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a b s t r a c t

In this paper we characterize hemirings in which all h-ideals or all fuzzy h-ideals are
idempotent. It is proved, among other results, that every h-ideal of a hemiring R is
idempotent if and only if the lattice of fuzzy h-ideals of R is distributive under the sum
and h-intrinsic product of fuzzy h-ideals or, equivalently, if and only if each fuzzy h-ideal
of R is intersection of those prime fuzzy h-ideals of R which contain it. We also define two
types of prime fuzzy h-ideals of R and prove that, a non-constant h-ideal of R is prime in
the second sense if and only if each of its proper level set is a prime h-ideal of R.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The notion of semiring was introduced by Vandiver in 1934 [1]. Semirings which provide a common generalization of
rings and distributive lattices appear in a natural manner in some applications to the theory of automata, formal languages,
optimization theory and other branches of applied mathematics (see for example [2–6]). Hemirings, as semirings with
commutative addition and zero element, have also proved to be an important algebraic tool in theoretical computer science
(see for instance [7,8]). Some other applications of semirings with references can be found in [9,8,5]. On the other hand, the
notions of automata and formal languages have been generalized and extensively studied in a fuzzy framework (cf. [10–12]).
Ideals play an important role in the structure theory of hemirings and are useful for many purposes. But they do not

coincide with usual ring ideals. For this reasonmany results in ring theory have no analogues in semirings using only ideals.
Henriksen defined in [13] amore restricted class of ideals in semirings, which is called the class of k-ideals. Amore restricted
class of ideals has been given by Iizuka [14]. However, in an additively commutative semiring R, ideals of a semiring coincide
with ideals of a ring, provided that a semiring is a hemiring. Now we call this ideal an h-ideal of a hemiring.
Investigations of fuzzy semirings were initiated in [15]. Fuzzy h-ideals of a hemiring are studied by many authors,

for example [16–18]. The notion of fuzzy sets was introduced by Zadeh [19]. Later it was applied to many branches of
mathematics. Investigations of fuzzy semirings were initiated in [15] and [20]. Fuzzy k-ideals are studied in [21–23]. Fuzzy
h-ideals of a hemiring are studied by many authors, for example [16–18,24–27]. In this paper we characterize hemirings in
which each h-ideal is idempotent. We also characterize hemirings for which each fuzzy h-ideal is idempotent.

2. Preliminaries

Recall that a semiring is an algebraic system (R,+, ·) consisting of a non-empty set R togetherwith two binary operations
on R called addition and multiplication (denoted in the usual manner) such that (R,+) and (R, ·) are semigroups and the
following distributive laws:

a · (b+ c) = a · b+ a · c, and (b+ c) · a = b · a+ c · a
are satisfied for all a, b, c ∈ R.
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A semiring (R,+, ·) is called a hemiring if (R,+) is a commutative semigroup with a zero, i.e., with an element 0 ∈ R
such that a+ 0 = 0+ a = a and a · 0 = 0 · a = 0 for all a ∈ R. By the identity of a hemiring (R,+, ·)we mean an element
1 ∈ R (if it exists) such that 1 · a = a · 1 = a for all a ∈ R.
A hemiring (R,+, ·)with a commutative semigroup (R, ·) is called commutative.
A non-empty subset I of a hemiring R is called a left (right) ideal of R if (i) a+ b ∈ I for all a, b ∈ I and (ii) ra ∈ I (ar ∈ I)

for all a ∈ I , r ∈ R. Obviously 0 ∈ I for any left (right) ideal I of R.
A non-empty subset A of a hemiring R is called an ideal of R if it is both a left and a right ideal of R. A left (right) ideal A

of a hemiring R is called a left (right) k-ideal of R if for any a, b ∈ A and x ∈ R from x + a = b it follows x ∈ A. A left (right)
ideal I of a hemiring R is called a left (right) h-ideal of R if for any a, b ∈ I and x, y ∈ R from x+ a+ y = b+ y it follows x ∈ I .
Every left (right) h-ideal is a left (respectively, right) k-ideal. The converse is not true [22].

Lemma 2.1. The intersection of any collection of left (right) h-ideals in a hemiring R also is a left (right) h-ideal of R.

By h-closure of a non-empty subset A of a hemiring Rwe mean the set

A = {x ∈ R | x+ a+ y = b+ y for some a, b ∈ A, y ∈ R} .

It is clear that if A is a left (right) ideal of R, then A is the smallest left (right) h-ideal of R containing A. So, A = A for all
left (right) h-ideals of R. Obviously A = A for each non-empty A ⊆ R. Also A ⊆ B for all A ⊆ B ⊆ R.

Lemma 2.2 ([18]). AB = A B for any subsets A, B of a hemiring R.

Lemma 2.3 ([18]). If A and B are, respectively, right and left h-ideals of a hemiring R, then

AB ⊆ A ∩ B.

Definition 2.4 ([18]). A hemiring R is said to be h-hemiregular if for each a ∈ R, there exist x, y, z ∈ R such that
a+ axa+ z = aya+ z.

Lemma 2.5 ([18]). A hemiring R is h-hemiregular if and only if for any right h-ideal A and any left h-ideal B, we have

AB = A ∩ B.

Let X be a non-empty set. By a fuzzy subset µ of X wemean a membership functionµ : X → [0, 1]. Imµ denotes the set
of all values of µ. A fuzzy subset µ : X → [0, 1] is non-empty if there exist at least one x ∈ X such that µ(x) > 0. For any
fuzzy subsets λ and µ of X we define

λ ≤ µ⇐⇒ λ (x) ≤ µ (x) ,
(λ ∧ µ)(x) = λ(x) ∧ µ(x) = min{λ(x), µ(x)},
(λ ∨ µ) (x) = λ (x) ∨ µ (x) = max{λ(x), µ(x)}

for all x ∈ X .
More generally, if {λi : i ∈ I} is a collection of fuzzy subsets of X , then by the intersection and the union of this collection

we mean fuzzy subsets(∧
i∈I

λi

)
(x) =

∧
i∈I

λi(x) = inf
i∈I
{λi(x)},(∨

i∈I

λi

)
(x) =

∨
i∈I

λi(x) = sup
i∈I
{λi(x)},

respectively.
A fuzzy subset λ of a semiring R is called a fuzzy left (right) ideal of R if for all a, b ∈ Rwe have

(1) λ (a+ b) ≥ λ(a) ∧ λ(b),
(2) λ (ab) ≥ λ(b), (λ(ab) ≥ λ(a)).

Note that λ(0) ≥ λ(x) for all x ∈ R.

Definition 2.6. A fuzzy left (right) ideal λ of a hemiring R is called a fuzzy left (right)
• k-ideal if x+ y = z −→ λ (x) ≥ λ(y) ∧ λ(z),
• h-ideal if x+ a+ y = b+ y −→ λ(x) ≥ λ(a) ∧ λ(b)
holds for all a, b, x, y ∈ R.

Properties of fuzzy sets defined on an algebraic systemA = (X, F), where F is a family of operations (also partial) defined
on X , can be characterized by the corresponding properties of some subsets of X . Namely, as it is proved in [28] the following
Transfer Principle holds.
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Lemma 2.7. A fuzzy set λ defined on A has the property P if and only if all non-empty subsets U(λ; t) = {x ∈ X | λ(x) ≥ t}
have the property P .

For example, a fuzzy set λ of a hemiring R is a fuzzy left ideal if and only if each non-empty subset U(λ; t) is a left ideal
of R. Similarly, a fuzzy set λ in a hemiring R is a fuzzy left h-ideal of R if and only if each non-empty subset U(λ; t) is a left
h-ideal of R.
As a simple consequence of the above property, we obtain the following proposition, which was first proved in [16].

Proposition 2.8. Let A be a non-empty subset of a hemiring R. Then a fuzzy set λA defined by

λA(x) =
{
t if x ∈ A
s otherwise

where 0 ≤ s < t ≤ 1, is a fuzzy left h-ideal of R if and only if A is a left h-ideal of R.

Proposition 2.9. If Im λA = Im λB then
(1) A ⊆ B←→ λA ≤ λB,
(2) λA ∧ λB = λA∩B.

Proof. Let A ⊆ B. For x ∈ A we have λA(x) = t = λB(x). If x 6∈ A, then λA(x) = s ≤ λB(x). So, λA ≤ λB. Conversely, if
λA ≤ λB, then for all x ∈ Awe obtain t = λA(x) ≤ λB(x). Thus λB(x) = t , i.e., x ∈ B. Consequently, A ⊆ B. This proves (1).
To prove (2) let x ∈ A ∩ B. Then x ∈ A, x ∈ B and λA(x) ∧ λB(x) = t = λA∩B. If x 6∈ A ∩ B, then λA(x) = s or λB(x) = s. So,

λA(x) ∧ λB(x) = s = λA∩B(x), which completes the proof. �

Definition 2.10 ([16]). Let λ and µ be fuzzy subsets of a hemiring R. Then the h-product of λ and µ is defined by

(λ ◦h µ) (x) =

{
sup

x+a1b1+y=a2b2+y

(
λ (a1) ∧ λ (a2) ∧ µ (b1) ∧ µ (b2)

)
0 if x is not expressed as x+ a1b1 + y = a2b2 + y.

One can prove that if λ andµ are fuzzy left (right) h-ideals in a hemiring R, then so is λ∧µ. Moreover, if λ is a fuzzy right
h-ideal and µ is a fuzzy left h-ideal of R, then λ ◦h µ ≤ λ ∧ µ.

Theorem 2.11 ([18]). A hemiring R is h-hemiregular if and only if λ ◦h µ = λ ∧ µ for any fuzzy right h-ideal λ and fuzzy left
h-ideal µ.

3. h-intrinsic product of fuzzy subsets

To avoid repetitions from now Rwill always mean a hemiring (R,+, ·).
Generalizing the concept of h-product of two fuzzy subsets of R, in [29] the following h-intrinsic product of fuzzy subsets

is defined:

Definition 3.1. The h-intrinsic product of two fuzzy subsets µ and ν on R is defined by

(µ�h ν)(x) = sup
x+

m∑
i=1
aibi+z=

n∑
j=1
a′jb
′
j+z

( m∧
i=1

(
µ(ai) ∧ ν(bi)

)
∧

n∧
j=1

(
µ(a′j) ∧ ν(b

′

j

)))

and (µ�h ν)(x) = 0 if x cannot be expressed as x+
∑m
i=1 aibi + z =

∑n
j=1 a

′

jb
′

j + z.

The following properties of the h-intrinsic product of fuzzy sets proved in [29] will be used in this paper.

Proposition 3.2. Let µ, ν , ω, λ be fuzzy subsets on R. Then
(1) µ ◦h ν ≤ µ�h ν ,
(2) µ ≤ ω and ν ≤ λ −→ µ�h ν ≤ ω�h λ.
(3) χA�h χB = χAB for characteristic functions of any subsets of R.

Theorem 3.3. If λ and µ are fuzzy h-ideals of R, then so is λ�h µ. Moreover, λ�h µ ≤ λ ∧ µ.

Proof. Let λ and µ be fuzzy h-ideals of R. Let x, y ∈ R, then

(λ�h µ)(x) = sup
x+

m∑
i=1
aibi+z=

n∑
j=1
a′jb
′
j+z

( m∧
i=1

(
λ(ai) ∧ µ(bi)

)
∧

n∧
j=1

(
λ(a′j) ∧ µ(b

′

j

)))
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and

(λ�h µ)(y) = sup
y+

p∑
k=1
ckdk+z′=

q∑
l=1
c′l d
′
l+z
′

( p∧
k=1

(
λ(ck) ∧ µ(dk)

)
∧

q∧
l=1

(
λ(c ′l ) ∧ µ(d

′

l

)))
.

Thus

(λ�h µ)(x+ y) = sup
x+y+

u∑
s=1
esfs+z=

v∑
t=1
e′t f
′
t+z

( u∧
s=1

(
λ(es) ∧ µ(fs)

)
∧

v∧
t=1

(
λ(e′t) ∧ µ(f

′

t )
))

≥ sup
x+

m∑
i=1
aibi+z=

n∑
j=1
a
′

j b
′
j+z

 sup
y+

p∑
k=1
ckdk+z′=

q∑
l=1
c′l d
′
l+z
′


m∧
i=1

(
λ(ai) ∧ µ(bi)

)
∧

n∧
j=1

(
λ(a′j) ∧ µ(b

′

j)
)

∧

p∧
k=1

(
λ(ck) ∧ µ(dk)

)
∧

q∧
l=1

(
λ(c ′l ) ∧ µ(d

′

l)
)



= sup
x+

m∑
i=1
aibi+z=

n∑
j=1
a′jb
′
j+z

( m∧
i=1

(
λ(ai) ∧ µ(bi)

)
∧

n∧
j=1

(
λ(a′j) ∧ µ(b

′

j

)))

∧ sup
y+

p∑
k=1
ckdk+z′=

q∑
l=1
c′l d
′
l+z
′

( p∧
k=1

(
λ(ck) ∧ µ(dk)

)
∧

q∧
l=1

(
λ(c ′l ) ∧ µ(d

′

l

)))
= (λ�h µ)(x) ∧ (λ�h µ)(y).

Similarly,

(λ�h µ)(xr) = sup
xr+

p∑
k=1
gkhk+z=

q∑
l=1
g ′l h
′
l+z

( p∧
k=1

(
λ(gk) ∧ µ(hk)

)
∧

q∧
l=1

(
λ(g ′l ) ∧ µ(h

′

l

)))

≥ sup
x+

m∑
i=1
aibi+z=

n∑
j=1
a′jb
′
j+z

( m∧
i=1

(
λ(ai) ∧ µ(bir)

)
∧

n∧
j=1

(
λ(a′j) ∧ µ(b

′

jr
)))

≥ sup
x+

m∑
i=1
aibi+z=

n∑
j=1
a′jb
′
j+z

( m∧
i=1

(
λ(ai) ∧ µ(bi)

)
∧

n∧
j=1

(
λ(a′j) ∧ µ(b

′

j

)))
= (λ�h µ)(x).

Analogously we can verify that (λ�h µ)(rx) ≥ (λ�h µ)(x) for all r ∈ R. This means that λ�h µ is a fuzzy ideal of R.
To prove that x+ a+ y = b+ y implies (λ�h µ)(x) ≥ (λ�h µ)(a) ∧ (λ�h µ)(b) observe that

a+
m∑
i=1

aibi + z1 =
n∑
j=1

a′jb
′

j + z1 and b+
l∑
k=1

ckdk + z2 =
p∑
q=1

c ′qd
′

q + z2, (1)

together with x+ a+ y = b+ y, gives x+ a+ (
∑m
i=1 aibi+ z1)+ y = b+ (

∑m
i=1 aibi+ z1)+ y. Thus x+

∑n
j=1 a

′

jb
′

j+ z1+ y =
b+
∑m
i=1 aibi+z1+y and, consequently, x+

∑n
j=1 a

′

jb
′

j+(
∑l
k=1 ckdk+z2)+z1+y = b+(

∑l
k=1 ckdk+z2)+

∑m
i=1 aibi+z1+y =∑p

q=1 c
′
qd
′
q + z2 +

∑m
i=1 aibi + z1 + y =

∑m
i=1 aibi +

∑p
q=1 c

′
qd
′
q + z2 + z1 + y. Therefore

x+
n∑
j=1

a′jb
′

j +

l∑
k=1

ckdk + z2 + z1 + y =
m∑
i=1

aibi +
p∑
q=1

c ′qd
′

q + z2 + z1 + y. (2)

Now, in view of (1) and (2), we have

(λ�h µ)(a) ∧ (λ�h µ)(b) = sup
a+

m∑
i=1
aibi+z=

n∑
j=1
a′jb
′
j+z

( m∧
i=1

(
λ(ai) ∧ µ(bi)

)
∧

n∧
j=1

(
λ(a′j) ∧ µ(b

′

j)
))
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∧ sup
b+

p∑
k=1
ckdk+z′=

q∑
l=1
c′l d
′
l+z
′

( p∧
k=1

(
λ(ck) ∧ µ(dk)

)
∧

q∧
l=1

(
λ(c ′l ) ∧ µ(d

′

l)
))

= sup
a+

m∑
i=1
aibi+z=

n∑
j=1
a′jb
′
j+z

 sup
b+

p∑
k=1
ckdk+z′=

q∑
l=1
c′l d
′
l+z
′


m∧
i=1

(
λ(ai) ∧ µ(bi)

)
∧

n∧
j=1

(
λ(a′j) ∧ µ(b

′

j)
)

∧

p∧
k=1

(
λ(ck) ∧ µ(dk)

)
∧

q∧
l=1

(
λ(c ′l ) ∧ µ(d

′

l)
)



≤ sup
x+

u∑
s=1
gshs+z=

w∑
t=1
g ′th
′
t+z

(
u∧
s=1

(
λ(gs) ∧ µ(hs)

)
∧

w∧
t=1

(
λ(g ′t) ∧ µ(h

′

t)
))
= (λ�h µ)(x).

Thus (λ�h µ)(a) ∧ (λ�h µ)(b) ≤ (λ�h µ)(x). This completes the proof that (λ�h µ) is a fuzzy h-ideal of R.
By simple calculations we can prove that λ�h µ ≤ λ ∧ µ. �

For h-hemiregular hemirings we have stronger result. Namely, as it is proved in [29], the following theorem is valid.

Theorem 3.4. A hemiring R is h-hemiregular if and only if for any fuzzy right h-ideal λ and any fuzzy left h-idealµ of R we have
λ�h µ = λ ∧ µ.

Comparing this theorem with Theorem 2.11 we obtain

Corollary 3.5. λ�h µ = λ ◦ µ for all fuzzy h-ideals of any h-hemiregular hemiring.

4. Idempotent h-ideals

The concept of h-hemiregularity of a hemiring was introduced in [18] as a generalization of the concept of regularity
of a ring. From results proved in [18] (see our Lemma 2.5) it follows that in h-hemiregular hemirings every h-ideal A is h-
idempotent, that is AA = A. On the other hand, Theorem 3.4 implies that in such hemirings we have λ�h λ = λ for all fuzzy
h-ideals. Fuzzy h-ideals with this property will be called idempotent.

Proposition 4.1. The following statements are equivalent:

(1) Each h-ideal of R is h-idempotent.
(2) A ∩ B = AB for each pair of h-ideals of R.
(3) x ∈ RxRxR for every x ∈ R.
(4) A ⊆ RARAR for every non-empty A ⊆ R.
(5) A = RARAR for every h-ideal A of R.

Proof. Indeed, by Lemma2.3,AB ⊆ A∩B for all h-ideals of R. SinceA∩B is an h-ideal of R, (1) impliesA∩B = (A ∩ B)(A ∩ B) ⊆
AB. Thus A ∩ B = AB. So, (1) implies (2). The converse implication is obvious.
It is clear that the smallest h-ideal of R containing x ∈ R has the form

〈x〉 = 〈x〉 = Rx+ xR+ RxR+ Sx,

where Sx is a finite sum of x’s. If (1) holds, then 〈x〉 = 〈x〉 〈x〉 = 〈x〉〈x〉. Consequently,

x = 0+ x ∈ Rx+ xR+ RxR+ Sx
= (Rx+ xR+ RxR+ Sx)(Rx+ xR+ RxR+ Sx) ⊆ RxRRxR ⊆ RxRxR

for every x ∈ R. So, (1) implies (3). Clearly (3) implies (4). If (4) holds, then for every h-ideal of Rwe have A = A ⊆ RARAR ⊆
AA ⊆ A = A, which proves (5). The implication (5)→ (1) is obvious. �

As a consequence of the above result and Lemma 2.5 we obtain the following characterization of h-hemiregularity of
commutative hemirings.

Corollary 4.2. A commutative hemiring is h-hemiregular if and only if all its h-ideals are h-idempotent.

Proposition 4.3. The following statements are equivalent:

(1) Each fuzzy h-ideal of R is idempotent.
(2) λ�h µ = λ ∧ µ for all fuzzy h-ideals of R.
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Proof. Letλ andµ be fuzzy h-ideals of R. Sinceλ∧µ is a fuzzy h-ideal of R such thatλ∧µ ≤ λ andλ∧µ ≤ µ, Proposition 3.2
implies (λ∧µ)�h(λ∧µ) ≤ λ�h µ. So, if λ∧µ is an idempotent fuzzy h-ideal, then λ∧µ ≤ λ�h µ, which together with
Theorem 3.3 gives λ�h µ = λ ∧ µ. This means that (1) implies (2). The converse implication is obvious. �

Comparing this proposition with Theorem 3.4 we obtain

Corollary 4.4. A commutative hemiring is h-hemiregular if and only if all its fuzzy h-ideals are idempotent, or equivalently, if and
only if λ�h µ = λ ∧ µ holds for all its fuzzy h-ideals.

Theorem 4.5. For hemirings with the identity the following statements are equivalent:
(1) Each h-ideal of R is h-idempotent.
(2) A ∩ B = AB for each pair of h-ideals of R.
(3) Each fuzzy h-ideal of R is idempotent.
(4) λ�h µ = λ ∧ µ for all fuzzy h-ideals of R.

Proof. (1) and (2) are equivalent by Proposition 4.1, (3) and (4) by Proposition 4.3. To prove that (1) and (3) are equivalent
observe that the smallest h-ideal containing x ∈ R has the form RxR. Its closure RxR also is an h-ideal. Since, by (1), all h-ideals
of R are h-idempotent, we have RxR = (RxR)(RxR) = RxRRxR (Lemma 2.2). Thus x ∈ RxR = RxRRxR implies

x+
m∑
i=1

rixsiuixti + z =
n∑
j=1

r ′j xs
′

ju
′

jt
′

j + z.

But, by Theorem 3.3, for every fuzzy h-ideal of Rwe have λ�h λ ≤ λ. Hence λ(x) = λ(x)∧λ(x) ≤
∧m
i=1

(
λ(rixsi)∧λ(uixti)

)
.

Also λ(x) = λ(x) ∧ λ(x) ≤
∧n
j=1

(
λ(r ′j xs

′

j) ∧ λ(u
′

jxt
′

j )
)
. Therefore

λ(x) ≤
m∧
i=1

(
λ(rixsi) ∧ λ(uixti)

)
∧

n∧
j=1

(
λ(r ′j xs

′

j) ∧ λ(u
′

jxt
′

j )
)
= M(x, ri, si, r ′j , s

′

j)

≤ sup
x+

m∑
i=1
rixsiuixti+z=

n∑
j=1
r ′j xs
′
ju
′
jt
′
j+z

M(x, ri, si, r ′j , s
′

j) = (λ�h λ)(x).

Hence λ ≤ λ�h λ, which proves λ�h λ = λ. So, (1) implies (3).
Conversely, according to Proposition 2.8, the characteristic function χA of any h-ideal A of R is a fuzzy h-ideal of R. If it is

idempotent, then χA = χA�h χA = χAA (Proposition 3.2). Thus A = AA. (3) implies (1). �

Definition 4.6. The h-sum λ+h µ of fuzzy subsets λ and µ of R is defined by

(λ+h µ) (x) = sup
x+(a1+b1)+z=(a2+b2)+z

(
λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2)

)
,

where x, a1, b1, a2, b2, z ∈ R.

Theorem 4.7. The h-sum of fuzzy h-ideals of R also is a fuzzy h-ideal of R.

Proof. Let λ, µ be fuzzy h-ideals of R. Then for x, y ∈ Rwe have

(λ+h µ)(x) ∧ (λ+h µ)(y) = sup
x+(a1+b1)+z=(a2+b2)+z

(
λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2)

)
∧ sup
y+(a′1+b

′
1)+z

′=(a′2+b
′
2)+z

′

(
λ(a′1) ∧ λ(a

′

2) ∧ µ(b
′

1) ∧ µ(b
′

2)
)

= sup
x+(a1+b1)+z=(a2+b2)+z
y+(a′1+b

′
1)+z
′=(a′2+b

′
2)+z
′

(
λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2)
∧λ(a′1) ∧ λ(a

′

2) ∧ µ(b
′

1) ∧ µ(b
′

2)

)

≤ sup
x+(a1+b1)+z=(a2+b2)+z
y+(a′1+b

′
1)+z
′=(a′2+b

′
2)+z
′

(
λ(a1 + a′1) ∧ λ(a2 + a

′

2)
∧µ(b1 + b′1) ∧ µ(b2 + b

′

2)

)

≤ sup
(x+y)+(c1+d1)+z′′=(c2+d2)+z′′

(
λ(c1) ∧ λ(c2) ∧ µ(d1) ∧ µ(d2)

)
= (λ+h µ) (x+ y).
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Similarly,

(λ+h µ)(x) = sup
x+(a1+b1)+z=(a2+b2)+z

(
λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2)

)
≤ sup
x+(a1+b1)+z=(a2+b2)+z

(
λ(ra1) ∧ λ(ra2) ∧ µ(rb1) ∧ µ(rb2)

)
≤ sup
rx+(a′′1+b

′′
1)+z

′′=(a′′2+b
′′
2)+z

′′

(
λ(a′′1) ∧ λ(a

′′

2) ∧ µ(b
′′

1) ∧ µ(b
′′

2)
)

= (λ+h µ)(rx).

Analogously (λ+h µ)(x) ≤ (λ+h µ)(xr). This proves that (λ+h µ) is a fuzzy ideal of R.
Now we show that x+ a+ z = b+ z implies (λ+h µ)(x) ≥ (λ+h µ)(a)∧ (λ+h µ)(b). For this let a+ (a1+ b1)+ z1 =

(a2 + b2)+ z1 and b+ (c1 + d1)+ z2 = (c2 + d2)+ z2. Then,

a+ (c2 + d2 + z2)+ (a1 + b1 + z1) = (a2 + b2 + z1)+ (b+ c1 + d1 + z2),

whence

a+ (a1 + c2)+ (b1 + d2)+ (z1 + z2) = b+ (a2 + c1)+ (b2 + d1)+ (z1 + z2) .

Consequently

a+ (a1 + c2)+ (b1 + d2)+ (z1 + z2 + z) = b+ z + (a2 + c1)+ (b2 + d1)+ (z1 + z2)

and

a+ (a1 + c2)+ (b1 + d2)+ (z1 + z2 + z) = x+ a+ z + (a2 + c1)+ (b2 + d1)+ (z1 + z2) .

Thus

x+ (a2 + c1)+ (b2 + d1)+ (z1 + z2 + z + a) = (a1 + c2)+ (b1 + d2)+ (z1 + z2 + z + a) ,

i.e., x+ (a′ + b′)+ z ′ = (a′′ + b′′)+ z ′ for some a′, b′, a′′, b′′ ∈ R.
Therefore

(λ+h µ) (a) ∧ (λ+h µ) (b) = sup
a+(a1+b1)+z1=(a2+b2)+z1

(
λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2)

)
∧ sup
b+(c1+d1)+z2=(c2+d2)+z2

(
λ(c1) ∧ λ(c2) ∧ µ(d1) ∧ µ(d2)

)
= sup

a+(a1+b1)+z1=(a2+b2)+z1
b+(c1+d1)+z2=(c2+d2)+z2

(
λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2)
∧λ(c1) ∧ λ(c2) ∧ µ(d1) ∧ µ(d2)

)

≤ sup
a+(a1+b1)+z1=(a2+b2)+z1
b+(c1+d1)+z2=(c2+d2)+z2

(
λ (a1 + c2) ∧ λ (a2 + c1)
∧µ (b1 + d2) ∧ µ (b2 + d1)

)

≤ sup
x+(a′+b′)+z′=(a′′+b′′)+z′

(
λ(a′) ∧ λ(a′′) ∧ µ(b′) ∧ µ(b′′)

)
= (λ+h µ)(x).

Thus λ+h µ is a fuzzy h-ideal of R. �

Theorem 4.8. If all h-ideals of R are h-idempotent, then the collection of these h-ideals forms a complete Brouwerian lattice.

Proof. The collectionLR of all h-ideals of R is a poset under the inclusion of sets. It is not difficult to see thatLR is a complete
lattice under operations t, u defined as A t B = A+ B and A u B = A ∩ B.
We show that LR is a Brouwerian lattice, that is, for any A, B ∈ LR, the set LR(A, B) = {I ∈ LR | A ∩ I ⊆ B} contains a

greatest element.
By Zorn’s Lemma the setLR(A, B) contains a maximal elementM . Since each h-ideal of R is h-idempotent, AI = A∩ I ⊆ B

and AM = A ∩M ⊆ B (Proposition 4.1). Thus AI + AM ⊆ B. Consequently, AI + AM ⊆ B = B.
Since I +M = I t M ∈ LR, for every x ∈ I +M there exist i1, i2 ∈ I , m1,m2 ∈ M and z ∈ R such that

x+ i1 +m1 + z = i2 +m2 + z. Thus

dx+ di1 + dm1 + dz = di2 + dm2 + dz
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for any d ∈ D ∈ LR. As di1, di2 ∈ DI, dm1, dm2 ∈ DM, dz ∈ R, we have dx ∈ DI + DM , which implies D
(
I +M

)
⊆

DI + DM ⊆ DI + DM ⊆ B. Hence D
(
I +M

)
⊆ B. This means that D ∩

(
I +M

)
= D

(
I +M

)
⊆ B, i.e., I +M ∈ LR(A, B),

whence I +M = M becauseM is maximal inLR(A, B). Therefore I ⊆ I ⊆ I +M = M for every I ∈ LR(A, B). �

Corollary 4.9. If all h-ideals of R are idempotent, then the latticeLR is distributive.

Proof. Each complete Brouwerian lattice is distributive (cf. [30], 11.11). �

Theorem 4.10. Each fuzzy h-ideal of R is h-idempotent if and only if the set of all fuzzy h-ideals of R (ordered by ≤) forms a
distributive lattice under the h-sum and h-intrinsic product of fuzzy h-ideals with λ�h µ = λ ∧ µ.

Proof. Assume that all fuzzy h-ideals of R are idempotent. Then λ�h µ = λ ∧ µ (Proposition 4.3) and, as it is not difficult
to see, the set F LR of all fuzzy h-ideals of R (ordered by ≤) is a lattice under the h-sum and h-intrinsic product of fuzzy
h-ideals.
We show that (λ�h δ)+h µ = (λ+h µ)�h(δ+h µ) for all λ,µ, δ ∈ F LR. Indeed, for any x ∈ Rwe have

((λ�h δ)+h µ) (x) =

(
(λ�h δ)+h µ

)
(x)

= sup
x+(a1+b1)+z=(a2+b2)+z

(
(λ ∧ δ)(a1) ∧ (λ ∧ δ)(a2) ∧ µ(b1) ∧ µ(b2)

)
= sup
x+(a1+b1)+z=(a2+b2)+z

(
λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2) ∧ δ(a1) ∧ δ(a2)

)
= sup
x+(a1+b1)+z=(a2+b2)+z

(
λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2)

)
∧ sup
x+(a1+b1)+z=(a2+b2)+z

(
δ(a1) ∧ δ(a2) ∧ µ(b1) ∧ µ(b2)

)
= (λ+h µ)(x) ∧ (δ+h µ)(x) =

(
(λ+h µ) ∧ (δ+h µ)

)
(x)

=

(
(λ+h µ)�h(δ+h µ)

)
(x).

So, F LR is a distributive lattice.
The converse statement is a consequence of Proposition 4.3. �

5. Prime ideals

An h-ideal P of R is called prime if P 6= R and for any h-ideals A, B of R from AB ⊆ P it follows A ⊆ P or B ⊆ P , and
irreducible if P 6= R and A ∩ B = P implies A = P or B = P . By analogy a non-constant fuzzy h-ideal δ of R is called prime (in
the first sense) if for any fuzzy h-ideals λ, µ of R from λ�h µ ≤ δ it follows λ ≤ δ or µ ≤ δ, and irreducible if λ ∧ µ = δ
implies λ = δ or µ = δ.

Theorem 5.1. A left (right) h-ideal P of R is prime if and only if for all a, b ∈ R from aRb ⊆ P it follows a ∈ P or b ∈ P.
Proof. Assume that P is a prime left h-ideal of R and aRb ⊆ P for some a, b ∈ R. Obviously, A = Ra and B = Rb are left
h-ideals of R. So, AB ⊆ AB = RaRb = RaRb ⊆ RP ⊆ P , and consequently A ⊆ P or B ⊆ P . Let 〈x〉 be a left h-ideal generated
by x ∈ R. If A ⊆ P , then 〈a〉 ⊆ Ra = A ⊆ P , whence a ∈ P . If B ⊆ P , then 〈b〉 ⊆ Rb = B ⊆ P , whence b ∈ P .
The converse is obvious. �

Corollary 5.2. An h-ideal P of R is prime if and only if for all a, b ∈ R from aRb ⊆ P it follows a ∈ P or b ∈ P.

Corollary 5.3. An h-ideal P of a commutative hemiring R with identity is prime if and only if for all a, b ∈ R from ab ∈ P it
follows a ∈ P or b ∈ P.

The result expressed by Corollary 5.2 suggests the following definition of prime fuzzy h-ideals.

Definition 5.4. A non-constant fuzzy h-ideal δ of R is called prime (in the second sense) if for all t ∈ [0, 1] and a, b ∈ R the
following condition is satisfied:

if δ(axb) ≥ t for every x ∈ R then δ(a) ≥ t or δ(b) ≥ t.

In other words, a non-constant fuzzy h-ideal δ is prime if from the fact that axb ∈ U(δ; t) for every x ∈ R it follows
a ∈ U(δ; t) or b ∈ U(δ; t). It is clear that any fuzzy h-ideal prime in the first sense is prime in the second sense. The
converse is not true.
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Example 5.5. In an ordinary hemiring of natural numbers the set of even numbers forms an h-ideal. A fuzzy set

δ(n) =

{1 if n = 0,
0.8 if n = 2k 6= 0,
0.4 if n = 2k+ 1

is a fuzzy h-ideal of this hemiring. It is prime in the second sense but it is not prime in the first sense.

Theorem 5.6. A non-constant fuzzy h-ideal δ of R is prime in the second sense if and only if each its proper level set U(δ; t) is a
prime h-ideal of R.

Proof. Let a fuzzy h-ideal δ of R be prime in the second sense and let U(δ; t) be its arbitrary proper level set, i.e., ∅ 6=
U(δ; t) 6= R. If aRb ⊆ U(δ; t), then δ(axb) ≥ t for every x ∈ R. Hence δ(a) ≥ t or δ(b) ≥ t , i.e., a ∈ U(δ; t) or b ∈ U(δ; t),
which, by Corollary 5.2, means that U(δ; t) is a prime h-ideal of R.
To prove the converse consider a non-constant fuzzy h-ideal δ of R. If it is not prime then there exists a, b ∈ R such that

δ(axb) ≥ t for all x ∈ R, but δ(a) < t and δ(b) < t . Thus, aRb ⊆ U(δ; t), but a 6∈ U(δ; t) and b 6∈ U(δ; t). Therefore U(δ; t)
is not prime. Obtained contradiction proves that δ should be prime. �

Corollary 5.7. A fuzzy set λA defined in Proposition 2.8 is a prime fuzzy h-ideal of R if and only if A is a prime h-ideal of R.

In view of the Transfer Principle (Lemma 2.7) the second definition of prime fuzzy h-ideals is better. Therefore fuzzy
h-ideals which are prime in the first sense will be called h-prime.

Proposition 5.8. A non-constant fuzzy h-ideal δ of a commutative hemiring R with identity is prime if and only if δ(ab) =
δ(a) ∨ δ(b) for all a, b ∈ R.

Proof. Let δ be a non-constant fuzzy h-ideal of a commutative hemiring Rwith identity. If δ(ab) = t , then, for every x ∈ R,
we have δ(axb) = δ(xab) ≥ δ(x) ∨ δ(ab) ≥ t . Thus δ(axb) ≥ t for every x ∈ R, which implies δ(a) ≥ t or δ(b) ≥ t . If
δ(a) ≥ t , then t = δ(ab) ≥ δ(a) ≥ t , whence δ(ab) = δ(a). If δ(b) ≥ t , then, as in the previous case, δ(ab) = δ(b). So,
δ(ab) = δ(a) ∨ δ(b).
Conversely, assume that δ(ab) = δ(a)∨δ(b) for all a, b ∈ R. If δ(axb) ≥ t for every x ∈ R, then, replacing in this inequality

x by the identity of R, we obtain δ(ab) ≥ t . Thus δ(a)∨ δ(b) ≥ t , i.e., δ(a) ≥ t or δ(b) ≥ t , which means that a fuzzy h-ideal
δ is prime. �

Theorem 5.9. Every proper h-ideal is contained in some proper irreducible h-ideal.

Proof. Let P be a proper h-ideal of R and let {Pα | α ∈ Λ} be a family of all proper h-ideals of R containing P . By Zorn’s
Lemma, for any fixed a 6∈ P , the family of h-ideals Pα such that P ⊆ Pα and a 6∈ Pα contains a maximal element M . This
maximal element is an irreducible h-ideal. Indeed, letM = Pβ ∩ Pδ for some h-ideals of R. IfM is a proper subset of Pβ and
Pδ , then, according to the maximality ofM , we have a ∈ Pβ and a ∈ Pδ . Hence a ∈ Pβ ∩ Pδ = M , which is impossible. Thus,
eitherM = Pβ orM = Pδ . �

Theorem 5.10. If all h-ideals of R are h-idempotent, then an h-ideal P of R is irreducible if and only if it is prime.

Proof. Assume that all h-ideals of R are h-idempotent. Let P be a fixed irreducible h-ideal. If AB ⊆ P for some h-ideals
A, B, then A ∩ B = AB ⊆ P = P , by Proposition 4.1. Thus (A ∩ B)+ P = P . Since LR is a distributive lattice,
P = (A ∩ B)+ P = (A+ P) ∩ (B+ P). So either A+ P = P or B+ P = P , that is, either A ⊆ P or B ⊆ P.
Conversely, if an h-ideal P is prime and A ∩ B = P for some A, B ∈ LR, then AB ⊆ AB = A ∩ B = P . Thus A ⊆ P or B ⊆ P .

But P ⊆ A and P ⊆ B. Hence A = P or B = P. �

Corollary 5.11. In hemirings in which all h-ideals are h-idempotent each proper h-ideal is contained in some proper prime h-
ideal.

Theorem 5.12. In hemirings in which all fuzzy h-ideals are idempotent a fuzzy h-ideal is irreducible if and only if it is h-prime.

Proof. Let all fuzzy h-ideals of R will be idempotent and let δ be an arbitrary irreducible fuzzy h-ideal of R. We prove that
it is prime. If λ�h µ ≤ δ for some fuzzy h-ideals, then also λ ∧ µ ≤ δ. Since the set F LR of all fuzzy h-ideals of R is a
distributive lattice (Theorem 4.10) we have δ = (λ∧µ)+h δ = (λ+h δ)∧ (µ+h δ). Thus λ+h δ = δ or µ+h δ = δ. But≤
is a lattice order, so λ ≤ δ or µ ≤ δ. This proves that a fuzzy h-ideal δ is h-prime.
Conversely, if δ is an h-prime fuzzy h-ideal of R and λ ∧ µ = δ for some λ,µ ∈ F LR, then λ�h µ = δ, which implies

λ ≤ δ or µ ≤ δ. Since ≤ is a lattice order and δ = λ ∧ µ we have also δ ≤ λ and δ ≤ µ. Thus λ = δ or µ = δ. So, δ is
irreducible. �

Theorem 5.13. The following assertions for a hemiring R are equivalent:
(1) Each h-ideal of R is h-idempotent.
(2) Each proper h-ideal P of R is the intersection of all prime h-ideals containing P.
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Proof. Let P be a proper h-ideal of R and let {Pα | α ∈ Λ} be the family of all prime h-ideals of R containing P . Clearly
P ⊆ ∩α∈Λ Pα . By Zorn’s Lemma, for any fixed a 6∈ P , the family of h-ideals Pα such that P ⊆ Pα and a 6∈ Pα contains a
maximal element Ma. We will show that this maximal element is an irreducible h-ideal. Let Ma = K ∩ L. If Ma is a proper
subset of K and L, then, according to the maximality of Ma, we have a ∈ K and a ∈ L. Hence a ∈ K ∩ L = Ma, which is
impossible. Thus, eitherMa = K orMa = L. By Theorem 5.10,Ma is a prime h-ideal. So there exists a prime h-idealMa such
that a 6∈ Ma and P ⊆ Ma. Hence ∩Pα ⊆ P . Thus P = ∩Pα .
Assume that each h-ideal of R is the intersection of all prime h-ideals of R which contain it. Let A be an h-ideal of R. If

A2 = R, then, by Lemma 2.3, we have A = R, whichmeans such h-ideal is h-idempotent. If A2 6= R, then A2 is a proper h-ideal
of R and so it is the intersection of all prime h-ideals of R containing A. Let A2 = ∩Pα . Then A2 ⊆ Pα for each α. Since Pα is
prime, we have A ⊆ Pα . Thus A ⊆ ∩Pα = A2. But A2 ⊆ A for every h-ideal. Hence A = A2. �

Lemma 5.14. Let R be a hemiring in which each fuzzy h-ideal is idempotent. If λ is a fuzzy h-ideal of R with λ(a) = α, where a is
any element of R and α ∈ [0, 1], then there exists an irreducible and h-prime fuzzy h-ideal δ of R such that λ ≤ δ and δ(a) = α.

Proof. Let λ be an arbitrary fuzzy h-ideal of R and let a ∈ R be fixed. Consider the following collection of fuzzy h-ideals of R

B = {µ | µ(a) = λ(a), λ ≤ µ}.

B is non-empty since λ ∈ B. LetF be a totally ordered subset ofB containing λ, sayF = {λi | i ∈ I}. Obviously λi∨λj ∈ F

for any λi, λj ∈ F . So, for example,
(
λi(x)∨ λj(x)

)
∧
(
λi(y)∨ λj(y)

)
≤ λi(x+ y)∨ λj(x+ y) for any λi, λj ∈ F and x, y ∈ R.

We claim that
∨
i∈I λi is a fuzzy h-ideal of R.

For any x, y ∈ R, we have(∨
i∈I

λi

)
(x) ∧

(∨
i∈I

λi

)
(y) =

(∨
i∈I

λi(x)
)
∧

(∨
j∈I

λj(y)
)

=

∨
i,j∈I

(
λi(x) ∧ λj(y)

)
≤

∨
i,j∈I

((
λi(x) ∨ λj(x)

)
∧
(
λi(y) ∨ λj(y)

))
≤

∨
i,j∈I

(
λi(x+ y) ∨ λj(x+ y)

)
≤

∨
i∈I

λi(x+ y) =
(∨
i∈I

λi

)
(x+ y).

Similarly(∨
i∈I

λi

)
(x) =

∨
i∈I

λi(x) ≤
∨
i∈I

λi(xr) =
(∨
i∈I

λi
)
(xr)

and (∨
i∈I

λi

)
(x) ≤

(∨
i∈I

λi

)
(rx)

for all x, r ∈ R. Thus
∨
i∈I is a fuzzy ideal.

Now, let x+ a+ z = b+ z, where a, b, z ∈ R. Then(∨
i∈I

λi

)
(a) ∧

(∨
i∈I

λi

)
(b) =

(∨
i∈I

λi(a)
)
∧

(∨
j∈I

(λj(b)
))

=

∨
i,j∈I

(
λi(a) ∧ λj(b)

)
≤

∨
i,j∈I

((
λi(a) ∨ λj(a)

)
∧
(
λi(b) ∨ λj(b)

))
≤

∨
i,j

(
λi(x) ∨ λj(x)

)
≤

∨
i∈i

λi(x) =
(∨
i∈I

λi

)
(x).

This means that
∨
i∈I λi is a fuzzy h-ideal of R. Clearly λ ≤

∨
i∈I λi and (

∨
i∈I λi)(a) = λ(a) = α. Thus

∨
i∈I λi is the least

upper bound of F . Hence by Zorn’s lemma there exists a fuzzy h-ideal δ of Rwhich is maximal with respect to the property
that λ ≤ δ and δ(a) = α.
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We will show that δ is an irreducible fuzzy h-ideal of R. Let δ = δ1 ∧ δ2, where δ1, δ2 are fuzzy h-ideals of R. Then
δ ≤ δ1 and δ ≤ δ2 since F LR is a lattice. We claim that either δ = δ1 or δ = δ2. Suppose δ 6= δ1 and δ 6= δ2. Since δ
is maximal with respect to the property that δ(a) = α and since δ � δ1 and δ � δ2, so δ1(a) 6= α and δ2(a) 6= α. Hence
α = δ(a) = (δ1 ∧ δ2)(a) = δ1(a) ∧ δ2(a) 6= α, which is impossible. Hence δ = δ1 or δ = δ2. Thus δ is an irreducible fuzzy
h-ideal of R. By Theorem 5.12, it is also prime. �

Theorem 5.15. Each fuzzy h-ideal of R is idempotent if and only if each fuzzy h-ideal of R is the intersection of those h-prime
fuzzy h-ideals of R which contain it.

Proof. Suppose each fuzzy h-ideal of R is idempotent. Let λ be a fuzzy h-ideal of R and let {λα | α ∈ Λ} be the family of all
h-prime fuzzy h-ideals of Rwhich contain λ. Obviously λ ≤

∧
α∈Λ λα . We now show that

∧
α∈Λ λα ≤ λ. Let a be an arbitrary

element of R. Then, according to Lemma 5.14, there exists an irreducible and h-prime fuzzy h-ideal δ such that λ ≤ δ and
λ(a) = δ(a). Hence δ ∈ {λα | α ∈ Λ} and

∧
α∈Λ λα ≤ δ. So,

∧
α∈Λ λα(a) ≤ δ(a) = λ(a). Thus

∧
α∈Λ λα ≤ λ. Therefore∧

α∈Λ λα = λ.
Conversely, assume that each fuzzy h-ideal of R is the intersection of those h-prime fuzzy h-ideals of Rwhich contain it.

Let λ be a fuzzy h-ideal of R then λ� λ is also fuzzy h-ideal of R, so λ� λ =
∧
α∈Λ λα where λα are h-prime fuzzy h-ideals

of R. Thus each λα contains λ� λ, and hence λ. So λ ⊆
∧
α∈Λ λα = λ� λ, but λ� λ ⊆ λ always. Hence λ = λ� λ. �

6. Semiprime ideals

Definition 6.1. An h-ideal A of R is called semiprime if A 6= R and for any h-ideal B of R, B2 ⊆ A implies B ⊆ A. Similarly, a
non-constant fuzzy h-ideal λ of R is called semiprime if for any fuzzy h-ideal δ of R, δ�h δ ≤ λ implies δ ≤ λ.

Obviously, each semiprime h-ideal is prime. Each semiprime fuzzy h-ideal is h-prime. The converse is not true (see
Example 6.7).
Using the same method as in the proof of Theorem 5.1 we can prove

Theorem 6.2. A (left, right) h-ideal P of R is semiprime if and only if for every a ∈ R from aRa ⊆ P it follows a ∈ P.

Corollary 6.3. An h-ideal P of a commutative hemiring R with identity is semiprime if and only if for all a ∈ R from a2 ∈ P it
follows a ∈ P.

Theorem 6.4. The following assertions for a hemiring R are equivalent:

(1) Each h-ideal of R is h-idempotent.
(2) Each h-ideal of R is semiprime.

Proof. Suppose that each h-ideal of R is idempotent. Let A, B be h-ideals of R such that B2 ⊆ A. Thus B2 ⊆ A = A. By
hypothesis B = B2, so B ⊆ A. Hence A is semiprime.
Conversely, assume that each h-ideal of R is semiprime. Let A be an h-ideal of R. Then A2 is also an h-ideal of R. Also

A2 ⊆ A2. Hence by hypothesis A ⊆ A2. But A2 ⊆ A always. Hence A = A2. �

Theorem 6.5. Each fuzzy h-ideal of R is idempotent if and only if each fuzzy h-ideal of R is semiprime.

Proof. For any h-ideal of R we have λ�h λ ≤ λ (Theorem 3.3). If each h-ideal of R is semiprime, then λ�h λ ≤ λ�h λ
implies λ ≤ λ�h λ. Hence λ�h λ = λ.
The converse is obvious. �

Below we present two examples of hemirings in which all fuzzy h-ideals are semiprime.

Example 6.6. Consider the set R = {0, a, 1}with the following two operations:

+ 0 a 1
0 0 a 1
a a a a
1 1 a 1

· 0 a 1
0 0 0 0
a 0 a a
1 0 a 1

Then (R,+, ·) is a commutative hemiring with identity. It has only one proper ideal {0, a}. This ideal is not an h-ideal.
The only h-ideal of R is {0, a, 1}, which is clearly h-idempotent.
Since 0 = 0a = a0 = 01 = 10, for any fuzzy ideal λ of this hemiring we have λ(0) ≥ λ(a) and λ(0) ≥ λ(1)

and λ(a) = λ(1a) ≥ λ(1). Thus λ(0) ≥ λ(a) ≥ λ(1). If λ is a fuzzy h-ideal, then 1 + 0 + 1 = 0 + 1 implies
λ(1) ≥ λ(0)∧ λ(0) = λ(0), which proves that each fuzzy h-ideal of this hemiring is a constant function. So, λ�h λ = λ for
each fuzzy h-ideal λ of R. This, by Theorem 6.5, means that each fuzzy h-ideal of R is semiprime.
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Example 6.7. Now, consider the hemiring R = {0, a, b, c} defined by the following tables:

+ 0 a b c
0 0 a b c
a a b c a
b b c a b
c c a b c

· 0 a b c
0 0 0 0 0
a 0 a b c
b 0 b b c
c 0 c b c

This hemiring has only one h-ideal A = R. Obviously this h-ideal is h-idempotent.
For any fuzzy ideal λ of R and any x ∈ Rwe have λ(0) ≥ λ(x) ≥ λ(a). Indeed, λ(0) = λ(0x) ≥ λ(x) = λ(xa) ≥ λ(a). This

together with λ(a) = λ(b+ b) ≥ λ(b)∧λ(b) = λ(b) implies λ(a) = λ(b). Consequently, λ(c) = λ(a+ b) ≥ λ(a)∧λ(b) =
λ(b). Therefore λ(0) ≥ λ(c) ≥ λ(b) = λ(a). Moreover, if λ is a fuzzy h-ideal, then c + 0 + a = 0 + a, which implies
λ(c) ≥ λ(0) ∧ λ(0) = λ(0). Thus λ(0) = λ(c) ≥ λ(b) = λ(a) for every fuzzy h-ideal of this hemiring.
Now we prove that each fuzzy h-ideal of R is idempotent. Since λ�h λ ≤ λ always, so we have to show that λ�h λ ≥ λ.

Obviously, for every x ∈ Rwe have

(λ�h λ)(x) = sup
x+

m∑
i=1
aibi+z=

n∑
j=1
a′jb
′
j+z

( m∧
i=1

(
λ(ai) ∧ λ(bi)

)
∧

n∧
j=1

(
λ(a′j) ∧ λ(b

′

j)
))

≥ sup
x+cd+z=c′d′+z

(
λ(c) ∧ λ(d) ∧ λ(c ′) ∧ λ(d′)

)
= λ(c) ∧ λ(d) ∧ λ(c ′) ∧ λ(d′).

So, x + cd + z = c ′d′ + z implies (λ�h λ)(x) ≥ λ(c) ∧ λ(d) ∧ λ(c ′) ∧ λ(d′). Hence 0 + 00 + z = 00 + z implies
(λ�h λ)(0) ≥ λ(0). Similarly a+bb+z = bc+z implies (λ�h λ)(a) ≥ λ(b)∧λ(c) = λ(b) = λ(a), b+aa+z = bc+z implies
(λ�h λ)(b) ≥ λ(a)∧λ(b)∧λ(c) = λ(b). Analogously, from c+00+z = cc+z it follows (λ ◦h λ)(c) ≥ λ(0)∧λ(c) = λ(c).
This proves that (λ�h λ)(x) ≥ λ(x) for every x ∈ R. Thereforeλ�h λ = λ for every fuzzy h-ideal of R, which, by Theorem6.5,
means that each fuzzy h-ideal of R is semiprime.
Consider the following three fuzzy sets:

λ(0) = λ(c) = 0.8, λ(a) = λ(b) = 0.4,
µ(0) = µ(c) = 0.6, µ(a) = µ(b) = 0.5,
δ(0) = δ(c) = 0.7, δ(a) = δ(b) = 0.45.

These three fuzzy sets are idempotent fuzzy h-ideals. Since all fuzzy h-ideal of this hemiring are idempotent, by
Proposition 4.3, we have λ�h µ = λ ∧ µ. Thus (λ�h µ)(0) = (λ�h µ)(c) = 0.6 and (λ�h µ)(a) = (λ�h µ)(b) = 0.4.
So, λ�h µ ≤ δ but neither λ ≤ δ nor µ ≤ δ, that is δ is not an h-prime fuzzy h-ideal.

Theorem 6.2 suggests the following definition of semiprime fuzzy h-ideals.

Definition 6.8. A non-constant fuzzy h-ideal δ of R is called semiprime (in the second sense) if for all t ∈ [0, 1] and a, b ∈ R
the following condition is satisfied:

if δ(axb) ≥ t for every x ∈ R then δ(a) ≥ t or δ(b) ≥ t.

In other words, a non-constant fuzzy h-ideal δ is semiprime if from the fact that axb ∈ U(δ; t) for every x ∈ R it follows
a ∈ U(δ; t) or b ∈ U(δ; t). It is clear that any fuzzy h-ideal semiprime in the first sense is semiprime in the second sense.
The converse is not true (see Example 5.5).

Theorem 6.9. A non-constant fuzzy h-ideal δ of R is semiprime in the second sense if and only if each its proper level set U(δ; t)
is a semiprime h-ideal of R.
Proof. The proof is analogous to the proof of Theorem 5.6. �

Corollary 6.10. A fuzzy set λA defined in Proposition 2.8 is a semiprime fuzzy h-ideal of R if and only if A is a semiprime h-ideal
of R.

In view of the Transfer Principle (Lemma 2.7) the second definition of semiprime fuzzy h-ideals is better. Therefore fuzzy
h-ideals which are prime in the first sense should be called h-semiprime.

Proposition 6.11. A non-constant fuzzy h-ideal δ of a commutative hemiring R with identity is semiprime if and only if δ(a2) =
δ(a) for every a ∈ R.
Proof. The proof is similar to the proof of Proposition 5.8. �

7. Conclusion

In the study of fuzzy algebraic system, the fuzzy idealswith special properties always play an important role. In this paper
we study those hemirings for which each fuzzy h-ideal is idempotent. We characterize these hemirings in terms of prime
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and semiprime fuzzy h-ideals. In the future we wanted to study those hemirings for which each fuzzy one sided h-ideal
is idempotent and also those hemirings for which each fuzzy h-bi-ideal is idempotent. We also want to establish a fuzzy
spectrum of hemirings.
We hope that the research along this direction can be continued, and our results presented in this paper have already

constituted a platform for further discussion concerning the future development of hemirings and their applications to study
fundamental concepts of the automata theory such as nondeterminism, for example.
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