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Cell swelling is associated with the activation of chloride as well
as potassium channels to allow the cells to expel water by the
downhill movement of these ions from the cytosol to the extra-
cellular space. The result of this channel activation is a shrinkage
of the cells despite the volume challenging condition. Several
proteins have been cloned thus far whose function has been
related to chloride permeation associated with this ion-driven
volume loss, commonly termed regulatory volume decrease
(RVD). The ability for RVD is believed to be crucial for dividing
cells, and accordingly no cell line has been found so far that lacks
this regulatory mechanism. As generally as RVD is found in
various cell types, the underlying channel proteins have to be
distributed ubiquitously, and such a general distribution has been
shown for most of the proteins expected to act as chloride
channels during RVD [1, 2]. However, in mammaTs, despite the
fact that mitosis is taking place in most tissues, which is evidenced
by the fact that RVD-related chloride channels can be found in all
organs, some of them are subjected to greater volume stress than
others; this leads to the finding that the quantitative distribution is
quite different. One organ notoriously stressed by changing osmo-
larities and, therefore, changing water content in the cells, is the
kidney.

Both CIC2, a member of the voltage-dependent chloride chan-
nel family originally cloned from Torpedo marmorata [3], and I,
[2], a chloride channel cloned from MDCK cells, are expressed in
the kidneys of different species. As well, both chloride channels
have been shown to be involved in voTume regulation upon cell
swelling [1, 4].

As shown in Figure 1, ic in the rat kidney is expressed in the
cortex, in the outer and the inner medullas, as well as in the
papilla. All regions are subjected to substantial volume stress. In
the cortical region the combined transport of soTutes together with
sodium leads to a constant water flux into proximal tubular cells
[5]. This volume stress has to be constantly counterbalanced by an
effective outward movement of ions. An effective mechanism for
volume loss after swelling in proximal tubular cells is the activa-
non of potassium and chloride channels [6], as it has been defined
for a large number of different cells [6, 7]. The Tocalization of the
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I protein is primarily on the apical side of the proximal tubular
cells. As shown in Figure 2, we were only able to demonstrate a
substantial amount of I protein in apical vesicle preparations of
the proximal tubular cells. In the same cells no 'Cm signal could be
seen in basolateral vesicle preparations. However, small amounts
of 'Cm also seem to be located in this membrane fraction after
substantially (5X) increasing the amount of total protein isolated
from these cells used for Western blotting (not shown). In
conclusion, we show that is expressed at high levels in the
cortex, outer and inner medullas, and papilla of rat kidney. The
major distribution of the swelling-dependent chloride channel iCI
in proximal tubular cells is in the apical membrane, whereas only
a small amount can be identified in the basolateral fraction. In the
outer and inner medullas as well as in the papilla under antidi-
uretic conditions, i can mainly be identified in the cytosol. The
high level of expression and distribution of the swelling-depen-
dent chloride channel 'Cmn in the kidney points to the possibility
that this protein plays a central role for volume regulation in this
organ.
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Fig. 1. Identification of the protein in different regions of the rat kidney. The I, protein with an apparent molecular weight of 36 kDa can be located
in the cortex (cx), inner and outer medulla (im and om, respectively) and papilla (pp). The whole cell protein (cytosol as well as membrane fraction)
was used. For the Western blot 100 .rg of total protein was sized by SDS gel eleetrophoresis and the different size proteins blotted on nitrocellulose
membrane (Schleicher & Schüll, Germany). Standard Western blotting techniques [81 were used to identi' the I, protein. As the first selective
antibody, we used polyclonal antipeptide antibodies raised against a synthetic peptide comprising the C-terminal end of the 1, protein. After affinity
purification the antibodies were used in a 1:1000 dilution and then recognized by chemoluminescence (peroxidase-labeled second antibody; Boehringer
Mannheim).

Fig. 2. Identification of the 'c-i,, protein in difrrent vesicie preparations of proximal tubular cells. The protein can he identified in vesicles from the
brush-border (apical) membrane (bbm). No signal was detected in vesicles from the hasolateral membrane (bsm), nor in the endocytotic vesicles (csm).
Pig kidneys were obtained from the local slaughterhouse and immediately after their removal transferred to the laboratory. The renal cortex tissue was
isolated and homogenized. Brush-border membrane vesicles were purified from the homogenate using the Mg2 /EGTA precipitation technique
originally described by Biber et al [9]. Basolateral membrane vesicles were prepared from the outer cortex by a Pereoll density centrifugation technique
using a 12% (wt/vol) Pereoll gradient according to Werner and Roch-Ramel [10]. Endocytotic vesicles were enriched from cortex homogenate by
differential centrifugation and separated from other membranes on a 16% (wt/wt) Percoll gradient. The details of isolation have been described
previously [ii]. The different isolation procedures were monitored by the measurement of respective enzyme activities to ensure the purity of the
preparations. As the marker enzyme for the brush border membrane, the leucine aminopeptidase (EC 3.4.11.1) was determined using L-leucine-4-
nitro-anilide as a substrate. The specific acitivity of the Na/K-ATPase (EC 3.6.1.3), a marker enzyme of hasolateral cell membranes, was measured
with a coupled optical test. In the preparations of brush border membrane vesicles the specific activity of leucine aminopeptidase was enriched by a
factor of 11 1 (SCM, N = 3) over the activity of the homogenate. The specific activity of Na7K-ATPase in the preparations of basolateral membrane
vesicles was 18 I (N = 3) times that of the homogenate, proving sufficient purification of the vesicles. As a marker for endocytotic vesicles, ATP-driven
proton pump activity was measured in the presence of chloride with acridine orange [11].
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