for people with moderate to severe conditions. The aim of this research was to estimate the clinical and economic impact of schizophrenia to the most frequently prescribed drugs for the three most prevalent mental illnesses: depression, anxiety-related, and substance use disorders. METHODS: The National Survey of Mental Health and Wellbeing (NSMHWB) has been conducted every 10 years since 1997. The NSMHWB 2007 included the analysis. The NSMHWB 2007 reported the duration and the name of up to five drugs used during the past 12-month period. In order to adjust for inflation, 2013–14 reference year was adopted for the unit cost of each drug obtained from Pharmaceutical Benefit Scheme (PBS). RESULTS: Around 21% of respondents used medications for a total cost to the society of AUD 101 million (SE 11.9). Citalopram was the most frequently prescribed drug (7.11%), followed by venlafaxine (15.65%), sertraline (14.43%), and temazepam (10.51%). Respectively, AOM was found to be second in terms of D-ANX-SIB and the highest percentage in use of medications (63.85%), followed by D-ANX (44.26%), and D and (34.74%) ANX accounted for 50% of total medication costs followed by D-ANX at 23.6%. CONCLUSIONS: The high prevalence of ANX contributed to the large proportion of medication costs for this condition.

PHM22

COST EFFECTIVENESS ANALYSIS OF ARIPIPIRAZOLE ONCE-MONTHLY VERSUS PALIPERIDONE PALMITE IN SPAIN

Sapin C1, Gimenó de la Fuente V2, Blancher P3, Bellett M4, 1Lundbeck SAS, Issy les Moulineaux, France, 2Lundbeck España SA, Barcelona, Spain, 3Otsuka Pharmaceutical Europe Ltd, Tokyo, Japan, 4Takeda Pharmaceutical Company Ltd, Tokyo, Japan

OBJECTIVES: To evaluate the cost-effectiveness of aripiprazole once-monthly (AOM) versus paliperidone palmitate (PP) in the maintenance treatment of schizophrenia without ITAREPS in the Czech Republic. RESULTS: The cost-effectiveness analysis was performed. The objective of the incremental analysis was to evaluate the cost-effectiveness of AOM versus paliperidone palmitate (PP) in the maintenance treatment of schizophrenia in Spain. METHODS: This pharmacoeconomic analysis was conducted along the following steps: open-label, rater-blinded study comparing AOM 400 mg and PP (50-150 mg) in stabilized adults with schizophrenia. Effectiveness outcomes of the cost-effectiveness analyses (CEA) included the changes in Heinrichs-Carpenter Quality of Life Scale (QLS-primary CEA) and Clinical Global Impression – Severity (CGI-S). The patients were randomized to week 28. Health Care Outcomes, including symptom scores, activities of daily living, utilities, and costs were assessed. CONCLUSIONS: Aripiprazole once-monthly was more effective on the QLS scale and less costly. This result was confirmed from 10,000 simulations, as well as cost-effectiveness acceptability curves. Over the total 28-week period, AOM was associated with significantly reduced total healthcare costs ($1,935 vs. $2,475, respectively, p<0.001). This cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). The other cost aggregates (healthcare provider costs, out- and in-patient services) were not statistically different between drugs (p=0.528, p=0.102 and p=0.194, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly). This result was confirmed when using CGI-S as effectiveness measure. The cost-effectiveness acceptability curves indicated that AOM was associated with a 99% chance of being cost-effective compared to PP (mean per-patient cost: $1,935 vs. $2,475, respectively, p<0.001). The cost reduction was primarily due to significant reduction in drug acquisition costs ($1,243 vs. $1,381, respectively). In the primary CEA, AOM dominated PP (being more effective on the QLS scale and less costly).