hourly basis, contain-
ing 678600 daytime, 280776 night-time and 350345 twilight data pairs.
The hourly rainfall rates have also been aggregated for 3- and 8-h inter-
vals. With increasing temporal aggregation, the number of data pairs de-
creases accordingly. The performance of the models across different
aggregation times is summarised in Table 2. As Table 2 shows, the rainfall
rates observed by the radar at a 1-h interval range between 0.06 and
56.10. However, the spread of rainfall rates predicted by RF is much
smaller and ranges between 0.16 and 26.51 for the same time interval.
This highlights that very high and low observations cannot be captured
by RF as the response variable is calculated by putting each object
Table 2
Statistical values from the validation data sets.

Predicted Observed

Time period (tp) 1-h 1-h

Day Min [mm/tp] 0.16 0.06
Max [mm/tp] 26.51 56.10
Median [mm/tp] 0.78 1.00
Mean [mm/tp] 1.61 1.48
Std [mm/tp] 1.57 1.68
Rsq 0.50
RMSE [mm/tp] 1.26
MAE [mm/tp] 0.72
ME [mm/tp] 0.13
N 678600

Night Min [mm/tp] 0.14 0.06
Max [mm/tp] 9.02 40.13
Median [mm/tp] 0.88 1.09
Mean [mm/tp] 1.76 1.83
Std [mm/tp] 1.43 2.07
Rsq 0.50
RMSE [mm/tp] 1.46
MAE [mm/tp] 0.80
ME [mm/tp] −0.07
N 280776

Twilight Min [mm/tp] 0.18 0.06
Max [mm/tp] 21.02 47.58
Median [mm/tp] 0.87 1.085
Mean [mm/tp] 1.79 1.69
Std [mm/tp] 1.58 1.80
Rsq 0.48
RMSE [mm/tp] 1.35
MAE [mm/tp] 0.79
ME [mm/tp] 0.10
N 350345

The scores are based on data pairs of 394 daytime, 205 nighttime and 264 twilight precipitation
data pairs extracted from the whole day, night and twilight data set, respectively. “Min” and “M
and median value. “Std” signifies the standard deviation. Abbreviations are as follows: Rsq, c
ME, mean error; N, number of data pairs considered.
down the decision trees and then averaging the predictions of all
trees. As a consequence, the averaging reduces the very high rainfall
rates and increase the very small rainfall rates, which leads to an un-
derestimation of the high rainfall rates and overestimation of the
small rainfall rates. A consistent under-estimation (over-estimation)
of the maximum (minimum) is apparent for all sets of models, re-
gardless of aggregation or time of day, especially maximum rainfall
which can be severely under-estimated. However, mean, median
and standard deviations generally show good agreement (please
note, that it is also not possible to predict beyond the range of the re-
sponse values in the training data).

As indicated by the Rsq, hourly RRObs and RRPred already showa good
correlation with Rsq = 0.5 (day and night) and Rsq = 0.48 (twilight).
Higher temporal aggregation leads to better agreement (Rsq as high
as 0.78 (day), 0.77 (night) and 0.75 (twilight) for 8-h scenes). However,
this is paralleled by an increased spread in the error scores. Small posi-
tive ME are seen for all daytime and twilight time intervals (ranging
from 0.10 to 0.30), indicating a slight overestimation of the rainfall
rate. Duringnight-time, a slight under-estimation of rainfall rates are in-
dicated (ME ranging from−0.07 to−0.13 for the different aggregation
intervals).

In the next step the performance of the rainfall rate assignment
technique on a scene-by-scene basis is investigated with results are
summarised in Fig. 3. The standard verification scores calculated from
RRObs and RRPred on a scene basis are plotted as box plots to facilitate
a visual analysis of the performance.

There is a general pattern of daytime precipitation being best esti-
mated by the model, regardless of aggregation times. Twilight and
night-time predictions are generally less accurate but only by a small
margin. Overall, there are no significant differences in central tendency
arising from the time of day and this is remarkable particularly for
Predicted Observed Predicted Observed

3-h 3-h 8-h 8-h

0.18 0.06 0.18 0.07
32.91 49.43 48.05 80.00
1.01 1.26 1.70 1.88
2.38 2.18 2.58 3.28
2.54 2.67 4.10 4.28

0.68 0.78
1.58 2.07
0.88 1.13
0.20 0.30
422205 305871
0.14 0.06 0.14 0.06
18.53 49.00 27.55 62.12
1.66 1.79 1.86 1.96
2.87 3.01 3.38 3.51
2.65 3.55 3.39 4.34

0.69 0.77
2.00 2.13
1.06 1.13
−0.14 −0.13
149608 146136
0.22 0.07 0.19 0.07
26.03 52.62 32.79 58.24
1.54 1.65 1.66 1.76
2.87 2.71 3.30 3.12
2.83 3.09 3.49 3.73

0.68 0.75
1.78 1.91
1.03 1.10
0.16 0.18
190758 145857

scenes from April to September 2010. The values are calculated from the RRObs and RRSat

ax” denote the minimum and maximum value. “Mean” and “Median” signify the average
oefficient of determination; RMSE, root mean square error; MAE, mean absolute error;



Fig. 3. Performance of rainfall rate assignment on a scene by scene basis. Box and whisker plots showing distribution of standard verification scores (rows) of RRobs vs. RRpred for different
aggregation times (columns) according to time of day (colours). Boxes indicate 25th, 50th and 75th percentiles. Whiskers extend to the most extreme data point within 1.5 times the
interquartile range (75th–25th percentiles). Outliers shown as stars. Abbreviations are as follows: Rsq, coefficient of determination; RMSE, root mean square error; MAE, mean absolute
error; ME, mean error; tp, time period.
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twilight conditions. The most obvious difference between different
times of day lies in the consistency of the prediction performance indi-
cated by the spread of the Rsq. Here, twilight and night-time scenes
clearly show greater variability, as indicated by the elevated inter
quartile ranges (i.e. height of the boxes). As mentioned earlier, elevated
aggregation exhibits better agreement between predictions and obser-
vations, which is paralleled by an increase in the error scores in both
magnitude and range. A look at the ME distribution reveals a general
tendency of the model to overestimate precipitation, especially during
day and twilight hours. Night-time predictions are more balanced in
this respect. In general, it becomes apparent that night-time errors are
smaller than during other times of the day.
Figs. 4a and 5a show examples of hourly rainfall rates observed by
the radar and predicted by RF model. Both figures illustrate that for
higher RRObs (N10 mm/h), the corresponding RRPred are predominantly
smaller. At the same time, the areas in the surrounding of high rainfall
areas are slightly overestimated by RF. As a result of the aggregation
process, it is possible to better reproduce the observed rainfall rate
(Figs. 4b and 5b) but again, very high rainfall rates (N20 mm/3 h)
cannot be captured by the model. As already mentioned, the observed
mismatch between predicted and observed extremes is characteristic
of random forests.

General diurnal performance of the RF model is shown in Fig. 6.
Here, all model verification scores are shown for each hour of the day
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Fig. 4. Rainfall rates observed by radar (left) and predicted by RF model (right) during daytime. (a) rainfall rates for scene from 6 May 2010 15:00 UTC, (b) aggregated rainfall rates for
scenes from 6 May 2010 14:00 to 16:00 UTC.
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across all scenes. The comparison reveals reasonable agreement
between RRObs and RRPred for all hours of the day. Best performance is
seen during late morning and midday (increased Rsq and reduced
spread in the error measures) most likely because of the favourable
solar observation geometries. Twilight hours reveal rather variable pre-
diction performance, especially toward the end of the day, whereas
night-timeperformance is rather consistent. Themaximumdivergences
occur during twilight conditions. It is to be expected that performance
is different. Depending on solar illumination in twilight conditions the
retrieval of cloud properties ismore difficult and there are fewer predic-
tor variables that can be used due to solar illumination. Furthermore,
there are a reduced number of scenes which is indicated by the width
of the boxes.

As already mentioned, the data used for the training of the model
may influence the prediction. In order to assess how different input
data sets may influence the RF results we have repeated the complete
analysis 10 times, each with different randomly split sets of indepen-
dent training and validation sets. For each of these iterations, the same
standard verification scores as above are calculated on a pixel-basis
and presented in Fig. 7 according to the time of the day. The daytime
and night-time validation data sets show the highest median values
for all aggregation levels with the night-time validation data set having
a bigger range of Rsq values with increased temporal aggregation. By
comparison to day and night, the twilight results are slightly below.
The Rsq values are less and the range of Rsq values is bigger. As can
be seen in column 2 and 3, the correlations increase considerably at
lower temporal resolutions of 3- and 8-h. These results indicate that
the selection of randomly chosen training and validation data sets influ-
ences the overall prediction accuracy, but in a small margin. This could
be expected since the observations of the training sets are used to
build the RF model and therefore influence the prediction. However,
even if the results show that the different training sets influence the
overall prediction, the standard verification scores reveal the same pat-
terns which were shown in the foregoing investigations. This means
that they reflect the same behaviour according to temporal aggregation
and time of day.

5. Summary and conclusions

The aim of the present studywas to investigate the potential of MSG
SEVIRI for improved rainfall rate assignment using the ensemble classi-
fication and regression technique random forests as a fundamental
algorithm. The novel approach differs from the most state-of-the-art
satellite-based rainfall retrievals since it is not using a conventional
parametric approach but a machine learning algorithm. RF is one of
most accurate learning algorithm available and offers specific features
that make it attractive for remote sensing applications, e.g. it runs effi-
ciently on large data sets, it is simple and easy to parallelise. One of
the key advantages is the ability to capture non-linear association
patterns between predictors and response, which becomes important
when dealing with a very complex non-linear event like precipitation.
Due to the deficiencies of existing rainfall retrieval techniques based
on the IR cloud-top temperature concerning the detection and quantifi-
cation of rainfall from stratiform clouds, the aim of the present study
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Fig. 5. Rainfall rates observed by radar (left) and predicted byRFmodel (right) duringnighttime. (a) rainfall rates for scene from15August 2010 23:00UTC, (b) aggregated rainfall rates for
scenes from 15 August 2010 23:00 UTC to 16 August 2010 1:00 UTC.
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was to capture rainfall rates from both, advective-stratiform and
convective precipitating cloud areas. Furthermore, the satellite-based
estimates of rainfall were realised during day, night and twilight condi-
tions resulting in a 24-hour prediction.

The final rainfall rate assignment technique was realised in three
steps: (i) Precipitating cloud areas are identified. (ii) The precipitating
cloud areas were separated into convective and advective-stratiform
dominated precipitation areas. (iii) Rainfall rates were assigned to the
convective and advective-stratiform dominated precipitation areas, re-
spectively. Since the purpose of this study was to explicitly evaluate
the potential of random forests for an improved rainfall rate assignment
the rain area and rain process detected by the radar network was taken
as basis for the investigation. Considering the dominant precipitation
processes of convective and stratiform precipitation areas within
extra-tropical cyclones, satellite-based information on the cloud top
height, cloud top temperature, cloud phase and cloud water path were
chosen as predictor variables. Precipitation events between April and
September 2010 were chosen. Because of differing information content
about the cloud properties during daytime, night-time and twilight
conditions, the data set of precipitating events were split accordingly
and treated separately. For the training and validation, the radar-based
RADOLAN RW product from the DWD which provide area-wide gauge-
adjusted hourly precipitation information, was used.

The development of the rainfall rate retrieval techniquewas realised
in three steps. First, an extensive tuning study was carried out to opti-
mise each of the RF models. Second, the RF models were trained using
the optimum values for ntree and mtry found in the tuning study.
Third, the RF models were applied to the validation data sets, respective-
ly. Then the predicted rainfall rates are validated against co-located rain-
fall rates observed by the radar. The training, as well as prediction, were
completed on an hourly basis. The rainfall rates were aggregated and
also evaluated against each other for 3-h and 8-h interval.

In order to assess the model performances four different evaluation
strategies were employed. First, the overall performance of the rainfall
rate assignment technique during daytime, night-time and twilight
conditions was investigated. Then, the performance on a scene-by-
scene basis was considered closely before the diurnal performance of
the RF models was shown. Finally, the influence of different training
data sets on the model performances was investigated.

Regarding the overall performance, as indicated by Rsq, hourly RRObs

and RRPred show already a good correlation with Rsq = 0.5 (day and
night) and Rsq = 0.48 (twilight). Higher temporal aggregation leads
to better agreement. Rsq rises to 0.78 (day), 0.77 (night) and 0.75
(twilight) for 8-h interval. However, a consistent under-estimation
(over-estimation) of the maximum (minimum) is apparent for all sets
of models, regardless of aggregation or time of day. This shows that
very high and low observed rainfall rates cannot be captured by RF
because of the averaging of the individual predictions over all trees. In
addition, it is not possible to predict beyond the range of response
values in the training data.

Comparing day, night and twilight performance show that daytime
precipitation is generally predicted best by the model. Twilight and
night-time predictions are generally less accurate but only by a small
margin. The most obvious difference between the times of day lies in
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Fig. 6. Diurnal performance of the rainfall rate assignment technique. Box and whisker plots showing distribution of standard verification scores (rows) of RRobs vs. RRpred for each hour
of the day. Boxes indicate 25th, 50th and 75th percentiles. Whiskers extend to the most extreme data point within 1.5 times the interquartile range (75th–25th percentiles). Outliers
shown as stars. Box widths are relative to number of observations. Extreme outliers (beyond mean +/− 2 times standard deviation) have been removed. Abbreviations are as follows:
Rsq, coefficient of determination; RMSE, root mean square error; MAE, mean absolute error; ME, mean error.
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the spread of Rsq values. In comparison to daytime scenes, twilight and
night-time scenes clearly show greater variability. The smaller number
of predictor variables during twilight and night-time conditions as
well asmore difficult conditions to get cloud parameters during twilight
might be a reason. Nevertheless, concerning the considerable problems
of existing optical retrievals particularly during twilight, these results
reveal a clear and unprecedented improvement and offer the possibility
for 24 hour rainfall rate estimation.

The investigation on the influence of different training data sets
on the model performances shows that different training data sets do
influence the overall prediction accuracy of the according validation
data set. Since the observations of the training data sets are used to
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Fig. 7. Influence of different input data sets to the performance of the rainfall rate assignment technique. Box andwhisker plots showing distribution of standard verification scores (rows)
of RRobs vs. RRpred for different aggregation times (columns) according to time of day (colours). Boxes indicate 25th, 50th and 75th percentiles. Whiskers extend to the most extreme
data point within 1.5 times the interquartile range (75th‐25th percentiles). Outliers shown as stars. The complete analysis was rerun 10 times, eachwith different randomly split training
and validation sets. Abbreviations are as follows: Rsq, coefficient of determination; RMSE, root mean square error; MAE, mean absolute error; ME, mean error.
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build the RF model, these results are not surprising. However, the ranges
of the standard verification scores are in a small margin. It seems that the
biggest influence is on twilight data. The daytime data sets show the
highestmedian and smallest range of Rsq values for all aggregation levels.

The results show that with the newly developed technique it is pos-
sible to assign rainfall rates with good accuracy even on an hourly basis.
Furthermore, the rainfall rates can be assigned during day, night and
twilight conditions which enables the estimation of rainfall rates for
24 h of a day. This shows great potential for upcoming optical rainfall
retrievals. In this context, the spectral resolution provided by MSG
SEVIRI offers the possibility for area-wide rainfall rate retrieval in
near-real time and in quasi-continuous manner. Furthermore, the
potential of rainfall rate assignment based on random forests is
confirmed. However, further investigations are necessary to develop a
final operational retrieval technique. In the next step, the rainfall rate
assignment technique will be combined with a rain area detection
and process separation technique. A combined evaluation scheme of
precipitation detection, process separation and rainfall rate assignment
is intended and absolutely necessary. The complete rainfall retrieval
technique will be extensively validated against radar-based RADOLAN
RW data. The latter allows a quantification of the total error of the
final operational rainfall retrieval technique.
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