
Brain, Behavior, and Immunity 54 (2016) 158–169

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Brain, Behavior, and Immunity

journal homepage: www.elsevier .com/locate /ybrbi
Full-length Article
Perceived stress and telomere length: A systematic review, meta-
analysis, and methodologic considerations for advancing the field
http://dx.doi.org/10.1016/j.bbi.2016.02.002
0889-1591/� 2016 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Quantitative Sciences Unit, c/o Inna Sayfer, Stanford
University, 1070 Arastradero Rd., Palo Alto, CA 94305, USA.

E-mail address: mmathur@stanford.edu (M.B. Mathur).
Maya B. Mathur a,⇑, Elissa Epel b, Shelley Kind c, Manisha Desai a, Christine G. Parks d, Dale P. Sandler d,
Nayer Khazeni e,f

aQuantitative Sciences Unit, Stanford University, Palo Alto, CA, USA
bDepartment of Psychiatry, University of California, San Francisco, CA, USA
cDepartment of Psychological and Brain Sciences, Boston University, Boston, MA, USA
d Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
eDivision of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
fCenter for Health Policy and Center for Primary Care and Outcomes Research, Stanford University, Stanford, CA, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 October 2015
Received in revised form 23 January 2016
Accepted 3 February 2016
Available online 4 February 2016

Keywords:
Telomere
Stress
Cellular damage
Meta-analysis
Importance: Psychological stress contributes to numerous diseases and may do so in part through dam-
age to telomeres, protective non-coding segments on the ends of chromosomes.
Objective: We conducted a systematic review and meta-analysis to determine the association between
self-reported, perceived psychological stress (PS) and telomere length (TL).
Data sources: We searched 3 databases (PubMed, PsycInfo, and Scopus), completed manual searches of
published and unpublished studies, and contacted all study authors to obtain potentially relevant data.
Study selection: Two independent reviewers assessed studies for original research measuring (but not
necessarily reporting the correlation between) PS and TL in human subjects. 23 studies met inclusion cri-
teria; 22 (totaling 8948 subjects) could be meta-analyzed.
Data extraction and synthesis: We assessed study quality using modified MINORS criteria. Since not all
included studies reported PS–TL correlations, we obtained them via direct calculation from author-
provideddata (7studies), contactwithauthors (14studies), or extraction fromthepublishedarticle (1 study).
Main outcomes and measures: We conducted random-effects meta-analysis on our primary outcome, the
age-adjusted PS–TLcorrelation.We investigatedpotential confounders andmoderators (sex, life stress expo-
sure, and PS measure validation) via post hoc subset analyses and meta-regression.
Results: Increased PS was associated with a very small decrease in TL (n = 8724 total; r = �0.06; 95% CI:
�0.10,�0.008;p = 0.01;a = 0.025), adjusting for age. This relationshipwas similar between sexes andwithin
studies using validatedmeasures of PS, andmarginally (nonsignificantly) stronger among samples recruited
for stress exposure (r = �0.13; vs. general samples: b = �0.11; 95% CI: �0.27, 0.01; p = 0.05; a = 0.013).
Publication bias may exist; correcting for its effects attenuated the relationship.
Conclusions and relevance: Our analysis finds a very small, statistically significant relationship between
increased PS (asmeasured over the pastmonth) and decreased TL thatmay reflect publication bias, although
fullyparsing the effects of publicationbias fromother sample-size correlates is challenging, as discussed. The
association may be stronger with knownmajor stressors and is similar in magnitude to that noted between
obesity and TL. All included studies used single measures of short-term stress; the literature suggests long-
term chronic stress may have a larger cumulative effect. Future research should assess for potential con-
founders and use longitudinal, multidimensional models of stress.

� 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction levels of stress, with 53% believing they have experienced personal
Unmanaged psychological stress is pervasive in many modern
societies. American adults consistently report moderately high
health problems as a result of stress and only 29% reporting that
they are doing a ‘‘very good” or ‘‘excellent” job of managing or
reducing stress (Anderson et al., 2012). Self-reported stress has
increased in nearly every demographic between 1983 and 2009
(Cohen and Janicki-Deverts, 2012).

High levels of chronic stress are associated with numerous dis-
eases and deleterious conditions, including obesity and abdominal
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Fig. 1. The stress triad and telomere maintenance. Chronic major stressor
exposures can lead to chronically high levels of perceived stress and subsequent
stress arousal. In turn, chronic stress arousal is hypothesized to proximally impact
telomere maintenance. To the extent that perceived stress over the month reflects a
chronic state and is related to stress arousal, there may be a relationship between
perception and telomere length.

1 Specific search strings were as follows. PubMed: (dysthym* [ti] OR pessim* [ti] OR
‘‘anxiety” [mesh] OR ‘‘anxiety” [tiab] OR ‘‘bipolar disorder” [mesh] OR ‘‘bipolar
disorder” [tiab] OR depress* [ti] OR adversity* [ti] OR traum* [ti] OR stress* [ti] OR
‘‘stress, psychological” [mesh] OR ‘‘mood disorders” [mesh] OR ‘‘mental disorders”
[mesh] OR ‘‘psychology” [sh] OR cognit* [ti]) AND (telomere* [ti] OR ‘‘telomere”
[mesh] OR ‘‘chromosome breakage” [mesh] OR ‘‘matched pair analysis” [mesh] OR
‘‘cell aging” [mesh]) NOT (oxidative [ti] OR ‘‘oxidative stress” [mesh] OR editorial [pt
OR letter [pt] OR ‘‘review” [pt]) NOT (”animals” [mesh] NOT ‘‘humans” [mesh])
PsycInfo: (telomer*.mp. or telomere length.id. or telomere biology.id.) and (exp stress
or stress*.mp. or exp mental health/) Scopus: KEY(telomer*) AND KEY(chronic stress
OR mental stress).
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fat deposition (Dallman et al., 2003), metabolic syndrome
(Chandola et al., 2006), respiratory infection (Cohen et al., 1991),
immune compromise (Kiecolt-Glaser et al., 1996; Antoni et al.,
2006), cardiovascular disease (Iso et al., 2002), systemic inflamma-
tion (Everson-Rose and Lewis, 2005; Miller and Blackwell, 2006;
Yudkin et al., 2000), respiratory impairment (Lehrer, 2006), tumor
growth (Antoni et al., 2006), and dendritic shortening in the hip-
pocampus and prefrontal cortex (McEwen, 2008). Mouse models
have demonstrated that catecholamine stimulation (simulating
the hormonal effects of chronic stress) causes systemic damage
to chromosomes (Hara et al., 2011).

Telomeres are non-coding, repetitive nucleotide segments on
the ends of each mammalian chromosome that serve a protective
role during DNA transcription. A small number of base pairs at
the ends of a chromosome are lost during each transcription,
resulting in an overall shortening of the chromosome after many
duplications. Telomeres therefore serve as a protective ‘‘buffer”
to prevent the truncation of functional coding segments during
duplication. Although telomeres are routinely replenished by
telomerase, their gradual attrition over the lifespan may contribute
to disease. Recent studies have explored the relationship between
telomere length and health (Epel et al., 2004) and found short
telomeres to be a risk factor for many diseases of aging, including
cancer (Wentzensen et al., 2011), cardio-metabolic dysfunction
(D’Mello et al., 2015), and diabetes (Zhao et al., 2013).

Stressed, depressed, anxious, or previously traumatized individ-
uals may have shorter telomeres than their psychologically healthy
counterparts (Epel et al., 2004, 2006; Okereke et al., 2012; Tyrka
et al., 2010; Simon et al., 2006; O’Donovan et al., 2011). For
example, recent stressor exposure within the last five years (but
not earlier) (Verhoeven et al., 2015) as well as chronic social stress
(Oliveira et al., 2015) are associated with shorter telomeres. Since
the first study documenting a relationship between telomere
length and perceived stress (Epel et al., 2004), many studies mea-
suring telomere length have included a measure of psychological
stress; however, relatively few have reported the effects of
perceived stress on telomere length.

Stress is not a unitary construct, but rather comprises exposure
to stressors, perception of stress, and the physiological stress
response. Exposure to chronic stressors (such as domestic abuse)
may provoke sustained physiological stress arousal, which in turn
could impact telomere biology (Fig. 1). Indeed, experimental
research in animal models and epidemiological research in humans
suggests that central elements of the physiological stress response
(namely cortisol exposure and individual cortisol reactivity) are
associated with shortened telomeres (Haussmann and Heidinger,
2015; Gotlib et al., 2015; Tomiyama et al., 2012). The presence of
a chronic stressor potentially indicates that an individual’s current
perceived stress is reflective of a chronic, rather than short-lived,
psychological state. Thus, the conceptual model in Fig. 1 predicts
that perceived stress may be more strongly related to telomere
length in the presence of a chronic stressor, a possibility addressed
in the present analysis.

A previous meta-analysis including only a small number of
studies that explicitly reported correlations between perceived
stress and telomere length detected publication bias and called
for additional research (Schutte and Malouff, 2014). Additional
methodological limitations motivate the present analysis. For
example, 2 studies in the previous analysis shared subjects (Epel
et al., 2004; Tomiyama et al., 2012), resulting in double-counting.
Finally, statistically distinct effect sizes (for example, correlations
adjusting for different sets of covariates) were synthesized, result-
ing in pooled point estimates with limited interpretability. We
aimed to build on these preliminary results by conducting a more
exhaustive review of the existing literature, addressing the
methodological challenges of the prior analysis.
An additional, novel objective was to assess demographic and
methodological factors that may confound or moderate the PS–TL
relationship. First, psychometric validity and reliability vary across
measures of PS; for example, conceptually distinct but associated
constructs such as negative affect and trait neuroticism may con-
taminate PS measurement (Cohen and Williamson, 1988). Second,
because females tend to have longer telomeres (Gardner et al.,
2014), but higher PS (Cohen and Janicki-Deverts, 2012), than
males, sex could act as a suppressor or moderator variable. Third,
the PS–TL relationship may differ substantially for subjects with
a known major stressor or a physical health condition, both of
which may be associated with PS and TL (Holmes and Rahe,
1967; Dohrenwend and Dohrenwend, 1982; Turner et al., 1995).
We quantitatively investigated these possible effects using meta-
regressive methods and subset analyses.

In order to include both the growing published literature on
perceived stress and telomere length as well as data not previously
synthesized meta-analytically, we performed a systematic review
using a comprehensive search strategy and inclusion criteria
directed at capturing unreported correlations, unpublished data,
and recent additions to the literature. We quantitatively meta-
analyzed the association of perceived stress with telomere length.
2. Methods

2.1. Data sources and searches

We systematically searched PubMed, PsycInfo, and Scopus from
inception to April 2015 to identify all studies published in any lan-
guage collecting any measure of telomere length (TL) and self-
reported, perceived psychological stress (PS) in human subjects.
We developed search strategies1 in consultation with a professional
reference librarian; the search strings captured PS via terms includ-
ing stress, dysthymia, anxiety, and trauma and captured TL via terms
including telomere, oxidative stress, and cell aging. Search terms were
deliberately broad in order to capture all potentially relevant
articles; a later review process (detailed below) excluded the numer-
ous articles failing to meet specific inclusion criteria.
]
.
/
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We reviewed included articles’ references for potentially rele-
vant articles that had not been captured in the database search
and conducted manual searches for published and unpublished
studies in consultation with an experienced researcher in the field
(EE). We conducted the final search on April 3, 2015.

2.2. Study selection

Among the articles of any design and written in any language
retrieved from the initial, broad database search, we included in
analysis studies that: (1) represented original research (excluding
systematic reviews, narratives, meta-analyses, etc.); (2) used
human subjects (excluding animal and in vitro studies); (3) mea-
sured both TL and self-reported PS for at least a subset of subjects.
We included studies measuring PS only as a covariate, even when
the association between PS and TL was not reported.

2.3. Data extraction and quality assessment

We performed article screening using web-based systematic
review software DistillerSR (Evidence Partners, Ottawa, Canada).
Two investigators (MM and SK) independently assessed each arti-
cle against the inclusion criteria, resolving disagreements through
re-review, discussion, and arbitration by a referee (NK). Both inves-
tigators first assessed only titles and abstracts in order to exclude
articles lacking a measure of TL. For the remaining articles, the
investigators then obtained full texts as necessary to assess the
remainder of the inclusion criteria. We assessed methodological
quality of eligible studies using modified MINORS criteria (Slim
et al., 2003), assessing clarity of aims and inclusion criteria,
description of a priori data collection and analysis plans, prospec-
tive calculation of sample sizes, quality of the PS and TL variables,
blinded assessment of TL, and reporting of missing data.

2.4. Data collection

Two investigators (MM and EE) contacted authors for each eli-
gible study to request summary statistics or preferably raw data,
including measures of TL, PS, age, and sex. For the studies for which
we obtained raw data, MM re-analyzed the raw data to confirm
published statistics related to the PS–TL relationship, resolving
any discrepancies through discussion with the authors. Summary
measures included the raw correlation between PS and TL, the par-
tial correlation adjusting for age (henceforth ‘‘age-adjusted”), and
the age- and sex-adjusted correlation, as well as the age-
adjusted, sex-stratified correlation. When no endpoints of interest
nor mathematically equivalent statistics were available, we
searched for other relevant statistics on the relationship between
PS and TL (such as rank correlations) for qualitative description.
Finally, for eligible studies sharing an author, we verified with
authors whether there was any duplication of subjects between
studies and used this information to eliminate duplicated data.

2.5. Protocol modifications

We clarified the inclusion criteria post hoc in the following
instances: (1) 3 studies measured domain-specific stress (stress
specifically related to the duties of a schoolteacher (von Känel
et al., 2015), stress in 8 domains [such as career- and
relationships-related] (Litzelman et al., 2014), and instantaneous
state stress immediately before exposure to a laboratory stressor
(Zalli et al., 2014). Because a priori inclusion criteria did not ade-
quately address eligibility of such measures, we excluded these
studies, further refining the inclusion criterion to include only
studies measuring global perceived stress; (2) 1 study (Kananen
et al., 2010) employed the Global Health Questionnaire (GHQ-12)
measure. Upon reviewing and excluding a later article that
included a more detailed description of the GHQ-12 measure,
reviewers agreed that this measure did not meet inclusion criteria,
and this study was excluded; (3) 1 article identified via manual
search (Hoen et al., 2011) made no mention of PS, but was included
because author EE was aware the study had collected PS measures
based on other publications from the study.

2.6. A priori endpoints

The primary outcome and predictor variables of interest were
TL and PS; the primary analytic goal was to synthesize data on
their relationship. Because TL declines with age (Benetos et al.,
2001; Brouilette et al., 2007), we assessed age as a covariate and
likely confounder by additionally estimating the age-adjusted par-
tial correlation between PS and TL through meta-analytic methods.
Thus, we specified 2 endpoints a priori: (1) the age-adjusted Pear-
son correlation between PS and TL (primary); and (2) the raw,
unadjusted Pearson correlation between PS and TL (secondary).

2.7. Moderator and subgroup analyses

As described in the Introduction, demographic variables such as
sex and past exposure to a major stressor, as well as methodolog-
ical factors such as psychometric quality of PS measures, may con-
found or moderate the PS–TL relationship. Based on these
hypothesized effects, we investigated 4 post hoc endpoints and
subset analyses: (1) we examined the age-adjusted PS–TL correla-
tion among only studies employing an empirically validated mea-
sure of PS. All subsequent secondary analyses were also conducted
among only this subset of studies; (2) we examined the age- and
sex-adjusted PS–TL correlation and the moderation effect of sex;
(3) we investigated possible effects of sample heterogeneity by
characterizing the PS–TL relationship according to the type of sam-
ple enrolled using 3 mutually exclusive categories: ‘‘General sam-
ples” included those not specifically selected for physical health
conditions or stress exposures (these samples mostly comprised
healthy adults, but subjects with physical health conditions or
stress exposures were not excluded); ‘‘stress-exposed samples”
included those selected for exposure (past or present) to a major
stressor such as traumatic events or caregiving responsibilities
for those with medical illness (this category included studies enrol-
ling both stressed and control subjects); ‘‘physical condition sam-
ples” included those selected for the presence of a disease or
other physical condition.

Many such studies involved diseases known to be comorbidwith
stress or depression. In addition, in the samples that did not recruit
specifically for a disease group, we codedwhether therewere exclu-
sion criteria to rule out major diseases such as cardiovascular dis-
ease, diabetes, or cancer. Because specific physical conditions may
have strong effects on telomere biology, these samples were not
included in the stress-exposed category (which in most cases were
healthy samples where major diseases were excluded; Table 1).

2.8. Comparative analysis for limitations of PS measures

A gold standard predictor variable for stress would accurately
measure physiological stress as the most proximal stress-related
influence on telomere degradation. Discrepancies between per-
ceived, physiological, and reported stress could mask a stronger
effect of proximal physiological factors on telomere shortening.
We planned to conduct an exploratory analysis comparing themag-
nitudes of PS–TL relationships to physiological stress-TL relation-
ships among studies collecting both measures of stress. We
reviewed Google Scholar and PubMed using combinations of the
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search terms psychological stress, perceived stress, physiological stress,
and cortisol.

2.9. Statistical analysis

We conducted all statistical analyses in R (Version 3.1.0, multi-
ple contributors, Vienna, Austria)2. We adjusted analyses for multi-
ple comparisons via the Šidák method, applying a standard family-
wise error rate of a = 0.05 to the 2 primary analyses and to the 4 post
hoc analyses separately. This yielded an adjusted a = 0.025 for each
primary analysis and a = 0.013 for each post hoc analysis. We
adjusted all confidence intervals accordingly; p-values are unad-
justed and reported with corresponding adjusted a levels. We did
not apply multiplicity adjustments to sensitivity analyses.

We preferentially computed effect size measures from raw
data; for studies without available raw data, we used summary
correlations provided by authors or published effect size measures.
Common measures of PS are many-item composite scores that can
reasonably be treated as continuous. 1 study (Surtees et al., 2011)
with available raw data included a covariate corresponding to
assay plate; we additionally adjusted for this variable in all corre-
lation measures for this study. We used Fisher’s r-to-z transforma-
tion for variance stabilization and normalization (Borenstein and
Hedges, 2009) and reconverted all reported results to r scale. We
pooled point estimates via linear mixed-effects modeling (allowing
random effects by study) estimated via restricted or unrestricted
maximum likelihood estimation. Models employed inverse-
variance weighting, and we based inference on pooled estimates
on the t-distribution using Knapp–Hartung adjusted standard
errors (an adjustment to the DerSimonian–Laird method with
improved statistical properties) (IntHout et al., 2014).

We estimated and tested for between-study effect heterogene-
ity using (1) Cochran’s Q, a weighted sum of squares on a standard-
ized scale and the associated chi-square statistic, and (2) T, the
estimated standard deviation of true effects across studies
(Borenstein and Hedges, 2009). Finally, using the available raw
data, we visually examined scatterplots to evaluate model assump-
tions – for example, by assessing the linearity of the relationship
between PS and TL and the possible presence of systematically
occurring influential outliers.

We used the same modeling approach in post hoc analyses as in
main analyses but excluded studies using an unvalidated stress
measure. We made the distinction between validated and unvali-
dated measures post hoc. Therefore, in keeping with our a priori
analysis plan, we included both types of measures in primary anal-
yses to avoid inflation of a levels due to post hoc changes to anal-
yses (Simmons et al., 2011). For secondary analyses, we also report
results of sensitivity analyses in which no studies were excluded,
as in primary analyses.

We estimated the pooled, age-adjusted PS–TL correlation
among this subset of studies. We further investigated the effect
of sex as a confounder by estimating the age- and sex-adjusted
pooled correlation. To investigate whether sex might moderate
the PS–TL relationship, we stratified study samples by sex and used
meta-regression (introducing a fixed covariate effect to the
random-effects model); this coefficient represents the estimated
difference in PS–TL correlation for females versus males. We used
a similar approach to assess whether sample type (general popula-
tion, samples selected for a physical condition, or samples selected
for stress exposure) moderated the PS–TL relationship; the corre-
sponding coefficients represent the difference in point estimates
across the 3 types of samples. For each meta-regressive model as
well as for a comparable ‘‘reduced” model not containing the mod-
2 We used the following packages: xlsx, reshape2, ggplot2, metafor, lme4, lmerTest
Amelia, car.
,

erator of interest, we computed Higgins’ residual I2 statistic, which
estimates the proportion of residual variance attributable to true
inter-study heterogeneity in effect sizes (Borenstein and Hedges,
2009). A much smaller residual I2 in the full model, compared to
the reduced model, would suggest that the moderator variable of
interest may have contributed strongly to inter-study effect
heterogeneity.
2.10. Sensitivity analyses for publication bias

We used a funnel plot and Egger’s test (Borenstein and Hedges,
2009), a meta-regressive estimate of the association of a study’s
point estimate with its standard error (SE), to assess for possible
publication bias or other systematic effects of sample variability.
If the PS–TL relationship is truly stronger for samples recruited
for a physical condition or major stressor (which are likely to be
smaller in size and higher in SE) than for the general population,
such an effect could spuriously produce the appearance of publica-
tion bias. Therefore, we also conducted a modified Egger’s regres-
sion containing fixed-effects of both study SE and sample type.
We then used the likelihood-ratio chi-square test to assess
whether removing the coefficient for study SE significantly wors-
ened model fit; a significant result would suggest that any ten-
dency of smaller studies to report larger correlations cannot be
attributed to differences in sample demographics alone, and would
more strongly indicate publication bias. Finally, we used the Duval
approach (Duval and Tweedie, 2000) to estimate a trimmed-and-
filled, age-adjusted point estimate. We planned to conduct an
exploratory analysis comparing physiological to perceived stress
measures, but limitations of the published literature made this
unfeasible.
3. Results

3.1. Study eligibility and data collection

Our literature search retrieved 2,192 potentially relevant articles
across all 4 databases (Fig. A.1).We removed115duplicated articles.
Of the remaining 2077 unique articles, we excluded 1620 articles
that clearly did not measure TL after abstract and title screening.
We found an additional 3 potentially relevant articles (Hoen et al.,
2011; Bersani et al., 2016; Friedman et al., 1988) via manual search.
After abstract or full-text article review of the remaining 460 arti-
cles, we excluded 431 that failed to meet all inclusion criteria, leav-
ing 29 relevant articles (Epel et al., 2004, 2006, 2012; Tyrka et al.,
2010; Hoen et al., 2011; Surtees et al., 2011; Bersani et al., 2016;
Uchino et al., 2012, 2015; Hassett et al., 2012; Sibille et al., 2012;
O’Donovan et al., 2009, 2012; Puterman et al., 2010; Humphreys
et al., 2012; Georgin-Lavialle et al., 2014; Wikgren et al., 2012;
Entringer et al., 2011; Parks et al., 2009, 2011; Geronimus et al.,
2010; Kiefer et al., 2008; Ludlow et al., 2008; Chen et al., 2015;
Carlson et al., 2015; Tyrka et al., 2015; Buss et al., 2014; Prather
et al., 2014) that met all inclusion criteria. Inter-rater agreement
for study eligibility was 99.5% (j ¼ 0:86); we resolved 10 disagree-
ments through discussion.

In correspondence with study authors, we identified instances
of subject duplication in included studies and excluded an addi-
tional 6 articles (Epel et al., 2006; O’Donovan et al., 2009, 2012;
Parks et al., 2009; Kiefer et al., 2008; Uchino et al., 2015). 1
included study (Parks et al., 2011) used a subset of data from the
National Institute of Environmental Health Sciences (NIEHS) ‘‘Sis-
ter Study”. We obtained data directly from NIEHS for all Sister
Study subjects with data for PS and TL, resulting in a larger sample
size in our analysis than was used in the corresponding paper. Data
obtained from the NIEHS represented 2 heterogeneous sub-studies



Table 1
Characteristics of all eligible studies.

Study Sample demographicsa Sexes
enrolled

Sample
classification

Major
disease
excluded

Main endpoint Perceived stress
measure

Data source TL
assay
type

TL cell type TL assay
CV

Age-
adjusted
correlation

Bersani et al. (2016) Male combat veterans, some with
PTSD (n = 76)

Males Stressed No Association of
psychiatric measures
with TL

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(PBMC)

4.00% �0.3

Buss et al. (2014) Females, overweight or obese
(n = 42)

Females Physical
condition

No Associations of eating
behaviors and
metabolic profile with
TL

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(leukocyte)

4.00% 0.01

Carlson et al. (2015) Female breast cancer survivors,
distressed (n = 87)

Females Physical
condition

No Effect of psychosocial
interventions
(randomized) on TL

Symptoms of
Stress Scale (C-
SOSI, 56-item)

Summary
statistics fro
author

PCR Blood
(leukocyte)

Not
calculated

�0.1

Chen et al. (2015) Adults, caregivers of disabled
children (n = 89)

Both Stressed No Association of
smoking and PS with
TL

Perceived Stress
Scale (14-item)

Summary
statistics fro
author

PCR Salivary 11.00% �0.07

Entringer et al. (2011) Adults, some whose mothers were
psychologically stressed during
pregnancy (n = 98)

Both Stressed Yes Association of
maternal stress status
with offspring’s TL

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(leukocyte)

4.00% �0.15

Epel et al. (2004) Females, premenopausal mothers
with chronically ill child and
premenopausal normal mothers
(n = 57)

Females Stressed Yes Association of PS and
caregiving status with
TL

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(PBMC)

Not
calculated

�0.31

Epel et al. (2012) Females, healthy with high
education levels and low stress
(n = 258)

Females General No Association of mind-
wandering with TL

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(PBMC)

4.00% �0.09

Georgin-Lavialle et al.
(2014)

Adults, mastocytosis patients, 79%
with some grade of depression
(n = 19)

Both Physical
condition

No Association of
negative emotionality
with TL

Perceived Stress
Scale (14-item)

Data from
author

PCR Blood
(PBMC)

Not
calculated

�0.73

Geronimus et al. (2010) Females, middle-aged,
premenopausal, half Black
(n = 215)

Females General No Differences in TL
between black and
white subjects

Perceived Stress
Scale (4-item)

Published
article

PCR Blood
(PBMC)

4.50% N/A

Hassett et al. (2012) Females, fibromyalgia (n = 61) Females Physical
condition

Yes Association of pain
with TL

Perceived Stress
Scale (4-items)

Summary
statistics fro
author

PCR Blood
(leukocyte)

3.00% �0.21

Hoen et al. (2011) Adults, stable coronary heart
disease, many with major
depression (n = 949)

Both Physical
condition

No Association of
depression with TL

Perceived Stress
Scale (4-item)

Summary
statistics fro
author

PCR Blood
(leukocyte)

3.70% �0.06

Humphreys et al. (2012) Females, formerly abused and non-
abused (n = 102)

Females Stressed Yes Association of abuse
status with TL

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(PBMC)

3.50% �0.025

Ludlow et al. (2008) Adults, middle- to older-aged
(n = 60)

Both General No Association of physical
activity with TL

Perceived Stress
Scale (10-item)

Data from
author

PCR Blood
(PBMC)

5% �0.03

NIEHS Sister Study 1b Females, middle-aged, sisters have
breast cancer (n = 1,085)

Females General No Causes and sequelae of
breast cancer

Perceived Stress
Scale (4-item)

Data from
author

PCR Blood
(leukocyte)

11.00% 0

NIEHS Sister Study 2b Females, middle-aged, sisters have
breast cancer (n = 632)

Females General No Causes and sequelae of
breast cancer

Perceived Stress
Scale (4-item)

Data from
author

PCR Blood
(leukocyte)

8.50% �0.04

Prather et al. (2014) Adults, obese (n = 87) Both Physical
condition

Yes Association of sleep
quality with multiple
TL measures

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(PBMC)

4.00% 0.03

Puterman et al. (2010) Females, post-menopausal, some
dementia caregivers (n = 58)

Females Stressed Yes Interaction of exercise
with PS–TL
relationship

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(leukocyte)

4.00% �0.26

Sibille et al. (2012) Adults, chronic pain from knee
osteoarthritis and controls (n = 36)

Both Physical
condition

No Association of chronic
pain and PS with TL

Perceived Stress
Scale (10-item)

Summary
statistics fro
author

PCR Blood
(PBMC)

7.50% �0.13
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within the Sister Study, which were treated as separate studies
(‘‘Sister Study 1” [Parks et al., 2011] and ‘‘Sister Study 2”
[Kim et al., 2011]) in analysis.

We thus identified 23 eligible studies (Table 1). We were able to
obtain both of the 2 primary endpoints (age-adjusted or raw PS–TL
correlation) for 21 of these, and 1 of the primary endpoints for 1
other study. We could obtain neither endpoint of interest, nor a
mathematical equivalent, for 1 study (Wikgren et al., 2012), which
enrolled 129 subjects and reported a significant negative Spearman
age-adjusted correlation between PS and TL (r = �0.26, p = 0.0003).
Thus, we were able to obtain and meta-analyze at least 1 of the 2
primary summary measures for 22 studies, comprising a total of
8948 subjects.
3.2. Study characteristics

Eligible studies enrolled subjects representing a variety of
demographics, including special populations such as subjects
with past or current psychological stressors (e.g., caregiving
duties for an ill relative, childhood or adulthood abuse, or
intrauterine stress exposure), subjects with physical health condi-
tions (e.g., knee osteoarthritis, fibromyalgia, or mastocytosis), and
subjects with mood disorders (e.g., anxiety or depression). 10 of
the studies (45%) enrolled subjects of both sexes, 11 (50%)
enrolled only females, and 1 (5%) enrolled only males (Table 1).
Study quality was variable; most did not report a priori analysis
plans and sample size calculations or occurrence of missing data
(Table A.1). Studies measured telomeres in leukocyte cells (11
studies), peripheral blood mononuclear cells (10 studies), lym-
phocytes (1 study), and salivary cells including an unspecified
combination of cell types (1 study). (To justify pooling across cell
types in analysis, we conducted a sensitivity analysis in which we
meta-regressed the age-adjusted correlation on cell type [leuko-
cytes vs. PBMC]; this analysis suggested no moderation by cell
type.)

All eligible studies measured PS and TL cross-sectionally,
although some studies measured additional variables retrospec-
tively or prospectively or involved randomization to an interven-
tion. All but 3 of the studies (Surtees et al., 2011; Wikgren et al.,
2012; Carlson et al., 2015) measured PS using a full or abridged
version of the validated Perceived Stress Scale (Methods A.1), in
which respondents consider their experiences and feelings over
the past month (Cohen et al., 1983). 2 studies used other validated
measures: the Calgary SOSI index (Carlson et al., 2015) or the
Perceived Stress Questionnaire (Wikgren et al., 2012). Another
(Surtees et al., 2011) used a single 5-point item: ‘‘All things consid-
ered, how stressful do you believe that your life has been over
the past ten years?” All studies measured TL using polymerase
chain reaction (PCR) methods (Cawthon, 2002).
3.3. Unadjusted correlation between PS and TL

The unadjusted correlation was available for 22 studies and a
total of 8948 subjects (Fig. 2A). 3 studies included in quantitative
analysis reported significant negative correlations (Epel et al.,
2004; Bersani et al., 2016; Georgin-Lavialle et al., 2014), as well
as 1 included in qualitative description (Wikgren et al., 2012).
The rest had nonsignificant point estimates. Visual assessments
of available raw data supported modeling the PS–TL relationship
as linear. Effect estimates showed significant heterogeneity
(Q = 43.0; df = 21; p = 0.003; T = 0.05), suggesting that the true
effect may have differed across studies due to, for example, inher-
ent differences in the population sampled. The pooled correlation
estimate did not indicate a significant linear relationship between
PS and TL (r = �0.05; 95% CI: �0.11, 0.01; p = 0.07; a = 0.025).



Fig. 2. Forest plots of unadjusted and age-adjusted correlations between perceived stress and telomere length. n.p. = not published. (A) Displays the unadjusted correlation.
(B) Displays the age-adjusted correlation. Studies are displayed in descending order of weight (inverse variance). The pooled confidence interval is corrected for multiplicity
between the 2 a priori endpoints.

Fig. 2 (continued)
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3.4. Age-adjusted correlation between PS and TL

The age-adjusted correlation was available for 21 studies and a
total of 8724 subjects (Fig. 2B). The same 3 studies reporting a
statistically significant unadjusted correlation also reported signif-
icant age-adjusted correlations (Epel et al., 2004; Bersani et al.,
2016; Georgin-Lavialle et al., 2014), while the rest were null. Unad-
justed and age-adjusted point estimates were similar in all studies



Fig. 3. Pooled point estimates from a priori, subset, and moderation analyses. For consistency, estimates from meta-regressive models are presented as fitted values rather
than coefficients and represent the estimated PS–TL correlation for the relevant group. Thus, plotted confidence intervals correspond to testing for a nonzero correlation
within the group of interest rather than a comparison of effect sizes across groups. Bracketed p-values correspond to meta-regressive tests of differences across groups.
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for which both were available. As in the unadjusted analysis, there
was evidence of between-study heterogeneity (Q = 35.1; df = 20;
p = 0.02; T = 0.03). Adjusting for age, higher PS was associated with
reduced TL (r = �0.06; 95% CI: �0.10, �0.008; p = 0.01; a = 0.025),
with a similar effect size to the unadjusted estimate.
3 The null models used as comparators for the meta-regressive model containing
sex and that containing sample type were not identical. The sex meta-regression
model contained multiple observations for some studies and a corresponding random
intercept by study; thus its null model contained these as well.
3.5. Moderator and subgroup analyses

Results of post hoc analyses are displayed in Fig. 3. 1 study
(Surtees et al., 2011) used an unvalidated measure of PS and was
not included in the post hoc analyses. Removing this study did
not substantively affect the age-adjusted point estimate
(n = 4371 total, r = �0.07; 95% CI: �0.13, �0.004; p = 0.01;
a = 0.013). All subsequent post hoc analyses included only studies
using validated PS measures.

To assess potential confounding by sex, we meta-analyzed the
age- and sex-adjusted point estimates among the 10 studies enrol-
ling both sexes (n = 1787 total), again yielding a similar, though
nonsignificant, point estimate to primary analyses (r = �0.06;
95% CI: �0.17, 0.04; p = 0.09; a = 0.013). A sensitivity analysis
including both unvalidated and validated PS measures (as in pri-
mary analyses) would yield exactly the same result for this out-
come because the single study using an unvalidated measure
enrolled only females and therefore would not have contributed
a sex-adjusted estimate.

We meta-regressively assessed possible moderation by sex,
finding that the PS–TL relationship was similar between sexes
(male: r = �0.07; 95% CI: �0.17, 0.02; female: r = �0.07, 95% CI:
�0.18, 0.03; female vs. male: b = 0.001; p = 0.98; a = 0.013). The
latter coefficient represents the estimated difference in PS–TL cor-
relation between female subsamples and male subsamples. Consis-
tent with the lack of moderation by sex, Higgins’ residual I2 (the
estimated proportion of ‘‘unexplained” variance that is attributable
to true effect heterogeneity) was similar in the null model not con-
taining sex (28.8%) and in the model containing sex (28.5%). A sen-
sitivity analysis in which we included both unvalidated and
validated PS measures yielded similar results (male: r = �0.07;
95% CI: �0.17, 0.02; female: r = �0.06, 95% CI: �0.16, 0.05; female
vs. male: b = 0.01; p = 0.75; a = 0.013).

Finally, meta-regressing on sample type suggested that the PS–
TL relationship was comparable across samples recruited from the
general population (r = �0.02; 95% CI: �0.10, 0.05) and in those
recruited for a physical condition (r = �0.07; 95% CI: �0.19, 0.05;
vs. general: b = �0.05; p = 0.27; a = 0.013). The correlation was
marginally, but nonsignificantly, stronger in stressor-exposed sam-
ples (r = �0.13; 95% CI: �0.27, 0.01; vs. general: b = �0.11;
p = 0.05; a = 0.013). Reported correlations and CIs represent the fit-
ted estimates, while coefficients and p-values represent the esti-
mated difference from general samples. Higgins’ residual I2 was
reduced from 47.7% in the null model (not containing sex)3 to
32.9% in the model containing sex. A sensitivity analysis in which
we included both unvalidated and validated PS measures again
yielded comparable results (general population: r = �0.02; 95% CI:
�0.06, 0.02; physical condition samples: r = �0.13; 95% CI: �0.17,
0.03; vs. general: b = �0.05; p = 0.19; a = 0.013; stress samples:
r = �0.13; 95% CI: �0.25, �0.01; vs. general: b = �0.11; p = 0.03;
a = 0.013).
3.6. Publication bias

The funnel plot (Fig. A.2) and traditional Egger’s test indicated
significantly larger point estimates among smaller studies with lar-
ger SEs (b = �1.03; 95% CI; �1.78, �0.28; p = 0.01). However, as
expected, sample size was strongly associated with sample type,
with general samples tending to be much larger (median n = 258)
than samples recruited for a physical condition (median n = 61)
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or psychological stressor (median n = 83). Removing study SE from
a modified Egger’s model did not significantly worsen model fit
with the inclusion of fixed effects of sample type (LR = 2.60;
p = 0.11), suggesting that the association of SE with effect size
may be partly related to systematic differences in sample demo-
graphics between small and large studies. Using the Duval trim-
and-fill method to correct for publication bias attenuated the cor-
relation to nonsignificance (r = �0.03; 95% CI; �0.06, 0.005;
p = 0.09; a = 0.025). This suggests that the primary finding may
be partly attributable to publication bias or other sample-size
effects.
3.7. Comparative analysis for limitations of PS measures

We intended to conduct a comparative analysis of perceived,
self-reported PS measures versus physiological measures. How-
ever, we found very few relevant studies (Epel et al., 2006;
Tomiyama et al., 2012; Parks et al., 2009; Savolainen et al.,
2015), and these reported inconsistent relationships between
physiological measures of stress and TL, making our planned anal-
ysis unfeasible.
4. Discussion

Given burgeoning scientific interest in relationships between
fundamental cellular physiology and psychology, we conducted a
systematic review and meta-analysis using both published and
unpublished data to examine the relationship between perceived
stress and telomere length. We find a very small, significant, neg-
ative age-adjusted correlation that was not significant prior to
adjustment for age. The relationship may be marginally, but non-
significantly, stronger in samples with a known major stressor.
Post hoc analyses suggest that results are similar when limited to
studies using an empirically validated stress measure, between
sexes, and between general population samples and those
recruited for a medical condition.

A previous meta-analysis on this topic found a stronger nega-
tive correlation between perceived stress and telomere length
(Schutte and Malouff, 2014). As discussed previously, this prelim-
inary analysis had several methodological limitations; our more
exhaustive search strategy allowed us to include more than 7,000
additional eligible subjects and resolved the double-counting and
statistical issues of the previous analysis. The present, more com-
prehensive analysis resulted in a smaller pooled effect size than
that reported previously.

Our results should be interpreted in light of several statistical
and methodological limitations. We found statistically significant
heterogeneity in effect estimates across studies, possibly arising
from differences in sample demographics. Pooled statistical esti-
mates must therefore be interpreted cautiously, as they average
over the entire population from which all the studies are drawn
and therefore may not appropriately represent the potentially
unique ‘‘true effect” within any single study population. Addition-
ally, we characterized the relationship between perceived stress
and telomere length using the Pearson correlation because of its
widespread availability and because limited raw data suggested
its assumptions were generally fulfilled. Using directly comparable
effect measures across studies is important for valid quantitative
pooling and minimizes subjective influences that could occur with
post hoc definition of categories or elimination of apparent out-
liers. However, this approach means that Pearson assumptions
may occasionally have been violated in individual studies. We
noted substantial inter-assay coefficients of variation in telomere
length measures.
Our results are consistent with publication bias (the ‘‘file-
drawer effect”) (Borenstein and Hedges, 2009). To address this,
we performed sensitivity analyses correcting for the effect of pub-
lication bias, which attenuated the observed age-adjusted relation-
ship. There may be other mechanisms, not reflective of true
publication bias, by which sample variability can be associated
with effect size. For example, it is possible that smaller studies
were less affected by statistical confounding or suppression, as
they were more likely to recruit samples homogeneous on con-
founders such as health conditions (D’Mello et al., 2015; Zhao
et al., 2013). The ‘‘p-curve” (Simonsohn et al., 2014), a more precise
test of publication bias that does not rely on sample standard error,
was not feasible in this case due to the small number of positive
findings.

Although we were able to assess moderation effects of several
demographic and methodologic factors, other variables known to
be associated with telomere length, such as lifestyle factors
(Puterman et al., 2010; Prather et al., 2014), health conditions
(D’Mello et al., 2015; Zhao et al., 2013), medications (Saliques
et al., 2011), and clinical depression (Cai et al., 2015), were reported
too infrequently in the literature for meta-analysis. Indeed, individ-
ual studies included in our analysis suggested moderation by fac-
tors such as smoking (Chen et al., 2015) and physical activity
(Puterman et al., 2010). We used partial correlations to adjust for
age as a known confounder of the PS–TL relationship, but were
not able to assess its effect as a possible moderator due to limited
availability of individual participant data. Moderation by age could
occur if stress effects are cumulative over the lifespan, causing a
stronger relationship between perceived stress and telomere length
among older versus younger subjects. Alternatively, many age-
related diseases are associated with a heightened cortisol response
to challenge; thus, older subjects may be more physiologically sus-
ceptible to a given stressor than are younger subjects (Otte et al.,
2005). Indeed, a study included in this meta-analysis found a rela-
tionship between perceived stress and telomere length only among
subjects aged at least 55 years (Parks et al., 2009).

Another theoretically challenging extraneous variable is clinical
depression. While perceived stress and depression are strongly
associated, depression is a more severe state characterized by sub-
stantial neurobiological alterations. A past review found clinical
diagnosis of depression, but not self-reported depression, to be
associated with telomere length, suggesting the possibility of a
threshold effect rather than a continuous response (Lindqvist
et al., 2015). Additionally, past research has suggested that a his-
tory of major depression mediates the relationship between per-
ceived stress and telomere length (Cai et al., 2015); simple
covariate adjustment for depression status aimed at reducing con-
founding may therefore aggravate rather than alleviate bias due to
depression (Hernán et al., 2002). We recommend that future work
use more sophisticated statistical modeling approaches to address
bias due to depression (e.g. Valeri and Vanderweele, 2013).

The very small magnitude of our finding may reflect limitations
of perceived stress measures. One of the largest studies of telomere
length (Cai et al., 2015) found that stressful event exposure alone
(not accounting for perceived stress) predicts telomere length.
Additionally, short-term stress may impact telomere biology only
briefly (Cai et al., 2015), and longitudinal measures of perceived
stress may better capture chronic effects (Monroe and Simons,
1991); elevated perceived stress over a lifetime may play an
important role not fully reflected in current telomere literature.
In addition to chronic stress effects, severe life stressors and events
across the life course (including early life) appear to have long-
lasting associations with health effects, including telomere length
(Shonkoff and Garner, 2012; Blaze et al., 2015; Price et al., 2013;
Cohen et al., 2013). Thus, perceived stress over the past month
may be limited as a single measure. Ideally, future research should
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increasingly adopt longitudinal designs rather than the current
cross-sectional designs. By measuring multiple stress constructs
– perceived stress, physiological stress, and stressful life events –
as well as telomere length repeatedly within each subject, such
designs would clarify the temporal ordering of the integrated
stress response, changes in telomere length, and changes in afore-
mentioned extraneous variables (Fig. 1).

In our secondary analysis of moderation by sample type, we did
not exclude control subjects from studies recruiting stressor-
exposed samples or samples with physical conditions. An alterna-
tive approach of including only samples with homogeneous stres-
sor exposure would severely limit power and could produce
artificial range restriction (Hunter et al., 2006). The ideal approach,
namely using subject-level data to classify subjects by stressor
exposure, was not possible given limitations in data availability.
A caveat of our classification approach is potentially increased
heterogeneity among ‘‘stressor-exposed” samples due to the inclu-
sion of control subjects. Additionally, limited availability of raw
data precluded assessment of the subject-level relationship
between stressor exposure and PS.

In context of these limitations, our findings indicate that 2 sub-
jects differing on perceived stress by a full standard deviation differ
on average by 6% of a standard deviation on telomere length.
Equivalently, variations in perceived stress appeared to account
for less than 1% of variability in telomere length. Our finding of
an effect size of r = �.06 is similar to the effect size of obesity on
TL (r = �.057) (Muezzinler et al., 2014), approximately 18–35% that
of blood pressure on TL (r = �0.34 and r = �0.17 for males and
females, respectively) (Benetos et al., 2001), approximately 30%
that of incident coronary heart disease on TL (OR = 1.44 for
highest-versus lowest-tertile TL4) (Brouilette et al., 2007), and
approximately 30% that of depression on TL (r = �0.205) (Ridout
et al., 2016). As noted previously, this very small effect size may,
in theory, belie aggregate effects of practical impact. If reflective of
a true causal relationship between short-term stress and telomere
biology, the observed effect could potentially translate over the lifes-
pan into cumulatively divergent cellular health among individuals
with different levels of chronic stress. Such a divergence could
culminate in clinically relevant differences in telomere biology by
old age.

In completing what we believe to be the most comprehensive
meta-analysis on this topic to date, we find a very small age-
adjusted decrease in telomere length with increases in perceived
stress that appears to be approximately equivalent to that seen
in the relationship between obesity and telomere length. Emerging
research on this topic, such a large new study finding an effect size
similar to our pooled estimate (Lynch et al., 2016), will help verify
our findings as well as improve statistical power to more precisely
assess confounders and moderators. Our finding is qualified by
likely publication bias, although fully parsing the effects of true
publication bias from other sample-size correlates is challenging.
Overall, our analysis indicates that the literature does not currently
support a strong role of perceived stress (as measured over the past
month) in shortening telomeres, though the relationship may be
stronger among individuals facing adversity.

In light of the high incidence of reported stress as well as the
complex interplay between life events, perceptions of their impor-
tance, and development of disease, our findings highlight the need
for additional longitudinal research. Development of multidimen-
sional lifespan models of reported, perceived, and physiological
stress, use of standardized telomere assays, and incorporation of
known extraneous variables (such as medications, health condi-
4 This OR is equivalent to Cohen’s d effect size (which is comparable to the Pearson
correlation) (Sánchez-Meca et al., 2003), of logð1:44Þ �

ffiffi

3
p
p ¼ 0:20.
tions, lifestyle factors, and clinical depression) would strengthen
such future work.
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