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Abstract

We study the combinatorial, algebraic and geometric properties of the free product operation on
matroids. After giving cryptomorphic definitions of free product in terms of independent sets, bases,
circuits, closure, flats and rank function, we show that free product, which is a noncommutative
operation, is associative and respects matroid duality. The free product of matroidsM andN is maximal
with respect to the weak order among matroids havingM as a submatroid, with complementary
contraction equal toN . Any minor of the free product ofM andN is a free product of a repeated
truncation of the corresponding minor ofM with a repeated Higgs lift of the corresponding minor
of N . We characterize, in terms of their cyclic flats, matroids that are irreducible with respect to free
product, and prove that the factorization of a matroid into a free product of irreducibles is unique up
to isomorphism. We use these results to determine, forK a field of characteristic zero, the structure
of the minor coalgebraK{M} of a family of matroidsM that is closed under formation of minors
and free products: namely,K{M} is cofree, cogenerated by the set of irreducible matroids belonging
to M.
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1. Introduction

We introduced the free product of matroids in a short article[4], in which we used it to
settle the conjecture by Welsh [9] thatfn+m�fn · fm, wherefn is the number of distinct
isomorphism classes of matroids on ann-element set. Free product is, in a categorical sense,
dual to the direct sum operation, and has properties that are in striking contrast to those of
other, better known, binary operations on matroids; most significantly, it is noncommutative.
In the present article we initiate a systematic study of the combinatorial, algebraic and
geometric properties of this new operation. Our main results include a characterization,
in terms of cyclic flats, of matroids that are irreducible with respect to free product, and
a unique factorization theorem: every matroid factors uniquely, up to isomorphism, as a
free product of irreducible matroids. Hence the set of all isomorphism classes of matroids,
equipped with the binary operation induced by free product, is a free monoid, generated by
the isomorphism classes of irreducible matroids.

Although we first defined the free product as such in [4], we first became aware of it earlier,
while investigating, in [5], theminor coalgebraof a minor-closed family of matroids. This
coalgebra has as basis the set of all isomorphism classes of matroids in the given family,
with coproduct of a matroidM = M(S) given by

∑
A⊆S

M|A ⊗ M/A, whereM|A is
the submatroid obtained by restriction toA andM/A is the complementary contraction.
If the family is also closed under formation of direct sums then its minor coalgebra is a
Hopf algebra, with product determined on the basis of matroids by direct sum. These Hopf
algebras, and analogous Hopf algebras based on families of graphs, were introduced in
[8], as examples of the more general construction of incidence Hopf algebra. In the dual
of the minor coalgebra, theminor algebra, the product of matroidsM andN (dual basis
elements) is a linear combination of those matroids having some restriction isomorphic to
M, with complementary contraction isomorphic toN ; the coefficient ofL = L(U) being
the number of subsetsA ⊆ U such thatL|A�M andL/A�N . In the weak map order, the
set of matroids appearing with nonzero coefficient in this product has a minimum element,
given by the direct sumM ⊕ N , and also has a maximum element, which we denote by
M �N ; this is the free product ofM andN .

After discussing a few preliminaries in the following short section, we begin Section 3 by
recalling from [4] the definition, in terms of independent sets, of the free product. As a next
step, dictated by the culture of matroid theory, we give cryptomorphic definitions of the free
product in terms of bases, circuits, closure, flats and rank function. These various character-
izations allow us to demonstrate, in Sections 4 and 5, a number of fundamental properties
of free product. In particular: free product satisfies the extremal property mentioned above,
that is,M �N is maximal in the weak order among matroids having a submatroid equal to
M, with complementary contraction equal toN ; free product is associative, and commutes
with matroid duality; and any minor of a free productM �N is itself a free product, namely,
the free product of a repeated truncation of a minor ofM with a repeated Higgs lift of a
minor ofN .

We begin Section 6 by giving a characterization of the cyclic flats of a free product,
and making the key definition offree separatorof a matroidM(S) as a subset ofS that
is comparable by inclusion to all cyclic flats ofM. We then prove the theorem thatM
factors as a free productP(U)�Q(V ) if and only if the setU is a free separator ofM. As
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a consequence, we find that a nonuniform matroidM(S) is irreducible if and only if the
complete sublatticeD(M) of the Boolean algebra 2S generated by the cyclic flats ofM has
nopinchpoint, that is, single-element crosscut, other than∅ andS. (Uniform matroids factor
completely, into single-element matroids.) In order to examine free product factorization
of matroids in detail, we turn our attention to the setF(M) of all free separators of a
matroidM(S), which, partially ordered by inclusion, is also a sublattice of 2S . By the
theorem mentioned above, there is a one-to-one correspondence between chains from∅ to
S in F(M) and factorizationsM = M1 � · · · �Mk, according to whichMi is the minor
of M determined by theith interval in the corresponding chain. Factorizations ofM into
irreducibles thus correspond to maximal chains inF(M).

We define theprimary flagTM of a matroidM as the chainT0 ⊂ · · · ⊂ Tk of pinchpoints
in the latticeD(M). We show thatTM is also the chain of pinchpoints inF(M) and,
furthermore, that the intersection of the latticesF(M) andD(M) is preciselyTM . These
results, together with a proposition characterizing the intervals[Ti−1, Ti] in F(M), allow us
to prove that the free product factorizationM = M1 � · · · �Mk corresponding to the chain
TM is the unique factorization ofM having the property that eachMi is either irreducible, or
maximally uniform (in the sense that no free product of consecutiveMi ’s is uniform). From
this fundamental result, our main theorem quickly follows: every matroid factors uniquely
up to isomorphism as a free product of irreducible matroids.

In Section7, we use the unique factorization theorem, together with the extremal prop-
erty of free product with respect to the weak order, to show that for any classM of ma-
troids closed under the formation of minors and free products, the minor coalgebra of
M is cofree, cogenerated by the isomorphism classes of irreducible matroids inM. Any
minor-closed class of matroids defined by the exclusion of a set of irreducible minors will
therefore generate a minor coalgebra that is cofree. This is not the case for certain well-
studied classes such as binary or unimodular matroids, because the four point line factors
(as the free product of four one-element matroids). But for an infinite fieldF the class
of F -representable matroids is closed under free product and hence its minor coalgebra
is cofree.

In conclusion, we sketch in Section 8 a development whereby the minor coalgebra of a
free product and minor-closed family of matroids forms a (self-dual) Hopf algebra in an
appropriate braided monoidal category.

2. Preliminaries

We denote the disjoint union of setsS andT byS+T , the set difference byS\T , and the
intersectionS ∩ T by eitherST or TS . If T is a singleton set{a}, we writeS + a andS\a,
respectively, forS + T andS\T . We writeM = M(S) to indicate thatM is a matroid with
ground setS; in the case thatS = {a} is a singleton set we writeM(a) instead ofM(S).
We denote the rank and nullity functions ofM by �M and�M , respectively, and denote by
�M therank-lackfunction onM, given by�M(A) = �(M) − �M(A), for all A ⊆ S, where
�(M) = �M(S) is the rank ofM.

Given a matroidM(S) andA ⊆ S, we writeM|A for the restriction ofM to A, that is,
the matroid onA obtained by deletingS\A from M, and we writeM/A for the matroid



H. Crapo, W. Schmitt / Journal of Combinatorial Theory, Series A 112 (2005) 222–249 225

on S\A obtained by contractingA from M. For all A ⊆ B ⊆ S, we denote the minor
(M|B)/A = (M/A)|(B\A) byM(A,B).

For any setS, the free matroidI (S) and thezero matroidZ(S) are, respectively, the
unique matroids onS having nullity zero and rank zero. In other words, if|S| = n, then
I (S) is the uniform matroidUn,n(S) andZ(S) is the uniform matroidU0,n(S). We refer
the reader to Oxley[7] and Welsh [10] for any background on matroid theory that might be
needed.

3. The free product: cryptomorphic definitions

Definition 3.1 (Crapo and Schmitt[4] ). The free productof matroidsM(S) andN(T ) is
the matroidM �N defined on the setS + T whose collection of independent sets is given
by

{A ⊆ S + T : AS is independent inM and�M(AS)��N(AT )}.

The first two propositions of[4] show thatM �N is indeed a matroid, which contains
M andN as complementary minors; specifically, if the ground set ofM is S, then

(M �N)|S = M and (M �N)/S = N. (3.2)

Proposition 3.3. The collection of bases ofM(S)�N(T ) is given by

{A ⊆ S + T : AS is independent in M, AT spansN and�M(AS) = �N(AT )}.

Proof. The result follows directly from the definition of the free product.�

Note that it follows immediately from the characterization of the bases ofM �N that
�(M �N) = �(M) + �(N), for all M andN .

Example 3.4. Let S = {e, f, g} andT = {a, b, c, d}, and suppose thatM(S) is a three-
point line, andN(T ) consists of two double pointsabandcd. The free productsI (e)�N(T )

andM(S)�N(T ) are shown below:

a

b

e d                                         c                                           
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f
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b c
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According to Proposition3.3, the matroidI �N has as bases all three-element subsets of
{a, b, c, d}, together with all sets of the form{e, x, y}, wherex ∈ {a, b} andy ∈ {c, d};
while the bases ofM �N are the sets of the formA ∪ B, with A ⊆ S, B ⊆ T , and either

(i) A = ∅ andB = T ,
(ii) |A| = 1 and|B| = 3, or
(ii) |A| = 2 and|B| = 2, withB not equal to{a, b} or {c, d}.

Proposition 3.5. The rank function ofL = M(S)�N(T ) is given by

�L(A) = �M(AS) + �N(AT ) + min{�M(AS), �N(AT )},

for all A ⊆ S + T .

Proof. Suppose thatA ⊆ S + T and that�M(AS)��N(AT ). Then for any basisB of
M|AS , the setB ∪ AT is a basis forL|A, and thus�L(A) = |B ∪ AT | = |B| + |AT | =
�M(AS) + �N(AT ) + �N(AT ).

If �M(AS)��N(AT ), chooseC ⊆ AT such that�N(C) = �N(AT ) and�N(C) = �M(AS)

and note that we then have|C| = �N(C) + �N(C) = �N(AT ) + �M(AS). If B is a basis for
M|AS , thenB ∪ C is a basis forL|A, and thus�L(A) = |B ∪ C| = �M(AS) + �N(AT ) +
�M(AS). �

It follows immediately that the nullity function ofL = M(S)�N(T ) is given by

�L(A) = �M(AS) + �N(AT ) − min{�M(AS), �N(AT )}, (3.6)

for all A ⊆ S + T , and similarly for the rank-lack function.

Proposition 3.7. The closure operator onL = M(S)�N(T ) is given by

c#L(A) =
{
c#M(AS) ∪ AT if �M(AS) > �N(AT ),

S ∪ c#N(AT ) if �M(AS)��N(AT ),

for all A ⊆ S + T .

Proof. Suppose that�M(AS) > �N(AT ). According to Proposition3.5, the rank ofA in
L is given by�L(A) = �M(AS) + |AT |, and if B = A ∪ x, for any x ∈ S + T , then
�M(BS)��N(BT ), and we have�L(B) = �M(BS) + |BT |. Hencex ∈ c#L(A) if and only if
�M(AS) + |AT | = �M(BS) + |BT |, that is, if and only ifx ∈ c#M(AS) ∪ AT .

Suppose that�M(AS)��N(AT ). If B = A∪ x, for anyx ∈ S + T , then�M(BS)��N(BT )

and therefore, by Proposition 3.5,�L(A) = �(M) + �N(AT ) and �L(B) = �(M) +
�N(BT ). Hencex ∈ c#L(A) if and only if �N(AT ) = �N(BT ), that is, if and only if
x ∈ S ∪ c#N(AT ). �

As a corollary, we obtain the following description of the flats of a free product in terms
of the flats of its factors.
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Corollary 3.8. Suppose thatL = M(S)�N(T ) andA ⊆ S + T . If �M(AS) > �N(AT ),
then A is a flat of L if and only ifAS is a flat of M; if �M(AS)��N(AT ), then A is a flat of L
if and only ifAS = S andAT is a flat of N.

Proposition 3.9. A setC ⊆ S + T is a circuit inL = M(S)�N(T ) if and only ifC ⊆ S

andC = CS is a circuit inM,orCS is independent inM, the restrictionN |CT is isthmusless,
and�M(CS) + 1 = �N(CT ).

Proof. By the definition of free product, a subsetC of S + T is dependent inL if and only
if CS is dependent inM or �M(CS) < �N(CT ). A minimal set with this property is either
a circuit inM, or a minimal set withCS independent inM but with �M(CS) < �N(CT ),
that is, a set such that�M(CS) + 1 = �N(CT ). If such a setC were such that the restriction
N |CT were to have an isthmusd, thenC would not be minimal, since we would have
�N(CT ) = �N(CT \d). �

4. Basic properties of the free product

We begin with a lemma showing that the asserted inequality between�M(AS) and�N(AT )

in the definition of free product is in fact a property of restrictions and complementary
contractions in arbitrary matroids.

Lemma 4.1. Given a matroidL = L(S + T ), let M = L|S and N = L/S. Then
�M(AS)��N(AT ), for all independent sets A in L.

Proof. The rank function on the contractionN = L/S is determined by the formula
�N(B) = �L(B ∪ S) − �L(S) = �L(B ∪ S) − �(M), for all B ⊆ T . If A ⊆ S + T is
independent inL, then�L(AT ∪S)� |A|, and so by the above formula,�N(AT )� |A|−�(M).
Thus we have�N(AT ) = |AT | − �N(AT )� |AT | − (|A| − �(M)) = �M(AS). �

By definition, the independent sets of the free productM(S)�N(T ) are precisely those
subsets ofS + T which, according to Lemma4.1, are necessarily independent in any
matroid containingM as a submatroid with complementary contractionN . The following
proposition expresses the consequent extremal, or universal, property of the free product.

Proposition 4.2. For any matroidL = L(U), and S ⊆ U , the identity map on U is a
rank-preserving weak mapL|S �L/S → L.

Proof. Let M = L|S andN = N(T ) = L/S. If A is independent inL, thenAS is
independent inM and, by Lemma4.1, we have�M(AS)��N(AT ). HenceA is independent
in M �N , and so the identity map onS + T is a weak map fromM �N to L, which is
clearly rank-preserving. �

Roughly speaking, in a free productL = M(S)�N(T ), the submatroidL|T is the freest
matroid, arranged in the most general position possible relative toM = L|S such that
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the contractionL/S is equal toN(T ). In the matroidM(S)�N(T ) of Example3.4, as
long as{a, b} and{c, d} are each coplanar withS = {e, f, g}, and on distinct planes, the
contraction byS will be equal toN , as required. In the indicated free product,{a, b} and
{c, d} are simply “in general position” on such planes.

We prove next that free product respects matroid duality and is associative. First, recall
that for any matroidM(S), the rank function of the dual matroidM∗ satisfies�M∗(B) =
|B| − �(M) + �M(A), or equivalently,�M(A) = �M∗(B), wheneverA + B = S.

Proposition 4.3(Crapo and Schmitt[4] ). ForallmatroidsMandN, (M �N)∗=N∗ �M∗.

Proof. Suppose thatM = M(S), N = N(T ), andA+B = S + T , so thatA is a basis for
M �N if and only ifB is a basis for(M �N)∗. ThenA is a basis forM �N if and only if
AS is independent inM, AT spansN and�M(AS) = �N(AT ), which is true if and only ifBS

spansM∗, BT is independent inN∗, and�M∗(BS) = �N∗(BT ), that is, if and only ifB is a
basis forN∗ �M∗. �

Proposition 4.4. Free product is an associative operation.

Proof. Suppose thatM = M(S), N = N(T ) andP = P(U). ThenA ⊆ S + T + U

is independent in(M �N)�P if and only if AS+T is independent inM �N and
�M �N(AS+T )��P (AU). SinceAS+T is independent inM �N , we have

�M �N(AS+T )= �(M �N) − |AS+T |
= �(M) + �(N) − |AS | − |AT |
= �M(AS) + �(N) − |AT |.

Hence the setA is independent in(M �N)�P if and only if AS is independent inM,
�N(AT )��M(AS) and�P (AU)��M(AS) + �(N) − |AT |. Adding �N(AT ) to both sides of
the last inequality, we may express these three conditions as

�M(AS)�0, �N(AT )��M(AS) and �N(AT ) + �P (AU)��M(AS) + �N(AT ).

On the other hand,A is independent inM � (N �P) if and only if �M(AS)�0 and
�N �P (AT+U)��M(AS). By Eq. (3.6), the latter inequality may be written as

�N(AT ) + �P (AU)��M(AS) + min{�N(AT ), �P (AU)},

which holds if and only if�N(AT )��M(AS) and�N(AT ) + �P (AU)��M(AS) + �N(AT ).
Hence A is independent inM � (N �P) if and only if it is independent in
(M �N)�P . �

The definitions and properties stated above have natural analogs for iterated free products.
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Proposition 4.5. If L(S) = M1(S1)� · · · �Mk(Sk), thenA ⊆ S is independent in L if
and only if

j−1∑
i=1

�Mi
(ASi

)�
j∑

i=1

�Mi
(ASi

), (4.6)

for all j such that1�j �k.

Proof. We use induction onk. Whenk = 1, the sum on the left-hand side of the in-
equality is empty and thus zero; so the result holds. Suppose the result holds forL′ =
M1(S1)� · · · �Mk−1(Sk−1). ThenA is independent inL = L′ �Mk if and only if A′

Sk
=

AS1
+ · · · + ASk−1

is independent inL′ and �Mk
(ASk

)��L′(A′
Sk
), that is, if and only if

inequality (4.6) holds for 1�j �k − 1 and, sinceA′
Sk

is independent inL′,

�Mk
(ASk

)��(L′) − |A′
Sk

| =
k−1∑
i=1

�(Mi) − |ASi
|.

But�(Mi)−|ASi
| = �Mi

(ASi
)−�Mi

(ASi
), for all i; hence the above inequality is equivalent

to inequality (4.6), forj = k. �

We will need the following generalization of Proposition 4.2 in Section 7.

Proposition 4.7. Suppose thatL = L(U) and∅ = T0 ⊂ · · · ⊂ Tk = U is a chain of
subsets of U, for somek�0, and letLi denote the minorL(Ti−1, Ti), for 1� i�k. The
identity map on U is a weak mapL1 � · · · �Lk → L.

Proof. Let Si = Ti\Ti−1, for 1� i�k, so thatLi = Li(Si), for all i. By Lemma4.1 and
induction onk, it follows that inequalities (4.6) hold for all independent setsA in L. Hence,
by Proposition 4.5, any independent set inL is also independent inL1 � · · · �Lk, that is,
the identity map onU is a weak mapL1 � · · · �Lk → L. �

One-element matroids (isthmuses and loops) play a special role in the study of free
products.

Example 4.8. Recall that, if{a} is any singleton, thenI (a)andZ(a)denote the matroids on
{a} consisting, respectively, of a single point and a single loop. For any setS = {s1, . . . , sn},
andk�n, the free productI (s1)� · · · � I (sk)�Z(sk+1)� · · · �Z(sn) is the uniform ma-
troidUk,n(S).

For any matroidM, we write Loop(M) and Isth(M), respectively, for the sets of loops
and isthmuses ofM.

Proposition 4.9. For all matroids M and N, Loop(M) ⊆ Loop(M �N),with Loop(M) =
Loop(M �N), whenever�(M) > 0. Dually, Isth(N) ⊆ Isth(M �N), with equality
whenever�(N) > 0.
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Proof. If x is a loop ofM, thenx belongs to no independent set ofM �N ; hencex is
a loop ofM �N , and so Loop(M) ⊆ Loop(M �N). On the other hand, suppose that
�(M) > 0, and thatN = N(T ) andx ∈ T . It follows from Proposition3.5 that�M �N(x) =
�N(x) + min{�(M), �N(x)} = 1, sox is not a loop inM �N , and hence Loop(M �N) =
Loop(M). The dual statements follow directly from Proposition 4.3.�

Corollary 4.10. If �(M) = 0 or �(N) = 0, thenM �N = M ⊕ N .

Example 4.11.For any matroidM, the matroidsM � I andZ �M consist ofM with,
respectively, an isthmus and a loop adjoined, whileM �Z andI �M are respectively the
free one-point extension and coextension ofM (see[7]).

Example 4.12.Because adjoining an isthmus and taking a single-point free extension of
a matroid correspond to free multiplication on the right byI andZ, respectively, it follows
that the class of matroids introduced in[3], now variously known asgeneralized Catalan
matroids[2], shifted matroids[1] and freedom matroids[5], is the class generated by the
single-element matroids under free product.

A representationof a matroidM(S) over a fieldF is a matrixP having entries inF
and rows labeled by the elements ofS, such that for allA ⊆ S, the submatrixPA of P ,
consisting of those rows ofP whose labels belong toA, has rank�M(A). We can, and shall,
always assume that the number of columns in a representation ofM is equal to the rank of
M. A matroidM is calledF -representableif there exists a representation ofM overF .

Proposition 4.13. If the matroidsM(S) andN(T ) are F-representable, and the field F is
large enough, then the free productM �N is F-representable.

Proof. Suppose thatP andQ are representations forM andN , respectively. Using the
fact that the fieldF has enough elements, we can construct a|T | × �(M) matrixZ, with
rows labelled (arbitrarily) byT , having the following property: given anyA ⊆ S which is
independent inM, and anyB ⊆ T of size�M(A) = �(M) − |A|, the matrix[

PA

ZB

]

is nonsingular. We show that the matrix[
P 0

Z Q

]

is a representation for the free productM �N . Suppose thatA ⊆ S + T , and letB ⊆ AT

be a basis forAT in N . SinceB is independent inN , the matrixQB has independent rows,
and hence the matrixRA has independent rows if and only if the matrix[

PAS

ZAT \B

]
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has independent rows. Since|AT \B| = �N(AT ), it follows from the construction ofZ
that this latter matrix has independent rows if and only ifAS is independent inM and
�M(AS)��N(AT ), that is, if and only ifA is independent inM �N . �

Suppose thatA = {Ai : i ∈ I } is an indexed family of subsets of a setS (with repetitions
allowed). A setA ⊆ S is apartial transversalof A if there exists an injective mapf :A → I

such thata ∈ Af (a), for all a ∈ A. The set of partial transversals ofA is the collection of
independent sets of a matroid, called atransversal matroidonS, and denoted byM(S,A).
The familyA is apresentationof M(S,A). Any transversal matroidM has a presentation
with number of sets equal to the rank ofM (see[10, p. 244]).

Proposition 4.14. The free product of transversal matroids is a transversal matroid.

Proof. Suppose thatM = M(S,A) andN = M(T,B) are transversal matroids with
respective presentationsA = {Ai : i ∈ I } and {Bj : j ∈ J }, where|I | = �(M). For all
k ∈ I + J , defineUk ⊆ S + T by

Uk =
{
Ak + T if k ∈ I,

Bk if k ∈ J.

We show that the free productM �N is equal to the transversal matroid onS + T having
presentationU = {Uk: k ∈ I + J }. Given A ⊆ S + T , let B ⊆ AT be a basis for
AT in N . The setA is independent inM(S + T , U) if and only if there exists injective
f :A\B → I such thata ∈ Uf (a) for all a ∈ A\B, which is the case if and only ifAS is
independent inM and|AT \B|� |I | − |AS |. Since|AT \B| = �N(AT ) and�M(AS) = |I | −
|AS |, for AS independent inM, it follows that suchf exists if and only ifA is independent
in M �N . �

5. Minors of free products

The minors of a free product of matroids are perhaps most simply described in terms of
the matroid truncation operator and its dual, the Higgs lift operator (see[6]). Thetruncation
of a matroidM(S) is the matroidT M whose independent sets are those independent sets
A of M satisfying|A|� max{0, �(M) − 1}, and theHiggs lift, or simply lift , of M is the
matroidLM whose family of independent sets is{A ⊆ S : �M(A)�1}. Denoting byT iM

andLiM, respectively, thei-fold truncation and lift ofM(S), it follows thatT iM has rank
equal to max{0, �(M) − i}, and

�Ti M(A) = min{�M(A), �(T iM)} and �Ti M(A) = min{0, �M(A) − i},
for all A ⊆ S. The rank ofLiM is min{|S|, �(M) + i}, and

�Li M(A) = min{|A|, �M(A) + i} and �Li M(A) = max{0, �M(A) − i}
for all A ⊆ S. The truncation and lift operators are dual to each other, so that(T iM)∗ =
Li(M∗), for all matroidsM and i�0. Truncation commutes with contraction and lift
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commutes with restriction, so for any matroidM(S) andi�0,

(T iM)/U = T i(M/U) and (LiM)|U = Li(M|U),

for all U ⊆ S. We thus shall write expressions such as these without parentheses. The
precise manner in which lift and truncation fail to commute with contraction and restriction,
respectively, is described by the following proposition.

Proposition 5.1. For any matroidM(S) andU ⊆ S

T i(M|U) = (T i+jM)|U and Li(M/U) = (Li+kM)/U,

for all i�0,wherej = �M(U) andk = �M(U).

Proof. The rank-lack ofA ⊆ U in M|U is given by�M|U(A) = �M(A) − �M(U) =
�M(A) − j , and so�TiM|U(A) = min{0, �M|U(A) − i} = min{0, �M(A) − j − i}. On the
other hand,

�(Ti+jM)|U(A)= �Ti+jM(A) − �Ti+jM(U)

= min{0, �M(A) − i − j} − min{0, �M(U) − i − j},
which is equal to min{0, �M(A) − i − j}, since�M(U) = j . The matroidsT i(M|U) and
(T i+jM)|U thus have identical rank-lack functions, and are therefore equal. The second
equality follows from duality, using the fact that�M(U) = �M∗(S\U), for all U ⊆ S. �

In keeping with the notational tradition of performing unary operations before binary
operations, in order to avoid a proliferation of parentheses, we adopt the convention that
all truncations, lifts, deletions and contractions that may appear in a given expression for a
matroid are to be performed before any free products and/or direct sums that appear.

Proposition 5.2. If P = M(S)�N(T ) andU ⊆ S + T , then

P |U = M|US�LiN |UT and P/U = T jM/US�N/UT,

wherei = �M(US) andj = �N(UT).

Proof. A setA ⊆ U is independent inP |U if and only if AS is independent inM and
�M(AS)��N(AT ). Using the fact that�M(AS) = �M|US(AS) + �M(US) and that�N(AT ) =
�N |UT (AT ), we thus haveA independent inP |U if and only if AS is independent inM|US
and�M|US(AS)��N |UT (AT ) − i. But max{0, �N |UT (AT ) − i} = �

L
i
N |UT

(AT ), and soA is

independent inP |U if and only ifAS is independent inM|USand�M|US(AS)��
L
i
N |UT

(AT ),

that is, if and only ifA is independent inM|US�LiN |UT .
The second equality follows from the first by duality, that is, by Proposition4.3, the

duality between deletion and contraction, the duality between lift and truncation and the
fact that�N∗(T \UT) = �N(UT). �
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Theorem 5.3. If P = M(S)�N(T ) andU ⊆ V ⊆ S + T , then

P(U, V ) = (T jM)(US, VS)� (LiN)(UT, VT),

wherej = �N(UT) andi = �M(VS).

Proof. By Proposition5.2, we haveP |V = M|VS � (LiN |VT), wherei = �M(VS), and
thus, by the same proposition,

P(U, V ) = (P |V )/U = (T k(M|VS))/US� (LiN |VT)/UT
= (T k(M|VS))/US� (LiN)(UT, VT),

wherek = �
L
i
N |VT

(UT) = max{0, �N(UT)−i} = max{0, j−i}. If j � i, then by Proposition

5.1,

(T k(M|VS))/US= ((T k+iM)|VS)/US

= (T jM)(US, VS)

and we thus obtain the desired expression forP(U, V ). On the other hand, ifj < i =
�M(VS), then(T jM)|VS = M|VS , andk = 0, and thus

(T k(M|VS))/US= (M|VS)/US

= ((T jM)|VS)/US

= (T jM)(US, VS)

and again we obtain the desired expression forP(U, V ). �

As a special case of Theorem 5.3, we have that the minors ofP = M(S)�N(T )

supported on the setsS andT are obtained by successive truncations ofM and Higgs
lifts of N , respectively; that is, for allA ⊆ S andB ⊆ T ,

P(A,A ∪ T ) = LiN and P(B,B ∪ S) = T jM,

wherei = �M(A) andj = �N(B). This is to be compared to the direct sum, where these
minors are simply isomorphic toM andN .

The following proposition describes how the lift and truncation operators interact with
free product.

Proposition 5.4. For all matroids M and N, the truncation and lift of the free product
M �N are given by

T (M �N) =
{
M � T N if �(N) > 0,
T M �N if �(N) = 0

and

L(M �N) =
{
LM �N if �(M) > 0,
M �LN if �(M) = 0,

for all matroids M and N.
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Proof. If �(M) = 0 then, by Corollary4.10, we haveM �N = M⊕N , and soT (M �N) =
T (M ⊕ N) = T M ⊕ T N = M ⊕ T N = M � T N . We therefore assume that�(M) is
nonzero.

Suppose thatM = M(S) andN = N(T ). Observe that if a setA ⊆ S+T is independent
in any of the matroidsT (M �N),M � T N andT M �N , thenAS is necessarily independent
in M. Hence, for the remainder of the proof, we assume thatA is some subset ofS + T

such thatAS is independent inM.
We first consider the case in which�(N) = 0. The setA is independent inM �N if

and only if�M(AS)��N(AT ), which is the case if and only if|A|��(M), since�M(AS) =
�(M)−|AS | and�N(AT ) = |AT |. It follows thatA is independent inT (M �N) if and only
if |A|��(M) − 1.

Now A is independent inT M �N if and only if �M(AS) = |AS |��(M) − 1 and
�T M(AS)��N(AT ). Furthermore

�T M(AS)= max{�M(AS) − 1, 0}
= max{�(M) − |AS | − 1, 0},

which is equal to�(M) − |AS | − 1, since|AS |��(M) − 1. ThereforeA is independent in
T M �N if and only if�(M)−|AS |−1��N(AT ) = |AT |, that is, if and only if|A|��(M)−
1, and henceT (M �N) = T M �N .

Now suppose that�(N) > 0. If �N(AT ) < �(N) then, by Proposition 3.3, the setA does
not spanM �N , and soA is independent inT (M �N) if and only if A is independent in
M �N . But sinceAT does not spanN , and thus�T N(AT ) = �N(AT ), it follows thatA is
independent inM �N if and only if it is also independent inM � T N . If �N(AT ) = �(N)

then, by Proposition 3.3, we have thatA is independent inT (M �N) if and only if�M(AS) >

�N(AT ). But A is independent inM � T N if and only if �M(AS)��T N(AT ) = �N(AT ) +
1; henceT (M �N) = M � T N . The corresponding result forL(M �N) follows by
duality. �

It follows from Proposition 5.4 that, for all matroidsM andN , andi�0,

T i(M �N) = T jM � T i−jN and Li(M �N) = Li−kM �LkN, (5.5)

wherej = max{i − �(N),0} andk = max{i − �(M),0}.

6. Irreducible matroids and unique factorization

A crucial tool for the study of factorization of matroids with respect to free product is the
notion ofcyclic flatof a matroid. Recall that a cyclic flat ofM is a flatA which is equal to
a union of circuits ofM. Alternatively, a flatA is cyclic if and only if the restrictionM|A
is isthmusless. Observe that in particular, any closure of a circuit in a matroid is a cyclic
flat. We begin with the following characterization of the cyclic flats in a free product of
matroids.

Proposition 6.1. A subsetA �= S ofS +T is a cyclic flat ofL = M(S)�N(T ) if and only
if eitherA ⊆ S and A is a cyclic flat of M, or A = S ∪ B, where B is a(nonempty) cyclic
flat of N. The set S is a cyclic flat of L if and only if M is isthmusless and N is loopless.
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Proof. Suppose thatA ⊆ S + T satisfies�M(AS) > �N(AT ) andA �= S. According to
Corollary3.8,A is a flat ofL if and only ifAS is a flat ofM, in which case any element of
AT is an isthmus ofL|A. HenceA is a cyclic flat ofL if and only if AT = ∅ andA = AS

is a cyclic flat ofM.
Now suppose thatA �= S and�M(AS)��N(AT ). Then by Corollary 3.8,A is a flat of

L if and only if AS = S andAT is a nonempty flat ofN . Given such a flatA, we have
�L(A) = �M(AS) + �N(AT ) + min{�M(AS), �N(AT )} = �(M) + �N(AT ); hence ifA is
cyclic thenAT must be a cyclic flat ofN . On the other hand, ifAT is cyclic in N , then
�L(A\a) = �L(A), for all a ∈ AT , and since�N(AT ) > 0 and�M(AS) = �M(S) = 0, it
follows that�L(A\a) = �L(A) for all a ∈ AS as well. HenceA is cyclic.

Since�M(S) = 0, it follows from Corollary 3.8 thatS is a flat ofL if and only if N is
loopless, in which case the flatS is cyclic if and only ifM = L|S is isthmusless. �

Definition 6.2. A setA ⊆ S is afree separatorof a matroidM(S) if every cyclic flat ofM
is comparable toA by inclusion.

Note that the empty set and the entire setS are free separators of any matroidM(S); any
other free separator is said to benontrivial.

Theorem 6.3. For any matroidL(S + T ), the following are equivalent:

(i) L(S + T ) = L|S �L/S.
(ii) S is a free separator of L.

Proof. The implication(i) ⇒ (ii ) is immediate from Proposition6.1. Conversely, suppose
that S is a free separator ofL, and letM = L|S andN = L/S. We first show that
every circuit ofL is also a circuit of the free productM(S)�N(T ). Let C be a circuit
of L. If C ⊆ S, thenC is a circuit ofM, and therefore a circuit ofM �N . Suppose that
C �⊆ S. SinceC is a circuit,�L(C\a) = �L(C) and thus, by the semimodularity of the
rank function,�L((S ∪ C)\a) = �L(S ∪ C), for all a ∈ C. Hence, for alla ∈ CT , we
have�N(CT ) = �L(S ∪ C) − �L(S) = �L(S ∪ C\a) − �L(S) = �N(CT \a), and soN |CT

is isthmus free. Since the closure of a circuit is a cyclic flat,S is a free separator, and
C �⊆ S, we haveS ⊆ c#L(C). It follows that �L(S ∪ C) = �L(C) = |C| − 1, and so
�L(S ∪ C) = |S| − |CS | + 1. Therefore

�N(CT )= �L(S ∪ C) − �L(S)

= |S| − |CS | + 1 − (|S| − �L(S))

= �(M) − |CS | + 1,

which is equal to�M(CS) + 1, sinceCS is independent inL (and thus also inM). By
Proposition 3.9, it follows thatC is a circuit inM �N .

We have thus shown that every circuit inL is also a circuit inL|S �L/S, in other words,
the identity map onS + T is a weak mapL → L|S �L/S. By Proposition 4.2, the identity
map onS + T is also a weak mapL|S �L/S → L; henceL = L|S �L/S. �
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We refer to a nonempty matroidM asirreducibleif any factorization ofM as a free product
of matroids containsM as a factor. By convention, the empty matroid is not irreducible.
The following restatement of Theorem6.3 characterizes irreducible matroids.

Theorem 6.4. For any nonempty matroidM(S), the following are equivalent:

(i) M is irreducible with respect to free product.
(ii) M has no nontrivial free separator.

Corollary 6.5. If M is loopless, isthmusless and disconnected, then M is irreducible.

Proof. Suppose thatM(S) is loopless, isthmusless and disconnected, and writeM(S) as
the direct sumP(U)⊕Q(V ), withU andV nonempty. LetA be a nonempty proper subset
of S. Assume, without loss of generality, thatAU andV \A are nonempty, and leta ∈ V \A.
SinceQ is loop and isthmus free,a is contained in some circuitC of Q. Now C is also
a circuit ofM anda ∈ c#M(C) = c#Q(C) ⊆ V ; hencec#M(C) neither contains nor is
contained inA, and soA is not a free separator ofM. �

Corollary 6.6. If L = M(S)�N(T ) = P(T )�Q(S), where S and T are nonempty, then
L is a uniform matroid.

Proof. LetC be a circuit ofL. By Theorem6.3, bothS andT are free separators ofL and
hencec#L(C) is comparable to bothS andT by inclusion. SinceS andT are disjoint and
nonempty, the only possibility is thatS andT are both contained inc#L(C). Every circuit
of L is thus a spanning set forL, and thereforeL is uniform. �

We remark that it follows from Proposition 4.3 that a matroidM is irreducible if and only
if the dual matroidM∗ is irreducible.

Corollary 6.7. If M is identically self-dual, then M is either uniform or irreducible.

Proof. Suppose thatM is identically self-dual and factors asP(U)�Q(V ), withU andV
nonempty. Using Proposition4.3, we haveP(U)�Q(V ) = M = M∗ = Q∗(V )�P ∗(U),
and hence it follows from Corollary 6.6 thatM is uniform. �

Example 6.8. Suppose thatS = {a, b, c, d} and letM(S) be the matroid in whichab is
a double point, collinear withc andd. ThenM is self-dual, not uniform, and factors with
respect to free product asI (a)�Z(b)� I (c)�Z(d).

For any matroidM(S), we denote byD(M) the complete sublattice of the Boolean
algebra 2S generated by all cyclic flats ofM. Note thatD(M) is a distributive lattice, and
contains in particular the empty union and empty intersection of cyclic flats ofM, which
are equal to∅ andS, respectively.

Proposition 6.9. A nonempty matroidM(S) is uniform if and only if|D(M)| = 2, that is,
if and only ifD(M) = {∅, S}.
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Proof. Uniform matroids are characterized by the fact that all of their circuits are spanning.
HenceM(S) is uniform if and only if it has no cyclic flat that is both nonempty and not
equal toS. For nonempty matroids, this is the case if and only ifD(M) = {∅, S}. �

Definition 6.10. An elementx of a partially ordered setP is apinchpointif the set{x}
is a crosscut ofP , that is, if all elements ofP are comparable tox. A pinchpoint ofP is
nontrivial if it is neither minimal nor maximal inP .

A uniform matroid is irreducible with respect to free product if and only if its underlying
set is a singleton (see Example4.8). Irreducibility of nonuniform matroids is characterized
in the following theorem.

Theorem 6.11.For any nonuniform matroidM(S), the following are equivalent:

(i) M is irreducible with respect to free product.
(ii) The latticeD(M) contains no nontrivial pinchpoint.

Proof. If A ∈ D(M) is a nontrivial pinchpoint thenA ⊆ S is itself a nontrivial free
separator, and henceM is not irreducible by Theorem6.4. Conversely, suppose thatM(S)

is nonuniform and has a nontrivial free separatorA ⊆ S. SinceM is nonuniform it has a
cyclic flatB which is neither empty nor equal toS. If A ⊆ B, then the intersection of all
cyclic flats ofM containingA is a nontrivial pinchpoint ofD(M). If B ⊆ A, then the union
of all cyclic flats which are contained inA is a nontrivial pinchpoint. �

For any matroidM(S) we denote byF(M) the set of all free separators ofM, ordered
by inclusion. We shall see presently thatF(M) is a lattice (in fact distributive). For all
A ⊆ B ⊆ S, we denote by[A,B] the subinterval{U ⊆ S:A ⊆ U ⊆ B} of the Boolean
algebra 2S . If A andB are free separators ofM(S), then we write[A,B]F for the subinterval
[A,B] ∩ F(M) of F(M). In the following lemma we show that an interval in the lattice
of free separators of a matroid is isomorphic, under the obvious map, to the lattice of free
separators of the corresponding minor of the matroid.

Lemma 6.12. For all free separatorsA ⊆ B of a matroidM(S), the map from the interval
[A,B]F in F(M) to the latticeF(M(A,B)) given byU �→ U\A is a bijection(and thus
a lattice isomorphism).

Proof. If A ⊆ U ⊆ B are free separators ofM(S), then it follows from Theorems
5.3 and 6.3 thatM(A,B) = M(A,U)�M(U,B), and soU\A is a free separator of
M(A,B). On the other hand, ifA ⊆ B are free separators ofM, thenM factors asM =
M|A�M(A,B)�M/B, and if V ⊆ B\A is a free separator ofM(A,B), we have the
factorizationM(A,B) = M(A,B)|V �M(A,B)/V = M(A,A ∪ V )�M(A ∪ V,B).
Hence, by associativity of free product,A ∪ V is a free separator ofM. �

If U0 ⊂ · · · ⊂ Uk is a chain inF(M), with U0 = ∅ and Uk = S, then by
Lemma 6.12, we have the factorizationM(S) = M(U0, U1)� · · · �M(Uk−1, Uk) of
M into a free product of nonempty matroids. On the other hand, given any factorization
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M(S) = M1(S1)� · · · �Mk(Sk), with all Mi nonempty, the setsUi = S0 ∪ · · · ∪ Si , for
1� i�k, comprise a chain from∅ to S in F(M). Hence the factorizations ofM(S) into
free products of nonempty matroids are in one-to-one correspondence with chains from∅
to S in the latticeF(M).

Lemma 6.13. A matroidM(S) is uniform if and only ifF(M) is equal to the Boolean
algebra2S .

Proof. If M(S) is uniform then the only possible cyclic flats ofM are∅ andS, and so every
subset ofS is a free separator ofM. Conversely, if every subset ofS is a free separator of
M, then the only possible cyclic flats ofM are∅ andS, and thusM must be uniform. �

Definition 6.14. Theprimary flagTM of a matroidM is the chainT0 ⊂ · · · ⊂ Tk consisting
of all pinchpoints in the latticeD(M).

Note that the sets belonging to the primary flag of a matroid are, in particular, free
separators, and thus the primary flag ofM is a chain from∅ to S in F(M).

Proposition 6.15. If the matroidM(S) has primary flagT0 ⊂ · · · ⊂ Tk, then the lattice
F(M) of free separators of M is equal to the union of intervals

⋃k
i=1[Ti−1, Ti]F , where

each interval[Ti−1, Ti]F is a Boolean algebra, given by

[Ti−1, Ti]F =
{ [Ti−1, Ti] if Ti coversTi−1 in D(M),

{Ti−1, Ti} otherwise,

for 1� i�k.

Proof. By definition, free separators ofM are comparable to all cyclic flats ofM and hence
comparable to all elements ofD(M). Every free separator is thus contained in one of the
intervals[Ti−1, Ti]F , and soF(M) = ⋃k

i=1[Ti−1, Ti]F .
Suppose thatTi coversTi−1 in D(M). SinceTi−1 andTi are consecutive pinchpoints of

D(M), andD(M) contains all cyclic flats ofM, it follows that anyA ⊆ S with Ti−1 ⊆
A ⊆ Ti is a free separator. Hence[Ti−1, Ti]F = [Ti−1, Ti].

Now suppose thatTi does not coverTi−1 in D(M). Choose someD ∈ D(M) such that
Ti−1 ⊂ D ⊂ Ti , and letA ∈ [Ti−1, Ti]F . SinceA is a free separator,A must be comparable
to D. If A ⊆ D, then the set{E ∈ D(M):A ⊆ E ⊂ Ti} is nonempty, and thus the
intersectionF of all elements of this set is a pinchpoint ofD(M) satisfyingA ⊆ F ⊂ Ti .
SinceTi−1 andTi are consecutive pinchpoints ofD(M), we therefore haveA = F = Ti−1.
Similarly, if D ⊆ A, it follows thatA = Ti . Hence[Ti−1, Ti]F = {Ti−1, Ti}. �

Proposition6.15 shows, in particular, thatF(M) is a sublattice of the Boolean algebra
2S , and therefore is a distributive lattice. Observe that the first statement of Proposition
6.15 means that, in addition to being the chain of pinchpoints inD(M), the primary flag
TM is also the chain of all pinchpoints inF(M), and the second statement implies that
D(M) ∩ F(M) = TM . If a matroidM has primary flagT0 ⊂ · · · ⊂ Tk, we refer to
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the minorsM(Ti−1, Ti) as theprimary factorsof M, and refer to the factorizationM =
M(T0, T1)� · · · �M(Tk−1, Tk) as theprimary factorizationof M.

Theorem 6.16.The sequence of primary factors of a matroid M is the unique sequence
M1, . . . ,Mk of nonempty matroids such thatM = M1 � · · · �Mk, eachMi is either
irreducible or uniform, and no free product of consecutiveMi ’s uniform.

Proof. Suppose thatM(S) factors asM = M1 � · · · �M#. Let U = {U0 ⊂ · · · ⊂ U#} be
the corresponding chain inF(M), determined byMi = M(Ui−1, Ui), for 1� i�#, and let
TM = {T0 ⊂ · · · ⊂ Tk} be the primary flag ofM. We show that the sequenceM1, . . . ,M#

has the properties described in the theorem if and only ifU = TM .
Suppose thatU = TM . By Lemma6.12 we haveF(Mi) = F(M(Ti−1, Ti))�[Ti−1, Ti]F ,

for 1� i�k. If Ti covers Ti−1 in D(M), it follows from Proposition 6.15 and
Lemma 6.13 thatMi is uniform; and ifTi does not coverTi−1 in D(M), then Proposition
6.15 and Theorem 6.4 imply thatMi is irreducible. For 1� i�k − 1, we haveMi �Mi+1
= M(Ti−1, Ti)�M(Ti, Ti+1) = M(Ti−1, Ti+1), and soF(Mi �Mi+1)�[Ti−1, Ti+1]F , by
Lemma 6.12. This interval has a nontrivial pinchpoint (namely,Ti), and so is not a Boolean
algebra; hence by Lemma 6.13,Mi �Mi+1 is not uniform.

For the converse, first note that, since any free separator ofM is comparable with all
theTi ’s, it follows that the unionU ∪ TM is a chain inF(M). Hence ifT �⊆ U , we can
find i andj such thatTj ∈ [Ui−1, Ui]F , with Tj not equal toUi−1 or Ui . ThenTj is a
nontrivial pinchpoint of[Ui−1, Ui]F�F(M(Ui−1, Ui)), and henceMi = M(Ui−1, Ui) is
neither uniform nor irreducible.

Now suppose thatT is a proper subset ofU . We can then find somei and j such
thatUj ∈ [Ti−1, Ti]F , with Uj not equal toTi−1 or Ti . By Proposition 6.15, we know
that Ti coversTi−1 in D(M), from which it follows thatM(Ti−1, Ti) is uniform. Since
T ⊆ U , we haveTi−1 ⊆ Uj−1 andUj+1 ⊆ Ti ; hence the free productMj �Mj+1 =
M(Uj−1, Uj )�M(Uj ,Uj+1) = M(Uj−1, Uj+1) is a minor ofM(Ti−1, Ti) and is thus
uniform. �

Theorem 6.16 shows that matroids factor uniquely as free products of minors that are ei-
ther irreducible or “maximally” uniform. We now wish to consider factorization of matroids
into irreducibles. Clearly, given a factorizationM(S) = M(U0, U1)� · · · �M(Uk−1, Uk),
the factorsM(Ui−1, Ui) are all irreducible if and only ifU0 ⊂ · · · ⊂ Uk is a maximal
chain in the lattice of free separatorsF(M). If M(S) = Ur,n is uniform of rankr, then any
maximal chain inF(M) = 2S , or equivalently, any orderings1, . . . , sn of the elements of
S, gives a factorization

M = I (s1)� · · · � I (sr )�Z(sr+1)� · · · �Z(sn)

of M into irreducibles (see Example4.8). The factorization of a uniform matroid into irre-
ducibles is thus in general far from unique. Up to isomorphism, or course, we do have the
unique factorizationUr,n = I r �Zn−r . In the next theorem we show that, up to isomor-
phism, arbitrary matroids factor uniquely into irreducibles.
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Theorem 6.17. IfM�M1 � · · · �Mk�N1 � · · · �Nr ,where all theMi andNj are irre-
ducible, thenk = r andMi�Ni , for 1� i�k.

Proof. Since the setsTi belonging to the primary flagTM of M are all pinchpoints of
F(M), it follows that any maximal chain inF(M) is a refinement ofTM . Hence any fac-
torization ofM into irreducibles can be obtained by starting with the primary factorization
M = M(T0, T1)� · · · �M(T#−1, T#), then factoring eachM(Ti−1, Ti) into irreducibles.
Since eachM(Ti−1, Ti) is either irreducible or uniform, and uniform matroids factor into
irreducibles uniquely up to isomorphism, it follows that the factorization ofM into irre-
ducibles is unique up to isomorphism.�

The unique factorization theorem (Theorem6.17) provides a quick proof of the following
theorem, which was the main result in [4]:

Theorem 6.18.Suppose thatM(S)�N(T )�P(U)�Q(V ),where|S| = |U |.ThenM�P

andN�Q.

Proof. SinceM �N andP �Q have, up to isomorphism, the same factorization into
irreducibles, it follows from the fact that|S| = |U | and |T | = |V |, that M�P and
N�Q. �

For all n�0, denote bymn and in, respectively, the number of isomorphism classes
of matroids and irreducible matroids onn elements, and letM(t) = ∑

n�0 mnt
n and

I (t) = ∑
n�0 int

n be the ordinary generating functions for these numbers. For allr, k, �0,
denote bymr,k andir,k, respectively, the number of isomorphism classes of matroids and
irreducible matroids having rankr and nullityk, and letM(x, y) = ∑

r,k�0 mr,kx
ryk and

I (x, y) = ∑
r,k�0 ir,kx

ryk.

Corollary 6.19. The generating functionsM(t) andI (t), andM(x, y) andI (x, y) satisfy

M(t) = 1

1 − I (t)
and M(x, y) = 1

1 − I (x, y)
.

Proof. Unique factorization implies that, for alln�0,

mn =
∑
j �0

∑
n1+···+nj=n

in1 · · · inj ,

which is the coefficient oftn in
∑

j �0 I (t)
j = 1/(1−I (t)). The second equation is proved

similarly. �

Using Corollary6.19, we compute the numbersin andir,k in terms of the values ofmn

andmr,k, for n, r + k�8. The results are shown in Tables 1 and 2.
The two matroids of size one, namely, the pointI and loopZ, are irreducible, and no

matroid of size two or three is irreducible. The unique irreducible matroid on four elements
is the pair of double pointsU1,2 ⊕ U1,2. The two irreducible matroids on five elements
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Table 1
The numbers of nonisomorphic matroids, irreducible matroid, of sizen, for 0�n�8

n 0 1 2 3 4 5 6 7 8

Matroids 1 2 4 8 17 38 98 306 1724
Irreducible matroids 0 2 0 0 1 2 14 66 891

Table 2
The numbers of nonisomorphic matroids (left), irreducible matroids (right), of rankr and nullityk, for 0� r+k�8

r k

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
1 1 2 3 4 5 6 7 8 1 0 0 0 0 0 0 0
2 1 3 7 13 23 37 58 0 0 1 1 3 3 6
3 1 4 13 38 108 325 0 0 1 8 30 125
4 1 5 23 108 940 0 0 3 30 629
5 1 6 37 325 0 0 3 125
6 1 7 58 0 0 6
7 1 8 0 0
8 1 0

areU1,3 ⊕ U1,2 and its dualU2,3 ⊕ U1,2. On six elements, the irreducibles of rank two
areU1,4 ⊕ U1,2, U1,3 ⊕ U1,3 and the truncationT (U1,2 ⊕ U1,2 ⊕ U1,2), which consists
of three collinear double points. The duals of these matroids,U3,4 ⊕ U1,2, U2,3 ⊕ U2,3
andL(U1,2 ⊕ U1,2 ⊕ U1,2), are the six-element irreducibles of rank four. Finally, on six
elements in rank three, the irreducible matroids consist ofU2,4 ⊕U1,2,U1,2 ⊕U1,2 ⊕U1,2,
U1,3⊕U2,3, andU ′

2,3⊕U1,2, whereU ′
2,3 is the three-point lineU2,3, with one point doubled,

together with the four matroids shown below:

·· ·
··

· · · · · ·
·
·

·
· · ·

· ·
·

· ·
·
··

Since the dual of an irreducible matroid is irreducible, the set of rank-three irreducible
matroids on six elements must be closed under duality; in fact, each matroid in this set is
self-dual.

7. The minor coalgebra

In this section, and the next, we work over some commutative ringK with unit. All
modules, algebras and coalgebras are overK, all maps between such objects are assumed
to beK-linear, and all tensor products are taken overK. Given a family of matroidsM, we
denote byK{M} the freeK-module having as basis all isomorphism classes of matroids
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belonging toM. In what follows, we shall not distinguish notationally between a matroidM

and its isomorphism class, or between a family of matroidsM and the set of isomorphism
classes of matroids belonging toM; it should always be clear from the context which is
meant.

If M is a minor-closed family, then theminor coalgebra[5,8] of M is the free module
K{M}, equipped withrestriction–contraction coproduct� determined by

�(M) =
∑
A⊆S

M|A ⊗ M/A

and counit determined by�(M) = �∅,S , for all M = M(S) in M. If M is also closed under
formation of direct sums, thenK{M} is a Hopf algebra, with product determined on the
basisM by direct sum. For any minor-closed familyM, the coalgebraK{M} is bigraded,
with homogeneous componentK{M}r,k spanned by all isomorphism classes of matroids
in M having rankr and nullityk. WhenM is also closed under direct sum, this is a Hopf
algebra bigrading.

For all matroidsN1, N2 andM = M(S), thesection coefficient
(

M
N1,N2

)
is the number of

subsetsA of S such thatM|A�N1 andM/A�N2; hence ifM is a minor-closed family,
the restriction–contraction coproduct satisfies

�(M) =
∑
N1,N2

(
M

N1, N2

)
N1 ⊗ N2, (7.1)

for all M ∈ M, where the sum is taken over all (isomorphism classes of) matroidsN1 and
N2. More generally, for matroidsN1, . . . , Nk andM = M(S), themultisection coefficient(

M
N1,...,Nk

)
is the number of sequences(S0, . . . , Sk) such that∅ = S0 ⊆ · · · ⊆ Sk =

S and the minorM(Si−1, Si) is isomorphic toNi , for 1� i�k. The iterated coproduct
�k−1:K{M} → K{M} ⊗ · · · ⊗ K{M} is thus determined by

�k−1(M) =
∑

N1,...,Nk

(
M

N1, . . . , Nk

)
N1 ⊗ · · · ⊗ Nk,

for all M ∈ M.
For any family of matroidsM, we define a pairing〈·, ·〉:K{M} × K{M} → K by

setting〈M,N〉 = �M,N , for all M,N ∈ M, and thus identify the graded dual module
K{M}∗ with the free moduleK{M}. In the case thatM is minor-closed, we refer to the
(graded) dual algebraK{M}∗ as theminor algebraof M; the product in the minor algebra
is thus determined by

M · N =
∑
L∈M

(
L

M,N

)
L,

for all M,N ∈ M.
We partially order the set of all isomorphism classes of matroids by settingM�N if and

only if there exists a bijective weak map fromM to N . The following result provides us



H. Crapo, W. Schmitt / Journal of Combinatorial Theory, Series A 112 (2005) 222–249 243

with critical necessary conditions for a matroid to appear in a given product of matroids in
K{M}∗.

Proposition 7.2. For all matroids L,M and N,(
L

M,N

)
�= 0 �⇒ M ⊕ N � L � M �N.

Proof. Suppose thatM = M(S) andN = N(T ). Given a matroidL such that
(

L
M,N

)
�= 0

we may assume thatL = L(S + T ), whereL|S = M andL/S = N . The semimodu-
larity of �L implies that�L(AS) + �L(S ∪ A)��L(S) + �L(A), for all A ⊆ S + T , and
so �M⊕N(A) = �M(AS) + �N(AT ) = �L(AS) + �L(S ∪ A) − �L(S)��L(A), and hence
the identity onS + T is a weak mapL → M ⊕ N . On the other hand, according to
Proposition4.2, the identity onS + T is a weak mapM �N → L; henceM ⊕ N�L

�M �N . �

Similarly, using Proposition 4.7 instead of Proposition 4.2, we obtain(
L

M1, . . . ,Mk

)
�= 0 �⇒ M1 ⊕ · · · ⊕ Mk � L � M1 � · · · �Mk, (7.3)

for all L andM1, . . . ,Mk ∈ M.
The following example shows that the converse of Proposition7.2 does not hold.

Example 7.4. SupposeL is the rank 4 matroid on the setU = {a, b, c, d, e, f, g} pictured
below.

f

e

dc

g

a
b

··

··

· · · ·
If M is a three point line on the set{a, b, c}, andN is a four point line on{d, e, f, g},
then the free productM �N consists of a three point line on{a, b, c}, together with points
d, e, f , g in general position in 3-space, and the identity map onU is thus a weak map
M �N → L. Now if M ′ is a three point line on{e, f, g} andN ′ is a four point line on
{a, b, c, d}, then the identity onU is a weak mapL → M ′⊕N ′. SinceM�M ′ andN�N ′,
we thus haveM ⊕N�L�M �N . ButL has no three point line as a restriction with a four

point line as complementary contraction, and so
(

L
M,N

)
= 0.

If a family M is closed under formation of free products thenK{M}, with product
determined by the free product on the basisM, is an associative algebra. We denoteK{M},
equipped with this algebra structure, byK{M}� .
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Proposition 7.5. IfM is a freeproduct-closed family ofmatroids, then thealgebraK{M}�

is free, generated by the set of irreducible matroids belonging toM.

Proof. Because the setM is a basis forK{M}� , the result follows directly from unique
factorization, Theorem6.17. �

For all matroidsM andN , we denote byc(N,M) the section coefficient
(

N
M1,...,Mk

)
,

whereM1, . . . ,Mk is the sequence of irreducible factors ofM.

Theorem 7.6. Suppose thatM is a family of matroids that is closed under formation of
minors and free products. IfK is a field of characteristic zero, then the minor algebra
K{M}∗ is free, generated by the set of irreducible matroids belonging toM.

Proof. For each matroidM belonging toM, let PM denote the productM1 · · ·Mk in
K{M}∗, whereM1, . . . ,Mk is the sequence of irreducible factors ofM. We can write

PM =
∑
N

c(N,M)N,

where, by (7.3), the sum is taken over allN ∈ M such thatN�M in the weak order. Since
c(M,M) �= 0, for all matroidsM, andK is a field of characteristic zero, it thus follows from
the fact thatM is a basis forK{M}∗ that{PM :M ∈ M} is also a basis forK{M}∗. The map
K{M}� → K{M}∗ determined byM �→ PM , which is clearly an algebra homomorphism,
is thus bijective and hence an algebra isomorphism. SincePM = M, wheneverM ∈ M is
irreducible, the result follows from Proposition 7.5.�

Example 7.7. The familyM of all matroids is minor-closed and closed under free product.
HenceK{M}∗ is the free algebra generated by the set of all (isomorphism classes of)
irreducible matroids.

Example 7.8. The familyF of freedom matroids (see Example4.12) is minor-closed and
closed under free product. Since all freedom matroids can be expressed as free products of
points and loops, it follows thatK{F}∗ is the free algebra generated byI andZ.

Example 7.9. For any fieldF , the classMF of all F -representable matroids is minor-
closed. It follows from Proposition4.13 that ifF is infinite thenMF is also closed under
formation of free products.

Example 7.10. It follows from Proposition4.14 that the familyT of all transversal ma-
troids is closed under formation of free products. However, since contractions of transversal
matroids are not in general transversal,T is not minor-closed.

Proposition 7.11. If a familyM of matroids is minor-closed and closed under formation
of free products, thenM is also closed under the lift and truncation operations.
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Proof. Suppose thatM is minor-closed and closed under formation of free products. If
M is the class of all free matroids or the class of all zero matroids, or consists only of the
empty matroid, thenM is closed under lift and truncation. IfM is none of the above, then
it must contain the matroidsI andZ. By Proposition5.2, we have

LM = (I �M(S))|S and T N = (M �Z(a))/a,

for any matroidM = M(S). Hence, ifM belongs toM then so doLM andT M. �

Suppose thatM andK satisfy the hypotheses of Theorem7.6, and thatM is partially
ordered by the weak order. The fact thatc(M,N) �= 0 impliesM�N , for all M,N ∈ M,
means that we may regardc as an element of the incidence algebraI (M) of the posetM.
Sincec(M,M) is invertible inK, for allM, it follows thatc is invertible inI (M), the inverse
given recursively byc−1(M,M) = c(M,M)−1, for M ∈ M, and

c−1(M,N) = − c(N,N)−1
∑

M�P<N

c−1(M,P ) c(P,N),

for all M < N in M. The inverse of the change of basis mapM �→ PM is thus given by

M =
∑

N �M

c−1(N,M)PN,

for allM ∈ M. Let{QM :M ∈ M} be the basis ofK{M} determined by〈QM,PN〉 = �M,N ,
for all M,N ∈ M. Observe thatQM satisfies

QM =
∑

N �M

c−1(M,N)N, (7.12)

for allM ∈ M. Before stating the next theorem, which is dual to Theorem7.6, we note that,
for any minor-closed familyM, the minor coalgebraK{M} is connected, with the empty
matroid as unique group-like element. In particular, it follows that the notion of primitive
element ofK{M} is unambiguous.

Theorem 7.13.Suppose thatM is a family of matroids that is closed under formation of
minors and free products. IfK is a field of characteristic zero, then the minor coalgebra
K{M} is cofree.The set{QM :M ∈ M is irreducible} is a basis for the subspaceof primitive
elements ofK{M}.

Proof. The fact thatK{M} is cofree is equivalent to the fact thatK{M}∗ is free, which
was shown in Theorem7.6. Let �:K{M}� → K{M}∗ be the algebra isomorphism
used in the proof of Theorem 7.6, given byM �→ PM , for all M ∈ M. The transpose
�∗:K{M} → K{M}∗� is thus a coalgebra isomorphism. For allM,N ∈ M, we have
〈�∗(QM),N〉 = 〈QM,�(N)〉 = 〈QM,PN〉 = �M,N , and hence�∗(QM) = M. Since
the set of all irreducibleM ∈ M is a basis for the subspace of primitive elements of
K{M}∗� , it follows that{QM :M ∈ M is irreducible} is a basis for the subspace of primitive
elements ofK{M}. �
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Example 7.14.Suppose thatM is closed under formation of minors and free products, and
thatM contains the irreducible matroidD = U1,2 ⊕U1,2, consisting of two double points.
SinceM is minor-closed, it contains the (irreducible) single-element matroidsI andZ.
SinceM is also closed under free product, it follows from Table1 and unique factorization
thatM contains all matroids of size less than or equal to four (all such matroids, exceptD,
being free products ofI ’s andZ’s).

It is clear from Eq. (7.12) that the primitive elementsQI andQZ in K{M} are equal
to I andZ, respectively. In order to computeQD, we first observe that{N :N > D in M}
consists of the two matroidsU2,4 = I � I �Z �Z andP = I �Z � I �Z. SinceP is a
three point line, with one point doubled, we haveD�P �U2,4. The multisection coefficients
c(M,N), for all M,N�D, are given by the matrix




D P U2,4

D 1 8 16
P 0 4 20
U2,4 0 0 24




and the numbersc−1(M,N), for M,N�D, are thus given by the inverse matrix

1

24


 24 −48 24

0 6 −5
0 0 1


 .

HenceQD = D − 2P + U2,4.

8. A new twist

If a family of matroidsM is both minor and free product-closed, then the moduleK{M}
has both the structure of a (free) associative algebra, under free product, and a coassociative
coalgebra, with restriction–contraction coproduct. Moreover, according to Theorem7.6,
when the ring of scalars is a field of characteristic zero, these structures are dual to one
another. In this section we show that free product and restriction–contraction coproduct are
compatible in the sense thatK{M} is a Hopf algebra in an appropriate braided monoidal
category.

By amatroid module, we shall mean a free moduleK{M}, whereM is a family of
matroids that is closed under formation of lifts and truncations. Given matroid modules
V = K{M} andW = K{N }, we define thetwist map� = �V,W :V ⊗ W → W ⊗ V by

�(M ⊗ N) = L�(M)N ⊗ T �(N)M, (8.1)

for all M ∈ M andN ∈ N . If the familiesM andN are also closed under formation of
free products, we use the twist map to extend the definition of the free product to a binary
operation onV ⊗ W :

(M ⊗ N)� (P ⊗ Q) = (M �L�(N)P ) ⊗ (T �(P )N �Q), (8.2)

for all M,P ∈ M andN,Q ∈ N .
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Proposition 8.3. For all familiesM andN , closed under free product, lift and truncation,
the product� given by Eq.(8.2) is an associative operation onK{M} ⊗ K{N }.

Proof. Suppose thatMi ∈ M andNi ∈ N , and let�i = �(Mi) and�i = �(Ni), for
1� i�3. Then

[(M1 ⊗ N1)� (M2 ⊗ N2)] � (M3 ⊗ N3)

= [(M1 �L�1M2) ⊗ (T �2N1 �N2)] � (M3 ⊗ N3)

= (M1 �L�1M2 �LiM3) ⊗ (T �3(T �2N1 �N2)�N3)

= (M1 �L�1M2 �LiM3) ⊗ (T kN1 � T �3N2 �N3),

where i = �(T �2N1 �N2) = �2 + max{�1 − �2, 0} and, by Eq. (5.5), we havek =
�2 + max{�3 − �2, 0}. On the other hand,

(M1 ⊗ N1)� [(M2 ⊗ N2)� (M3 ⊗ N3)]
= (M1 ⊗ N1)� [(M2 �L�2M3) ⊗ (T �3N2 �N3)]
= (M1 �L�1(M2 �L�2M3)) ⊗ (T jN1 � T �3N2 �N3)

= (M1 �L�1M2 �LsM3) ⊗ (T jN1 � T �3N2)�N3),

wherej = �(M2 �L�2M3) = �2 + max{�3 − �2, 0} and, by Eq. (5.5), we haves =
�2 + max{�1 − �2, 0}. Sinces = i and j = k, the two parenthesizations of(M1 ⊗
N1)� (M2 ⊗ N2)� (M3 ⊗ N3) are thus equal. �

Proposition 8.4. If the familyM is minor and free product-closed(and thus also closed
under lift and truncation), then the restriction–contraction coproduct� is compatible with
the free product onK{M}, in the sense that�:K{M} → K{M} ⊗ K{M} is an algebra
map.

Proof. Suppose thatM(S) andN(T ) belong toM. Using Proposition5.2, we compute the
coproduct ofM �N :

�(M �N)=
∑

A⊆S+T

(M �N)|A ⊗ (M �N)/A

=
∑

A⊆S+T

(M|AS �L�M(AS)N |AT ) ⊗ (T �N (AT )M/AS �N/AT )

=
∑

A⊆S+T

(M|AS �L�(M/AS)N |AT ) ⊗ (T �(N |AT )M/AS �N/AT )

=
∑

A⊆S+T

(M|AS ⊗ M/AS)� (N |AT ⊗ N/AT ),

which is equal to�(M)� �(N). �

We conclude by outlining a categorical framework for these results. LetM be the category
whose objects are bigradedK-modulesV = ⊕

r,k�0 Vr,k, equipped with linear operators



248 H. Crapo, W. Schmitt / Journal of Combinatorial Theory, Series A 112 (2005) 222–249

L = LV and T= TV satisfying

(i) L: Vr,k → Vr+1,k−1, if k > 0 and L|Vr,0 = idVr,0,
(ii) T: Vr,k → Vr−1,k+1, if r > 0 and T|V0,k = idV0,k

,
(iii) TL = LT, when restricted to

⊕
r,k�1 Vr,k.

We assume that each homogenous componentVr,k is a freeK-module of finite rank and that
Vr,0 andV0,k have rank one, for allr, k�0. For homogeneousx ∈ V , we write�(x) = r

and�(x) = k to indicate thatx belongs toVr,k. The morphisms ofM are theK-linear maps
which commute with L and T. For all objectsV andW in M , we suppose that the tensor
productV ⊗ W is bigraded in the usual manner, with

(V ⊗ W)r,k =
⊕

r1+r2=r

k1+k2=k

(Vr1,k1 ⊗ Wr2,k2),

for all r, k�0, and the operators L= LV⊗W and T= TV⊗W satisfy

L(x ⊗ y) =
{
(Lx) ⊗ y if �(x) > 0,
x ⊗ Ly if �(x) = 0

and

T (x ⊗ y) =
{
x ⊗ T y if �(y) > 0,
(T x) ⊗ y if �(y) = 0,

for all homogeneousx ∈ V andy ∈ W ; henceM is a monoidal category. For all objectsV
andW in M we define the twist map� = �V,W :V ⊗ W → W ⊗ V as in Eq. (8.1), that is,
by �(x ⊗ y) = L�(x)y ⊗ T �(y)x, for homogeneousx ∈ V andy ∈ W . It is readily verified
that the twist maps�V,W commute with the operatorsL andT , and so are morphisms inM ;
furthermore, the maps�V,W are the components of a natural transformation�: ⊗ ⇒ ⊗op,
that is,(g ⊗ f ) ◦ �V,W = �V ′,W ′ ◦ (f ⊗ g), for all morphismsf :V → V ′ andg:W → W ′
in M . It is then a simple matter to verify that the natural transformation� satisfies the braid
relations:

�U⊗V,W = (�U,W ⊗ 1V ) ◦ (1U ⊗ �V,W ) and �U,V⊗W = (1V ⊗ �U,W ) ◦ (�U,V ⊗ 1W),

for all objectsU,V,W . Note that the maps�V,W are not necessarily isomorphisms inM (be-
cause different matroids may have the same lifts or truncations). Hence, as long as we allow
a notion of braiding that does not require the component morphisms to be isomorphisms, it
follows thatM is a braided monoidal category.

We regard each matroid moduleK{M} as an object ofM , bigraded by rank and nullity,
with operators L and T determined by lift and truncation on the basisM. If V = K{M},
and the family of matroidsM is closed under free product, as well as lift and truncation,
then it follows immediately from Proposition5.4 and the definition of L and T onV ⊗V that
the map�V :V ⊗ V → V given byM ⊗ N �→ M �N , for all M,N ∈ M, is a morphism
in M , and henceV is a monoid object inM .

Suppose thatV = K{M} andW = K{N } are matroid modules withM andN free
product-closed. The operation� onV ⊗W defined by Eq. (8.2) is the composition�V⊗W =
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(�V ⊗ �W) ◦ (1V ⊗ �V,W ⊗ 1W), which is the standard monoid structure on the product of
monoid objects in a braided monoidal category. Associativity of�V⊗W (our Proposition8.3)
follows immediately from the braid relations and the associativity of�V and�W .

Finally, we note that ifV = K{M} is a matroid module, whereM is minor-closed, then
the restriction–contraction coproduct�:V → V ⊗V commutes with L and T, and soV is a
comonoid object inM . If M is also closed under free product, then Proposition 8.4 says that
V is a bialgebra in the braided monoidal categoryM . SinceV is a connected bialgebra, it
is in fact a Hopf algebra, with antipode given by the usual formula. Furthermore, it follows
from the proof of Theorem 7.6 that this Hopf algebra is self-dual.
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