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1. INTRODUCTION 

Let 

l+N&G.P,Q+l (1.1) 

be a group extension and A a (left) G-module. We note, for clarity, that the 
extension (1.1) and the module A will always be fixed unless the contrary is 
admitted explicitly. We consider the Lyndon-Hochschild-Serre (LHS) 
spectral sequence 

with ETvq = H”(Q, W(N, A)) 

17; 16, p. 35 I 1. The purpose of this paper is to examine the differentials 

do,?. Ei.2 --) E;,l 131 
2 . 2 4 

: E;,’ ~ Ez.0, dy+ Ei.2 ~ Ei.0 

(we shall usually drop the superscripts and write d, instead of df’*q) and the 
transgression t: Ei*2 - E:*’ (“1” denotes an additive relation). We shall 
give explicit descriptions (see Section 2 below) in terms of group extensions, 
crossed 2-fold extensions (see below) and certain automorphisms groups. 
Our descriptions also turn out to be natural in a strong sense. We note that 
similar automorphism groups were studied in [20]. 

The results of this paper were announced in [ 111. The differentials we 
describe in this paper yield, together with the differential d,: 
H”(Q, H’(N, A)) --t H’(Q, A”‘), all the information about H2(G, A) that can 
be obtained from the spectral sequence. This has been pushed further in [ 131, 
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where we have constructed a certain extension Xpext(G, N,A) of Ei3’ by 
Eiv2 which fits into a natural exact sequence 

H’(Q, A“‘) + H*(G, A) -+ Xpext(G, N, A) -% H3(Q, AN) + H3(G, A) 

such that A lifts the differential dtg3 (this was announced in [ 121). We also 
note that in [ 131 a conceptual description of d,: Ei,’ --+ Eiqo was obtained. 

In another paper [ 141 we shall extend our methods to obtain conceptual 
descriptions of all differentials 

do&. Et.4 j E;J- 1 
2 . and d’,q. El.9 j E;.q- 1, 

2’ 2 q> 1. 

The paper is organised in the following manner: In Section 2 we present 
our results (Theorems 1, 2 and 3). Section 3 deals with some differentials in 
the LHS spectral sequence. In Sections 4-6 we prove our theorems. Section 
7 offers an example. 

Central roles will be played by the concept of a crossed module and that 
of a crossed 2-fold extension, the definitions of which we reproduce here for 
completeness: A crossed module (C, r, a) (Whitehead [23, p. 4531) consists 
of groups C and r, an action of r on the left of C, written (y, c) I-+ “c, y E r, 
c E C, and a homomorphism a: C + I’ of r-groups, where r acts on itself by 
conjugation. The map 8 must satisfy the rule 

bcb- 1 = 8(HC 5 b, c E C. 

A crossed 2;fold extension ([9] or [ 10, Sect. 31) is an exact sequence of 
groups 

e2:O-rA+CAr-iQ-+ 1, 

where (C, r, a) is a crossed module. The group A is then central in C, 
whence it is Abelian; furthermore, the r-action on C induces a Q-action on 
A. For Q and A fixed, the classes of crossed 2-fold extensions under the 
similarity relation generated by morphisms (1, . , . , 1): e2 -+ e*’ of crossed 2- 
fold extensions constitute an Abelian group naturally isomorphic to the 
cohomology group H’(Q, A); this is a special case of the main Theorem in 
Section 7 of [lo] (see also [9]). We note that such an interpretation of group 
cohomology was found independently by several other people; see Mac Lane 
[ 151. Here we would like to point out, however, that the interpretation of the 
third cohomology group in terms of crossed 2-fold extensions, although not 
explicitly recognised, is hidden in an old paper of Mac Lane and Whitehead 
[171. 
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2. RESULTS 

2.1. Automorphisms and Group Extensions 

Let r be a group and A a (left) r-module. Let x0: r+ Aut(I’) x Am(A) be 
the obvious map given by x0(y) = (i,, E,), y E I-, where i, is the corresponding 
inner automorphism and I, the action 1Ja) = ya of y on A; here Aut(T) 
denotes the group of automorphisms of r, and Aut(A) that of A as Abelian 
group. Denote by Aut(I’, A) the subgroup of Aut(T) x Aut(A) that consists 
of pairs (cp, a) of automorphisms (o of r and CI of A such that 

a(a) = w(y)O(a), yEr, aEA. 

We call Aut(I’, A) the group of automorphisms of the pair (r, A). 

PROPOSITION 2.1. The group Aut(I’, A) is the normaliser in Aut(T) x 

ANAl OfxdO 
Let Out(r, A) = Aut(r, A)/X#) and call it the group of outer 

automorphisms of the pair (r, A). We shall now describe an obvious action 
of Out(T, A) on the cohomology H*(I’, A) (this may be folklore). 

Recall that any group homomorphism f: r’ + r induces a unique map 
f *i H*(I’, A) + H*(T’, A’); here A’ is the P-module which has the same 
underlying Abelian group as A but operators from r’ via f. Now, if 
;n,ui E Aut(T, A), let f = q-l, and consider ((o-l)*: H*(T, A) + H*(T, A’). 

4 sm’(y)a) = j’(o(a)), YET, aEA, 

u induces cr* : H*(I’, A’) -+ H*(T, A). Let 

a ((p,o) = u*(cp-I)*: H*(r, A) --) H*(r, A). 

We note that it is convenient to invert the automorphism cp for the formal 
reason that cohomology is contravariant in the group variable. 

PROPOSITION 2.2. The rule ((D, u) t--+ aCv,oj induces an action of 
Out(T, A) on (the left of) H*(I’, A). 

In our situation, we have the group extension (1.1) and the G-module A. 
Let r = N, and let N act on A in the obvious way. Then (1.1) furnishes an 
action x: G + Aut(N, A) of G on the pair (N, A) given by x(g) = (i,, t,), 
g E G, where i, is the conjugation n I-+ gng-‘, n E N, and I, the action 
Z,(a) = ga of g on A. For later reference, denote by Aut,(N, A) the image of 
x. Since x extends the above homomorphism x0: N -+ Aut(N, A), it induces an 
outer action CO: Q + Out(N, A) of Q on the pair (N, A). 
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PROPOSITION 2.3. This outer action, combined with the action of 
Out(N,A) on H*(N, A) given above, yields the standard action of Q on 
H*(N, A). 

Consider an extension 

e:O-+A-+E+N-,l (2.1) 

with Abelian kernel A, where we assume that conjugation in E induces that 
action of N on A which is obtained by restricting the operators from G to N. 
Let AutA(E) denote the group of automorphisms of E which map A to itself. 
Each a E A&(E) induces an automorphism I, of A (as Abelian group) and 
an automorphism i, of N such that (i,, I,) is a member of Aut(N, A). The 
rule a I-+ (i,, I,) is in fact a homomorphism AutA(E) -+ Aut(N, A). If 
AutA,(E) denotes the pre-image (in Aut*(E)) of Aut,(N, A) (c Aut(N, A)), 
we have a homomorphism 

h = h,: AutA,(E) -+ Aut,(N, A) 

which is determined by e. The kernel of h, is isomorphic to the group 
Der(N, A) of derivations (=crossed homomorphisms) of N in A [5, p. 12; 6, 
p. 45 1. We fix an embedding of Der(N, A) in AutA,(E) as follows: If d: N-+ A 
is a derivation (i.e., d(nm) = d(n) + “d(m), m, n E N) define cq,: E -+ E by 
a&) = d(z(x)) . x, x E E. We now embed Der(N, A) in Aut$(E) by the rule 
d+-+aar,. 

PROPOSITION 2.4. The map h, is surjective if and only if the class [e] E 
H’(N, A) is a member of H2(N, A)Q. 

Proof: By virtue of Proposition 2.3, [e] E H*(N, A)Q if and only if for 
each g E G the map (I,), (ii’)*: H2(N, A) + H2(N, A) is the identity. This 
implies the claim. 

2.2. The Differential d,: H”(Q, H2(N, A)) + H’(Q, H’(N, A)) 

Let e be a group extension (2.1). Assume now that e represents a member 
of H2(N, A)Q. In Section 2.1 we associated to e the extension 

0 -+ Der(N, A) + Autc(E) -+ Aut,(N, A) + 1. (2.2) 

If we replace Au@?) by the fibre product 

AutA,(E) X G, 
Aut,(N.A) 

denoted henceforth by Au&(e), we obtain the extension 

O-+Der(N,A)+Aut,(e)+G+ 1. (2.3) 
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There is an obvious map of (2.1) into (2.3): 

o- A -E --sN- 1 

I 
5 

h 1’ 
(2.4) 

0 --+ Der(N, A) - Am,(e) - G 4 1; 

here < sends a E A to the inner derivation (n +-+ a - ‘a, n E N), p(x) = 
(i,, n(x)), x E E, and i is the inclusion. Inspection proves the following. 

PROPOSITION 2.5. The obvious action of Aut,(e) on E turns 
(E, Aut,(e), /3) into a crossed module. 

A consequence of this is that /I(E) is normal in Aut,(e). We denote the 
cokernel of /3 by Out,(e), since there is an obvious map ‘1: Out,(e) + Out(E), 
where Out(E) denotes the group of outer automorphisms of E. If we pass in 
(2.4) to cokernels, we obtain the extension 

&O+H’(N,A)+Out,(e)-+Q+ 1. (2.5 > 

It is straightforward to check that the class [e] E H’(Q, H’(N, A)) depends 
only on [e] E H’(N, A)Q = H”(Q, H*(N, A)). 

THEOREM 1. The rule e ++ t? describes the differential 

d,: Etg2 -+ E;.‘. 

A proof will be given in Section 4 below. We shall also show that our 
description is natural in a very strong sense; see Propositions 4.5 and 4.6 
below. 

For later reference, we note that the above construction also associates 
with e the crossed 2-fold extension 

0 + AN + E 2 Aut,(e) + Out,(e) -+ 1. (2.6) 

Remark 1. In a picturesque way one could say that the image d,[e] 
extends the well known interpretation of H’(N, A) as the group of 
automorphisms of E leaving A and N = E/A elementwise fixed, module the 
inner automorphisms induced by elements of A; see e.g., [S, p. 121 or [6, p. 
46). 

Remark 2. Theorem 1 generalises Theorem 0.2 of [22]; see also p. 265 
of [21]. Extensions (l), (6) and (7) in Section 0 of [22] correspond to our 
extensions (l.l), (2.1) and (2.5), respectively. Sah assumes extension(l.1) to 
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be split with N Abelian (i.e., N a Q-module) and the N-action on A to be 
trivial. We managed to get rid of all these hypotheses. 

Since Et*’ is the kernel of d,, we have the following. 

COROLLARY 1. The subgroup Ey” of transgressive elements consists of 
those classes of extensions e for which P splits. 

This suggests that dz[e] should be the obstruction to lifting the outer 
action w: Q + Out(N,A) to somewhat of an outer action on E. In fact, if 
Out’(E) denotes the cokernel of the obvious map E + AutA(E) which sends a 
member of E to the corresponding inner automorphism, the map AutA(E) + 
Aut(N, A) in Section 2.1 induces a homomorphism Out’(E) -+ Out(N, A) the 
kernel of which is (isomorphic to) H’(N,A). 

COROLLARY 2. The class d,[e] E H’(Q, H’(N, A)) is the obstruction to 
lifting the outer action LU: Q + Out(N, A) of Q on (N, A) to Out”(E). 

ProoJ: The map q: Out,(e)+ Out(E) maps Out,(e) into OutA c 
Out(E) and induces a commutative diagram 

0-tH’(N,A)- Out,(e) - Q --+ 1 

II I I 
w 

0 + H’(N, A) ---+ OutA (E) - Out(N, A) 

with exact rows, whose right-hand square is a pullback diagram. The claim 
follows. Q.E.D. 

We take the opportunity to correct a slight error in [22]: It is fairly clear 
from our construction of (2.5) that, in the special case considered by Sah, 
the middle group of (7) in Section 0 of [22] should be a fibre product 

AV’,[fl) X C 

here Aut,(K, 44) is the image of the obvious map r-, Aut(K) x Aut(M). 
Sah’s description is correct only if this map is injective, i.e., if the action of r 
on (K, M) is faithful. We also note that, in view of the above, on p. 21 of 
[ 221 the group M in line 18 from below should perhaps be replaced by E(J). 

Remark 3. In very special cases the differential d, can be described as 
the cup product with certain characteristic classes [l-3]. We tried to obtain 
such a description in our situation but could not manage to do so. 
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2.3. The Differential d,: H’(Q, H’(N, A)) -+ H”(Q, H‘$V, A)) 

Let e, denote the split extension 

e,:O+A-+A jN-+N-+ 1. 

Since [e,] E H2(N,A)Q, the construction in Section 2.2 above associates the 
extension 

e,: 0 -+ H’(N, A) + Out&e,) --$ Q -+ 1 (2.7) 

with e,. The obvious action of G on A 3 N induces a canonical section s,,: 
G + Aut,(e,) which, in turn, induces a canonical section w,,: Q -+ Out,(e,). 
Hence we my identify Aut,(e,) and Out&e,) with Der(N,A) 3 G and 
H’(N,A) 3 Q, respectively, in a canonical way. Further, the crossed 2-fold 
extension (2.6) now reads 

0 -+ AN -+ A 3 NA Aut,(e,) -+ Out,(e,) -+ 1. P-8) 

Consider a derivation 6: Q-+H’(N, A) representing a class [S] E 
H’(Q, H’(N, A)). Setting tys(q) = 6(q) ye(q), q E Q, we obtain a further 
section v/~: Q -+ Out,(e,) in (2.7). Here we identify H’(N, A) with its 
isomorphic image in Out,(e,). Pulling back (2.8) along v/s yields the crossed 
2-fold extension 

6:ojANjA ~NAB%Q- 1. (2.9) 

Here BS is the fibre product 

B’ = Aut,(e,) )( Q; 
Out(;(e,) 

it will be convenient to take as B” the pre-image in Aut,(e,) of w,(Q) c 
Out,(e,). Further, the map a: A 3 N -+ B” is induced by p,, and BS acts on 
A 3 N in the obvious way. As pointed out in the Introduction, 8 represents a 
class [s] E H3(Q, AN). It is straightforward to check that this class depends 
only on [a] E H’(Q, H’(N, A)). 

THEOREM 2. The rule 6 I-+ 6 describes the differential 

A proof will be given in Section 5 below. Again we shall show that our 
description is natural in a very strong sense; see Proposition 5.4 and 5.5. 
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2.4. The Transgression r: EiV2 - Ei*’ and the Dlfirential d,: E$’ + EiVo 

Let e be a group extension (2.1) whose class is a transgressive element of 
H2(N, A)Q; by Corollary 1, the extension i associated with e in Section 2.2 
splits. Let t,u: Q + Out,(e) be a section. Pulling back (2.6) along w yields the 
crossed 2-fold extension 

&:O+AN+EABg+Q+ 1. 

Here B* is the libre product 

(2.10) 

B”= Aut,(e) )( Q, 
Out,(e) 

the map a: E + B” is induced by /3, and B” acts on E in the obvious way. As 
we have already explained, I?,,, represents a class [Z&l E H3(Q, AN); this class 
depends on [e] and w. 

THEOREM 3. (a) The pairs ([e], [;*I), where P splits and where v/ is a 
section of t?, constitute an additive relation. This additive relation is the 
transgression 5: EiV2 - E$‘. 

(b) Combining this relation with the projection E:,‘-+ EiVo yields a 
homomorphism Ei*2 --) E:*’ which is the corresponding dlgerential d, . 

This will be proved in Section 6 below. Again the descriptions are natural, 
in a suitable sense. This is, however, best understood in terms of crossed 
pairs; see Section 2 of [ 13). 

Remark 4. In the special case that N acts trivially on A, a similar result 
as Theorem 3(a) was obtained by Ratcliffe [ 181. 

3. ON DIFFERENTIALS IN THE LHS SPECTRAL SEQUENCE 

Let (B,( ), a) denote the Bar resolution. The LHS spectral sequence 
(EF’Q, d,), associated with the group extension (1.1) and the G-module A, is 
obtained by suitably filtering the bicomplex 

P4 = HOmQ(Bp(Q), HOmN(B,(G), A 1) 
with differentials 

(b’f)(b’)(b”) = (-l)p+“+ ‘f(ab’)(b”), b’EB,+,, b”EB,, 

(PJ)(b’)(b”) = (-l)“+‘f(b’)(ab”), b’ E B,, b” E B,, , 

(see [ 16, p. 3511, h w ere this spectral sequence is called the Lyndon spectral 
sequence). For later use, we denote the cokernel of a: B,, , + B, by C, and 
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the kernel of a: B, + B,- 1 by J,; the corresponding canonical maps will be 
denoted by pr: B,+ C, and k: Jt + B, (we set BP, = Z). 

We shall utilize a variant of the description of Ei,4 and d, introduced on 
pp. 341, 342 of Mac Lane’s book [ 161 in case of homology: 

Define L;qq c Kpvq and Mggq c L;qq by 

Ll+9 = jaPd?; &raP.4 = 0 and &aP.4 = -paP+l,q--l for SOmeaP+l.4-l}, 

My? = {&bP-l.9 + (y/p-1; (y/p167 = 01. 

Then E,P*q = L~Tq/M~*q, and the differential 

is induced by the additive relation 

((aP.q,&P+‘.q-‘)E KP,4@ KPtb-1. 
3 

(yaPJ? + #rap+ IJ- 1 = 0, pp? = 0). (3.1) 

Now apTq: f{JIJ + Hom,(B,(G), A) is Q-linear, and the condition B”aPVq = 0 
means the image of aP4l contained in 
Hom,(J,-,(G), A) (c Hom,(B,(G), A) via pr: B,(li -+ C,(G) = J,- ,(G)). 
Hence up.q E L;vq if and only if there is a commutative square 

BP+,(Q) A B,(Q) 
(- ,)e+l~D+l.s-I 

I 1 
OP." (3.2) 

Hom,(B,-,(G),A)----+ k* Hom.dJ,- ,(Gh A 1. 

The cokernel of the second row of (3.2) is (naturally isomorphic to) the 
cohomology group Hq(N,A). Hence any a p*4 E L;*q induces a Q-linear map 

a = ap3q: C,(Q) --, Hq(N, A). 

Conversely, any such a gives rise to a commutative diagram 

O- J,+,(Q) -L BP+ l(Q) 

I 
,I 

I 
0 - Hom,(C, _ 1(G), A) 5 Hom,(B,- 1(G), A) 

--L B,(Q) --% C,(Q) -0 

1 I 
a (3.3) 

k’ Hom,(J,- ,(G), A) - HyN,A)-O 
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with exact rows such that the combined map B,(Q) -+ Hom,(J,- r(G), A) -+ 
Horn,@,(G), A) is a member of L f,“. We shall refer to (3.3) as a lifting of 
a; it is uniquely determined by a up to chain homotopy. Hence the class [o] 
in the cokernel of 

HomoP,+ ,<Qh Hom&,- ,KWN 

--$ HomdJ,+ ,(Qh Hom,(C,- ,(G)J)), 
which is the cohomology group Hpf2 (Q, Hom,(C, - I(G), A >>, depends only 
on a. Furthermore, [a] depends only on the cohomology class 

Ia I E H”(Q, HYN, A 1) 

that is represented by a, and the rule [a] ++ [u] describes a homomorphism 

H”(Q, H’(N, A 1) -+ HPf2(Q, Hom,(C,- ,(G>, A >). 

We denote this homomorphism by y. 

Remark 3.1. The map y coincides with the map 

Ext;(Z, H9(N, A)) + Ext, ” ‘(C Hom,(C, -, (G), A >> 

given by Yoneda splicing with the second row of (3.3) ( we shall, however, 
not use this fact). 

If Y denotes the natural projection 

Hom,(C,-,(G), A) -+ Hq-‘(N, A), 

we have the following. 

PROPOSITION 3.1. The d@zrential 

d,: H”(Q, Hq(N, A)) + HP+*(Q, H4-‘(NI A)) 

is given by (-1)’ Y* y (where 

r*: Hp+‘(Q, Hom,(C,-,(G), A)) + HP+‘(Q, H4-‘(N, A)) 

is the induced map). In other words: If the Q-linear map a: C,(Q) + Hq(N, A) 
represents [a] E H”(Q, H4(N, A)), construct a ll$ting (3.3); then(-1)4 times 
the composite map ra represents d2[a] E HP+*(Q, Hq-‘(N, A)). 

ProoJ A pair (apSq, b’ap+ lgq-’ ) belongs to the additive relation (3.1) if 
and only if it fits into a diagram (3.2). The assertion follows since 
8’ap+1*q-‘: Bp+2(Q) + Horn,@,-,(G), A) (or the induced map J,+,(Q) -+ 
Hom,(Cpp r(G), A)) represents the d,-image of the class represented by apq4. 

Q.E.D. 
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Remark 3.2. The preceding proposition recovers the following cocycle 
description of d,: Let the p-cochain f: Qp + Horn,,@,(G), A) represent 
[f] E Zf”(Q, Hq(N, A)); this means that f maps Qp to Hom,(J,-,(G), A) 
(C Hom,(B,(G),A) via pr: B,(G) -+ J,-,(G)) in such a way that rf: Qp -+ 
Hq(N,A) is a p-cocycle. It follows that for each [o, / ... 1 up+ i] E Q”” there 
exists b,, . . Iu,+,l E Hom,(B,- i(G), A) such that 

‘i+l I *** Iup+ 

where ~3: B,(G)+ BP-,(G) is the corresponding map. Define g: Qp” + 
Hom.dB,-, WY A > by 

Then (-1)’ g represents d,[f]. We note that a similar description of d,: 
@(Q, H’(iV, A)) + H2(Q, Hq- ‘(N, A)) can be found on p. 21 of [22] (it is 
clear that (5) must read “g(u, r) = ah, - h,, + h,“). 

There is an even more direct description of 

d,: H”(Q, H2(N, A)) -+ HP+ ‘(Q, H’(N, A)). 

Let 

l+NG-+F+G-+ 1 (3.4) 

be the free standard presentation; here F is free on a set (x8; g E G*}, where 
G* = G - { I}. Let fl c F denote the pre-image of N c G. 

LEMMA 3.1. The cokernef of a*: Hom,(ZG, A) + Hom,(B,(G), A) is 
(naturally isomorphic to) the group H’(NQ, A), and passing to cokernels in 
the second row of (3.3) yields, in case q = 2, an exact sequence of N-modules 

O- H’(N,A)a H’(@, A) h, Horn,&,(G), A) -% H2(N, A) - O(3.5) 

Here h is the obvious map that sends the class of rp: B,(G) -+ A to its 
restriction v, I J,(G). 
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Proof. The projection F+G induces natural isomorphisms Hom,(ZG, A) 
-+ Hom,,(ZF, A) and Hom,(B,(G), A) + Hom,,(ZF, A) (here “IT” denotes 
the augmentation ideal of a group Z). Q.E.D. 

Remark 3.3. The commutator factor group (p)Ab is (naturally 
isomorphic to) Z,(G), and the exact sequence (3.5) is the exact sequence 
(10.6) in [ 16, p. 3541 associated with the group extension 1 + p -+ Arc + 
N+ 1 and the N-module A. 

The following is immediate from the above: 

ADDENDUM TO PROPOSITION 3.1. Zf the Q-linear map a: C,(Q) + 
H*(N, A) represents [a] E H”(Q, H*(N, A)), construct a lifting 

O- J,+,(Q) - Bp+l(Q) - B,(Q) - C,(Q) -0 

I 
0 

I I 1 
a 

O-H’(N,A)~H’(NP,A)~ HomdJ, (G), A 1 -LH*(N,A)-O. 

(3.6) 

Then cr represents d, [a] E HP+ *(Q, Z-Z’(ZV, A)). 

Remark 3.4. Proposition 3.1 may be paraphrased by saying that df,* is 
the map Ext#, H*(N, A)) + Extg+*(Z, H’(N, A)) given by Yoneda splicing 
with (3.5). 

We shall also need a description of the differentials 

d,: Ef.4 + ET++2. 

We shall proceed as follows (cf. [ 16, p. 342, Ex. 21): Define 

L;qq = (u~,~ E Kpqq; Cc(aP*“)}. 

Here CC(U~*~) shall mean: upqq maps B,(Q) into Hom,(J,-,(G),A) 
(c Hom,(B,(G), A) as above), and there is a commutative diagram 

&+2(Q) a B,+l(Q) --% B,(Q) 

i 
gP+l.P-l 

1 
(- l)P+lqPt’.4-l 

I 
L7P.q (3.7) 

HomN(Bq-2(G)v A 1 2 Hom,(B,-r(G), A)2 Hom,(J, -, (G), A 1, 

where aptl,q-’ E KP+‘*q-1, aP+**q-* E KP+*,4-2. We also define 
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Here Cb(bp-17q) shall mean: There is a commutative diagram: 

L(Q) - Bp-z(Q) 

I 
bP-14 

I 
bP -Id+1 

Hom,(B,(G), A > - Hom,(J,(G), A 1, 

where bp-2,q+1 E Kp-2,q”. Now EfYq = L~qq/M~~q, and the differential d,: 
EfdL,E-.4-2 is induced by the additive relation 

{(aP.4, &P+h-2) E KP.9 @KPf+2; Cc(aP4)}, (3.8) 

as a closer examination of the arguments in the proof of Proposition 6.1 on 
p. 341 of [ 161 shows. Hence 

PROPOSITION 3.2. The differential d,: Efqq + Eft 3*q~2 may be described 
as follows: Represent a class in E f’” by a Q-linear map a: C,(Q) + H’(N, A), 
and lift a to 

B,,,(Q) --% Bp, ,(Q> 

I 
g!J+2.4-2 

I 
QPil.Vl 

Horn@,-,(G), A) -% HomdB,-,WJ) 

-5 B,(Q) -- C,(Q) - 0 

I 
aP*V 

I 
cl (3.9) 

-f% Hom,(J,-,(G), A) a Hq(N, A) - 0. 

Then ap+2*qP2 induces a map u: J,+,(Q)- Hom,(C,-,(G), A), and 
C-1) ptqt’ times the composite map ro: J,,*(Q)- H4-‘(N, A) represents the 
d,-image of [a]. 

ADDENDUM. The transgression t: EiqZ -E:+’ may be described as 
follows: Let a: Z + H*(N, A) represent a transgressive class; this is the case 
if and only if a admits a lifting (3.9). Let u: J,(Q)- Horn@, A) be the 
induced map as above. Then ([a], -[a]) is a member of the transgression 7, 
and any member oft may be obtained in this way. 

4. THE PROOF OF THEOREM I 

Let 

e:O+A-+E+N-+ 1 
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be a group extension (2.1) that represents a member of H2(N,A)Q. Let 

c:O-+A-+C+ZG+O 

rpresent the corresponding class [c] E Ext,(ZG, A) z H’(N, A) (cf. 
Proposition 4.1 below). The extension c determines a group extension 

e^:O+H’(N,A)+&Q+ 1 

that represents d, [e] E ZZ’(Q, H’(N, A)) (Corollary 4.1 below). Theorem 1 is 
then proved by showing that e^ is equivalent to the extension e (2.5); see 
Proposition 4.4 below. 

4.1. Ext,(ZG, A ) and Opext(N, A ) 

The purpose of this subsection is to develop a conceptual description of 
the standard map Opext(N, A) + Ext,(ZG, A) that identifies the two models 
Opext(N, A) (operator extensions of A by N) and Ext,(ZG, A) (N-module 
extension of A by ZG) of the abstract group H*(N, A). 

Let 

l+N’+F+G-i 1 (4.1) 

be the free standard presentation such that F is free on a set {xg; g E G*}, 
where G* = G - { 1 }. Let Nc c F denote the pre-image of N c G. We identify 
the commutator factor group (NG)Ab = N’/[p, NC] with J,(G) = 
ker(B,(G)+ B,(G)) by the standard rule n ++pr(n - l), n E NC, where pr: 
IF-+ B,(G) denotes the projection (x, - 1) F-+ [g] (we could also take 
n +-+ppr(l - n)). Let M = Nc/[V, NC]. Now, if e represents [e] E 
Opext(N, A), we may lift the identity map of N to 

O-J,(G)-M-N- 1 
(4.2) 

e:O- A -E-N-l, 

such that ,B is N-linear. In order to map [e] to an element of Ext,(ZG, A), let 
C, denote the pushout of 

J,(G) - B,(G) 

481/72/2-3 
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in the category of N-modules. It yields a commutative diagram of N-modules 

O-J,(G)-B,(G)-ZG-0 

b I II 
(4.3) 

c,:O- A - C, -ZG-0. 

PROPOSITION 4.1. The rule e ++ c, induces the standard isomorphism 
Opext(N, A) -+ Ext,(ZG, A); this isomorphism is canonical up to a sign 
depending on how (fl)Ab and J,(G) are identified. 

Proof. Straightforward and left to the reader. 

We shall always identify (p)Ab and J,(G) by nt-+pr(n- l), nENC. 
Then the isomorphism in Proposition 4.1 is canonical. 

4.2. A Semidirect Fibre Product 

Let K be a group and B a K-module. We shall need a conceptual 
description of the standard map 

Ext,(ZK, B) + Opext(K, B) 

that identifies the two models Ext,(ZK, B) (K-module extensions of B by ZK) 
and Opext(K, B) (operator extensions of B by K) of the abstract group 
H’(K, B): 

Let C and D be K-modules, let h: C + D be a map of K-modules, and let 
d: K + D be a derivation. We call the subgroup of the semidirect product 
C 3 K consisting of the elements (x, k) E C 3 K such that h(x) = d(k) a 
semidirect j?bre product and denote it by 

C 3 K. 
D 

Next, let 

be an extension of K-modules. The above construction provides us with the 
uniquely determined group extension 

O-+B&C~K~K+l; 
D 

here j(b) = (i(b), 1) and q(x, k) = k, where b E B, (x, k) E C Jr, K. 
We may, in particular, apply this construction to an extension 

c:O+B+C+ZK-rO 
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in connection with the standard derivation d: K + IK, d(k) = k - 1, k E K. 
This yields the group extension (cf. Section 3 of [4]) 

e,:O-+B-+C 3 K--+K-+l. 
IK 

PROPOSITION 4.2. The rule c w e, describes the standard isomorphism 
Ext,(ZK, B) + Opext(K, B); this isomorphism is canonical up to sign. 

The proof is easy and is left to the reader. We note, however, that we 
could construct C I,, K with respect to the derivation d(k) = 1 - k also. This 
explains the ambiguity of sign. 

Remark. The inverse to the map Opext(N,A) + Ext,(lG,A) in 
Proposition 4.1 is given by sending 

O+A+C+ZG+O 

to 
O-iA+C 3 N-N--+1, 

IG 

where d(n) = n - 1 E ZG, n E N (cf. Section 4.1). 

4.3. The Proof of Theorem 1 

Let the group extension e represent [e] E H2(N,A)Q. Lift the identity map 
of N to a diagram (4.2) and construct a diagram (4.3). This yields an 
extension c = c, of N-modules that represents the corresponding class [c] E 
Ext,(ZG, ,4)Q (Proposition 4.1). Let a: Z + Ext,(ZG, A) send 1 to [cl. It is 
clear that the projection r: Hom,(J,(G), A) + Ext,(lG, A) maps ~1 (occurring 
in (4.2) and (4.3)) to a(1). 

By the Addendum to Proposition 3.1 we have to consider the lifting 
problem 

O--+ J,(Q) - B,(Q) - ZQ - z -0 
I lo a 

i 
JQl (ml 
$ $ I 

O-H1(N,A)i”T-lH’(Z’e@,A)~ Hom,(J,(G), A)4 Ext,(ZG, A) ---+ 0, 

(4.4) 

where h is the map used in Lemma 3.1. A lifting a,: ZQ + Horn&,(G), A) 
is a given by a,( 1) =,u. Now, for g E G, aO(p( g)) = l,,ul~‘, where p: G + Q 
is the projection in (1.1); note that for n E N we have I,,ul;’ =,u since p is 
N-linear. There is no need to construct a,; we shall instead construct directly 
a group extension representing d2[a]. 
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Let T = ker(r: Hom,(J,(G), A) + Ext,(ZG, A)). Clearly, a0 induces a Q- 
map ZQ + T, and we may take the fibre product ZZ’(Nc, A) Xr ZQ (note that, 
by exactness, h maps H’(N”,A) onto T). 

PROPOSITION 4.3. The fibre product H’(N”, A) X,ZQ fits into an 
extension 

O+H1(N,A)-rH’(No,A))(,ZQ+ZQ-0 (4.5) 

of Q-modules that represents 

dz[a] E Ext(ZQ, H’(N, A)) E H’(Q, H’(N, A)). 

Proof We may complete the construction of (4.4) by setting a,[q] = [rp], 
where ([o], q-l) E H’(fl, A) XTZQ, rp: B,(G) + A denoting an N-map that 
represents [q] E H’(N”, A) (see proof of Lemma 3.1). The assertion is now a 
consequence of the Addendum to Proposition 3.1. Q.E.D. 

COROLLARY 4.1. The group extension 

e^:O+H1(N,A)-+H’(No,A) 3 Q-Q- 1 (4.6) 
r 

represents d,[a] E Opext(Q, H’(N, A)) z H’(Q, H’(N, A)). Here 
H’(fl, A) 3 T Q is the semidirect jibre product with respect to the derivation 
d: Q + T, d(q) = a,(q - 1) (= Zg,uZ; ’ - p, where p( g) = q, g E G, q E Q), and 
the map h: H’(N”, A) -+ T, introduced in Section 3. 

Proof: Apply Proposition 4.2 to extension (4.5) and observe that 
(H’(J’?A)WQ> LaQ=H1(fl,A) 3TQ. Q.E.D. 

In the group extension (4.6) the group H’(N, A) is the cokernel of k”: 
Hom,(ZG, A)+ Hom,(ZG,A) and H’(Zl@,A) is the cokernel of a*: 
Hom,(ZG,A)+ Hom,(B,(G),A) (cf. Lemma 3.1). It is known that the map 

V: Hom,(ZG, A) + Der(N, A), (eP>>(n) = cp(n - 113 

cp E Hom,(ZG, A 1, n E N, 

induces an isomorphism 

v#: coker(k*) + coker(A 4 Der(N, A)); 

similarly, the map 

p: Horn,@,(G), A) -+ Der(Nc, A), 
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given by @(w))(n) = (~pr)(n - l), w E Horn,@,(G), A), n E A@, where pr: 
IF + B,(G) is the projection x, - 1 N [g], induces an isomorphism 

p#: coker(a*) -+ coker(A -+ Der(A@, A)). 

Corresponding to h: coker(a*) + T, 

h’: coker(A --f Der(A@, A)) -+ T 

= ker(r: Horn,,@,(G), A) -+ H2(N, A)) 

is defined by h’[d] = o: J,(G) + A such that ppr(n - 1) = d(n), where pr is 
as above. 

LEMMA 4.1. The diagram 

coker(k*) = H’(N, A) inf H’(NQ, A) = coker(a*) 

I 
“# 

i 
P# 

coker(A + Der(N, A)) -----+ coker(A -+ Der(A@, A)) 

is commutative, where the second row is induced by the projection. 
Furthermore, h = h’p,. 

Proof. The first statement is clear. In order to verify the second, let x = 
pr(n - 1) E J,(G), n E NG. For v E Horn,&?,(G), A) we have 

(h’p,[vlWO - 1)) = @w)(n) = vOr(n - 1)). 

Hence h’p,lvl = wlJ,(G) = h[w], as h was introduced in Lemma 3.1. 
Q.E.D. 

In view of Lemma 4.1, we shall now take coker(A -+ Der(N,A)) as 
H’(N, A) and coker(A -+ Der(A@, A)) as H’(J@‘,A), and we shall no longer 
distinguish between h and h’. It will be convenient to describe 
h:H’(NO,A)+ T by the rule 

(h[dl>pr = dl@, d E Der(Na, A ), (4.7) 

where pr: NC -+ (p)Ab is the projection; here (p)Ab is identified with J,(G) 
as in Section 4.1, above. 
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PROPOSITION 4.4. There is a morphism of extensions 

O-+Der(N,A)---+ AuM4 ---+G--+l 

I I I 
P (4.8) 

e^:O- H’(N,A) -H’(P,A) 3 Q-Q- 1 

such that the combined map E -+ 4 Aut,(e) -+ H’(N”, A) 3 T Q is zero. 

Clearly, this establishes Theorem 1, since (4.8) induces an equivalence of 
extensions (2.5) -+ e^. 

Proof of Proposition 4.4. From (4.2) we may construct 

l+Ny+~+“il+l 
(4.9) 

e:O- A --+ E *N--+1, 

where K = ,upr and 8 = vpr; here “pr” denotes the corresponding projections. 
Let a E Aut,(e), and let g = g, E G be the image in G. Define d,: h@ -+ A 

by 

d,(n) = a(O(x;‘nx,)) @n-l), nENQ, x,EF; 

this yields a derivation from Nc into A, where Nc acts upon A via the 
projection A@ -+ N. 

LEMMA 4.2. The rule a I--+ d, induces a derivation Aut,(e) + H’(h@, A), 
where Aut,(e) acts on H’(N”, A) via the obvious projection Aut,(e) -+ Q. 

Proof: Let cx, p E Aut,(e), and let x =x8, E F, y = xgg E F, where g,, 
g0 E G are the corresponding images. Using additive notation in H’(@, A), 
we have to show that 

[d,,] = [d,] + ‘“[d,] E H’V%O 

where q, E Q is the image of Q. Now 

d,,(n) = (a/%?(~-‘x-‘nxy)) O(n-‘), nENa, 

= (ap80)-‘x-‘~y))(a8(x-‘n-‘x)) + (aB(x-‘nx)) @n-l) 

= g”(d,(x-‘nx)) -t d,(n), 

whence the assertion. Q.E.D. 
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We can now complete the proof of Proposition 4.4: The rule a t-1 
([d,], q,) describes a homomorphism Aut,(e) + H’(fl, A) 3 Q, where 
q, E Q denotes the image in Q. Moreover, for n E p we have 

i.e., 

d,(n) = cfK(X~ ‘nx,) - /c(n), g=g,EG 

= (I,Ki;gl - K)(n), 

4 I p = Cl,& ’ - P) pr, 

where pr: NC -+ (P)Ab is the projection. By rule (4.7) it follows that 

h[d,l = Ql,’ -P = d(m) = d(q,), 

whence (Id,], q,) E H’(@, A) 3 T Q. Thus we have a map 

Aut,(e) -+ H’(N”, A) 3 Q. 
T 

For an element a = ad E Aut,(e) such that a(x) = d(m) . x, x E E, where 
d: N + A is a derivation (cf. Section 2.1), we have, for n E No, 

d,(n) = (a@)) 8(n-‘) 

= (@r)(n), 

where pr: NQ -+ N is the projection; note in particular that g, = 1 E G. It 
follows that Aut,(e) -+ H’(fl, A) IT Q induces a diagram (4.8). To see that 
the combined map E -9 Aut,(e) + H’(fl, A) IT Q is zero, let a =/I(y), 
y E E. Now, for n E fl, we have 

d,(n) =yf?(x-‘nx)y-‘B(n-‘), x ‘.x8, g=g,.EN 

=Jqx-‘) e(n)(ye(x-I))-’ e@z-1) 

= a - na, where a =y19(x-‘) EA. 

Hence d, is an inner derivation, and we are done. Q.E.D. 

Remark. The reader might perhaps believe that in our proof of Theorem 
1 there is an argument missing which should establish the independence of 
the choices of the maps ,U and v in (4.2). There is, however, no need to give 
such an argument: Diagram (4.8) reverses the choices ofp and v in the sense 
that (4.2) and (4.8) together show that the whole proof is independent of ,u 
and v. 
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4.4. Naturalness of the Description 

Our description of d,: Ei*’ + Ei*’ is natural in a strong sense; what this 
means will be expressed below in Propositions 4.5 and 4.6 for the module 
variable and the group extension variable, respectively. 

Let t: A + A’ be a homomorphism of G-modules. If e is a group extension 
(2.1) let 

re:O+A’-tE,+N+ 1 

be the induced extension, representing r* [e] E H*(N, A’); cf., e.g., Section 2.2 
of [ 131. If [e] E H2(N,A)Q then [re] E H*(N,A’)“. 

PROPOSITION 4.5. For any extension e of A by N that represents a 
member of H2(N, A)Q, the G-map t induces, in a canonical way, a morphism 

CT*, w,> 1): C+ (re) 

of extensions. 

Proof. The map w,: Out,(e) + Out,(te) given in Proposition 2.1 of [ 131 
yields the desired morphism of extensions. 

Next, let there be given two group extensions, (1.1) and (l.l)‘, and let 
@: G’ -+ G be a homomorphism that maps N’ into N. Then @ induces a 
morphism of extensions and, by abuse of notation, we simply write @: 
(l.l)‘* (1.1). 

Now, if e is a group extension (2.1), let 

be the induced extension representing @*[e] E H*(N’, A); cf., e.g., Section 
2.2 of [ 131. If e represents a member of H*(N, A)Q, writing Out,(e) = 
out&)xQ Q’, let 

e@:O-+H’(N,A)-+Out,,(e)+Q’-+ 1 

be the induced extension, representing @*[cl E H’(Q’, H’(N, A)) (here and 
below the notation “-*” is abused); notice that e@ represents a member of 
H*(N’, A)Q’ in this case. 

PROPOSITION 4.6. For any extension e of A by N that represents a 
member of H’(N, A)Q, the morphism @ induces, in a canonical way, 
morphisms 
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and 
(@*, w @,1)X?@+(Z) 

of extensions. 

Proof: The maps 6’: Out,(e) + Out,(e) and w@: Out,(e) + Out,(&) 
in Propositions 2.3 and 2.4 of [ 131, respectively, yield the desired morphisms 
of extensions. 

Notice that Propositions 4.5 and 4.6 imply the (well known) fact that the 
differential d,: Ei3’ + Ei*’ is natural in both variables. 

5. THE PROOF OF THEOREM 2 

Let 6: Q --) H’(N, A) be a derivation. Let a = a8 be the corresponding Q- 
map ZQ --t H’(N, A) (a(q - 1) = 6(q), q E Q). In view of Proposition 3.1, the 
image d2([a]) E H”(Q, AN) is obtained as follows: Let (B*(Q), a) be the 
(normalised) Bar resolution in inhomogeneous form [ 16, p. 1141. Construct 
a lifting of a: 

O- J,(Q) - B,(Q) - Bl(Q) - ZQ -0 

I 
cr 

1 
UI 

I 
PO 

I 
a 

0 - Horn,@, A) - Hom,(ZG, A) - Hom,(lG, A) - H’(N, A) - 0. 
k’ 

(5.1) 

Then -u represents the image d,[a] E H3(Q,AN). 
In order to prove Theorem 2, let (C, F, a) be the free crossed module on 

the standard presentation (X; R) of Q [ 10, Sect. 41; here X= {u,; q E Q*] 
and R = {(r, s) = u,u,z&;‘; r, s E Q*}. Now choose a lifting A: F -+ G of the 
obvious projection rt: F -+ Q such that 71 =pA, where p: G -+ Q is the 
projection in (1.1). Further, let 

ec,,,,:O+J-+C+F-I-lQ-+ 1 

be the corresponding crossed 2-fold extension [ 10, Sects. 3, 41. It is known 
[ 10, Sects. 2, 4, 91 that J is a Q-module (the action is induced by the F- 
action on C) generated by the elements 

u(r, s, t) = ‘r(s, t)(r, st)(rs, t)-’ (r, s)-’ E C, 

and that the rule 

u(r,s,t)H (rlsltl + Irlstl - [rsltl - [rlsl)EJ,<Q> 
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describes an isomorphism J-J,(Q). In view of the main Theorem in [lo, 
Sect. 71, Theorem 2 is implied by the following. 

PROPOSITION 5.1. The above map 1: F + G and diagram (5.1) determine 
a lifting 

e(X:R)a *O-J- c -F-Q-l 

1-O If1 If0 II 
6:0-+AN-AjN+B’-Q-l 

(5.2) 

of the identity map of Q in a canonical way. 

5.1. The Group B” 

We wish to describe the group BS (introduced in Section 2.3) as the 
semidirect fibre product Der(N, A) &,l(N,A) G (see Section 4.1) with respect to 
the derivation 6~: G -+ H’(N, A) and the natural projection Der(N, A)+ 
H’(N, A); here G acts on H’(N, A) via the projection p: G + Q in (1.1). The 
requisite action of G on Der(N, A) is gven by the rule d ++ &dig’; here 
d E Der(N, A), g E G, and i,: N+ N denotes conjugation n tt gng-‘. Note 
that this action coincides with that induced from extension (2.3). 

LEMMA 5.1. The projection Der(N, A) -+ H’(N, A) is a G-map. 

ProoJ Consider the commutative triangle 

Hom,(lG, A) 

I p \ , H’(N,A), 

Der(N, A) 

where @(h))(n) = h(n - I), h E Hom,(ZG, A), n E N. Let g E G and n E N. 
For any h E Hom,(lG, A), the computation 

gh(g-l(n- l)- (g-‘ng- l))=gh(g-‘ng(g-l- l)- (g-l- 1)) 
= d’gh(g--l _ 1) - gh(g -’ - 1) 

= (n- l)(gh( g-’ - 1)) 

shows that for g E G fixed the two derivations N -+ A, given by 

n t+ gh( g-‘(n - 1)) (= p(l,hl;‘)(n)), n E N, 

and 

n I-+ gh(g-lng - l), n E N, 
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differ by an inner derivation only and thus determine the same class in 
H’(N, A). The statement of the lemma follows, since the Q-action on 
H’(N, A) is induced by the rule 

(h:ZG+A)t+ (Z,hZ;‘:ZG-+A), 

i.e., by the Q-action on Hom,(ZG, A). Q.E.D. 

It follows that the construction of the semidirect fibre product 
DerW, 4 LP(~,~, G makes sense. We can now identify this group with BS as 
follows: As already explained in Section 2.3, the group Aut,(e,) splits 
canonically into Der(N,A) 3 G; in fact, a canonical section G -+ Aut,(e,) is 
induced by the (obvious) action of G on A 3 N. The action of Der(N, A) 3 G 
on A 3 N is given explicitly by the rule 

(dqu, n) = (52 + d( gng- ‘), gng - ‘>. (5.3) 

Furthermore, the group Out,(e,) speits canonically into H’(N, A) 3 Q, and 
we have a commutative diagram 

Der(N, A) 3 G ----+ Der(N, A) 3 G 
H’W,A) 
ns 

I I 
Q 7 H’(N A) 3 Q; 

here ?rs(d, g) = qg E Q (the image of g in Q), and the other maps are the 
obvious ones. 

PROPOSITION 5.2. Zf we identifv Aut,(e,) with Der(N, A) 3 G as above, 
then BS is the subgroup Der(N, A) jHIfN,a, G. 

The projection BS + Q is now the map rrg, the homomorphism 
a: A 3 N-+ BS is given by ~?(a, n) = (-df,, n), a E A, n E N, and B” acts on 
A 3 N by rule (5.3); here d6: N -+ A is the inner derivation d:(n) = “a - U, 

n E N. 

5.2. The Construction of the Lifting (5.2) 

For convenience, we shall replace $ by the crossed 2-fold extension 

O-+AN-+A 3 N%Der(N,A) 3 G+Q-+ 1, 
H’(N,A) 

(5.4) 

where a’(~, n) = (d:, n), and where Der(N, A) jHICN,Aj G acts on A 1 N by the 
rule 

td*g)(u, n) = (“a - d( gng-I), gng-‘1. 
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LEMMA 5.2. The map p: A 3 N t A 3 N, p(a, n) = (-a, n), induces a 
morphism (-1, p, 1, 1): (5.4) + d of crossed 2-fold extensions. 

Proof: Straightforward. 

Instead of directly constructing (5.2), we shall construct a morphism 
(a, /3,, PO, 1): ecXtRJ + (5.4) of crossed 2-fold extensions. 

We maintain the notation at the beginning of this section; further, if U, is a 
free generator of F, q E Q*, we shall write I4 = J.(u,). 

Now define /I,,: F-+ B” = Der(N, A) jHICN,Aj G by the rule 

here 4 0141 denotes the derivation N + A given by 

n b Cu&l>(n - l), n E N. 

LEMMA 5.3. The map & is well defined, i.e., 

[duorq,l = JP(&J E H’(N, A), qEQ*. 

Proof: Clearly 6p@,) = S(q) = a(q - l), where a = a,: ZQ + H’(N, A). 
The assertion follows, since puo lifts a in (5.1). Q.E.D. 

Next we introduce a function 

y:Q*xQ*+A (Q*=Q-111) 

y(r, s) =lu,[rIs](l) +iu&[sl>@, - 1) -~ol~~lWsG’ - 11, 
r. s E Q*. 

LEMMA 5.4. Let r, s E Q*; then 

P&w,‘) = (d;,,,,~ VsG’) 

(where, for a E A, dk denotes the inner derivation N + A given by 
d:(n) = “a - a). 

Since C is the free crossed F-module with basis {(r, s); r, s E Q*} (cf. 
Section 4 of [ lo]), wemaydetine/I,:C-+AJNby 

PI@, s> = W, s), V,G’), r, s E Q*. 
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Proof of Lemma 5.4 

Using additive notation in Der(N,A), the first component of &(u,.u,u~;~) 
is the derivation 

where A, = A,.A,,?,‘. Now, for n E N, we have 

dp&l(4 =Polrl(n - 1); 
(*‘(d,&,))(n) = “rOlo[~lK’~~r - 11) 

= ‘CuoblwrK’4 - 1)) 
=,4#bl>((n - 1>4> 
=ludrlsl)(n - 1) +iu&bl>((n - l)@, - 1)) 
=,4kbl>(n - 1) + ‘“-“f&(r[s]@, - 1)); 

( 47 @,o[rsl))(4 = Polrsl(n - 1) -I- (n-l)(uO[rs](lr~s&;’ - 1)). 

Hence 

4,,,,(n) = @&I +ludW -lu&~l)(~ - 1) 
f ‘“-“Cu,(rbl>(~, - 1) -lu&W.Mi’ - 1)) 

= (uoa[rls])(n - 1) + (n-1)(..e) 

= ‘“-“@,[r]s](l) t (s..)) = dkr,s,(n). 

5.3. The Completion of the Proof 

The group J = ker(& C -+ F) is (as a Q-module) generated by the elements 
(cf. [ 10, Sect. 91) 

u(r, s, 1) = “‘(s, t)(r, st)(rs, t)-’ (r, s)-‘, r, s, t E Q*. 

The proof of Theorem 2 is now completed by the following. 

PROPOSITION 5.3. The restriction of p, to J is the map a; in that 
connection u(r, s, t) is to be identiJied with (r[slt] + [r(st] - [rslt] - [rls]) E 
J,(Q), as already indicated, and AN is to be identljied with Hom,(Z, A) in 
the standard way. 

Proof (it is fuzzy but straightforward). The value 

4rbltl + [rlstl - [rsltl- [rlsl) 
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is given by the N-map 

~=pl(r[s(t] + [rlst] - [rsltl - [rlsl): ZG+A 

which, by construction, is trivial on ZG (and hence induces an N- 
map Z + A). Thus we have to verify that 

To this end, we calculate in A 3 N the product of the following four terms (i), 
(ii), (iii) and (iv) (in A we use additive notation): 

6) A(% Q> = flo(qJ(s, t), n,n,n, I); 

(ii) B,(r, st) = (y(r, St>, &Jr;:); 
(iii) p,((rs, t)-‘) = (-“Y(rs, t), A,), where 1, = &&‘A;‘; 

(iv) P,((r, s>-‘> = (-‘2y(r, s), A,>, where I, = &AS- ‘,I, ‘. 

Now 

The second component of the product obviously gives 1 E N. 
Hence in A we have to work out the sum 

z = (i’) + (ii’) + (iii’) + (iv’), 

where 

(i’) ANs, t) -kJr](a - 1); 
(ii’) ‘Y(T, st); 
(iii’) -+(rs, t), where 

4 = (n,n,n,n,‘n;‘)(n,~,,n,:)(~2,,,~;’~,’); 

--“Y(W t>, 
(iv’) Ty(r, s). 

where b = IEJ,A.;‘; 

By routine calculations, we get 

(i’) ~~(r[slt])@,) +rU&SltlKW, - 1)) -bd4s~l)@r(c - 1)) 
- kdrl(a - l), where c = A,A,;1,‘; 

(ii’> pl[rlstl(a) +cl&[s~lW, - 1)) -d~stlW- l)), 
where d = l,L,,Ar;:; 
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(iii’) -p,[rslf](b) -~o(rs[~l)(~(~,, - 1)) +lu&4W- 1)h 
where e = 1,,1,&;~; 

(iv’) -p,[rlsl(l) -rU,(r[sl)(4- 1) +Yo[~sW - 1). 

The sum of terms with ,u,,(rs[t]) is 

P&s[4)@r(~S - 1) - wrs - 1)) 
=kPs[tl)(b - 4.1 
=,h(rs[~l)@ - 1) -M4W&- 1). 

Likewise, we compute the sum of terms with p,,(r[st]): 

&-[s~1>W, - 1) -&Xc - 1)) 
= iuoWIWr - 4 
=MWlW+- 1) -kk[stl)@ - 1). 

Finally, the sum of terms with ,u,,[rst] is 

po[rst](b(e - 1) - a(d - 1)) 

=po[rst](a -b) 

=po[rst](a - 1) -pO[rst](b - 1). 

If we now sum up suitably, we obtain 

C =pu,(rlslfl>(~,) - ol&[sl) +ill&W -~&bW4- 1) 
+,uul[rls~l(u> - Odrl +luoO-M) -kdrstl)@ - 1) 
-p,[rslfl(b) + olo[4 tluO(rs[tl)-~UOrsfl)(b- 1) 
-Q+l(1) 

=illl(rbltl>(4> +M-W>U -4) 
+~ul[rlsfl@) +dVl(l -a> 
-iu,[~sI~l(~)-~l[r~I~l(l -b) 
-k[rlsl(l) 

= Ol,(r[sltl) +k[rlStl -d44 -k[rlslN) 
= ((1). Q.E.D. 



324 JOHANNES HUEBSCHMANN 

5.4. Naturalness of the Description 

Our description of d,: E:*’ --t Eiqo is again natural in a strong sense; what 
this means will be expressed below in Propositions 5.4 and 5.5 for the 
module variable and the group extension variable, respectively. 

Let r:A-+A’ be a homomorphism of G-modules and denote 
t* : H’(N,A)-+ H’(N, A’) the induced map. If 6: Q -+ H’(N,A) is a 
derivation it is clear that the combined map r,6: Q + H’(N, A’) is a 
derivation representing the image r* [6] E H’(Q, H’(N, A’)) (where we abuse 
the notation “-*“). 

PROPOSITION 5.4. For any derivation 6: Q + H’(N, A) the G-map 5 
induces, in a canonical way, a morphism 

of crossed 2-fold extensions. 

Proof: Let A,: A 3 N+ A’ 3 N be the obvious map. Further, by 
Proposition 5.2, BS = Der(N, A) JHICN,a, G and B’*’ = Der(N, A’) 3,,ICN,a ,) G; 
now let v, be the obvious map. 

Remark. There is a different way of obtaining the above morphism 
(5l,&,v,, 1) of crossed 2-fold extensions. In fact, if w,: Out,(e,) + Out&se,) 
is the map in Proposition 4.5 then yTts = o,I//~. Hence, if pu,: Aut,(e,) + 
Aut,(re,) is the map given in Proposition 2.1 of [ 131 then ,u, induces the 
desired map v,. It is also worth noting that the map 

co,: H’(N, A) 3 Q = Out,(e,) + Out,(te,) = H’(N, A’) 3 Q 

is the obvious one, where “=” means the obvious isomorphisms explained in 
Section 5.1. 

Next, let there be given a morphism @: (1.1)’ + (1.1) of extensions 
(notation as in Section 4.4). Denote Qi*: H’(N, A) * H’(N’, A) the induced 
map (the notation “-*” will be abused at several places below). If 
6: Q + H’(N, A) is a derivation, it is clear that the combined map 

6’ = @*&IJ: Q’ -+ H’(N’, A) 

is a derivation representing @* [6] E H’(Q’, H’(N’, A)); let Bs denote the 
semidirect tibre product Der(N, A) ~j~,(~,~) G’ with respect to the derivation 
G’ -+ G -+ Qj6 H’(N, A), and let 8” act on A 3 N’ by the rule (5.3), where 
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the notation is to be suitably modified. Together with the obvious map 
3: A 3 N’ + 8” this yields the crossed 2-fold extension 

which clearly represents @* [8] E H3(Q’, A”). 

PROPOSITION 5.5. For any derivation S: Q--t H’(N, A) the morphism @ 
induces, in a canonical way, morphisms 

and 

(1, .’ ., @): S-8 

(@*, 1, .) 1): s- FI 

of crossed 2-fold extensions. 

Proof By Proposition 5.2, we may identify BS with Der(N, A) jHItN,a, G 
and B” with Der(N’, A) jH,CNT,AJ G’. Hence @ induces morphisms of crossed 
a-fold extensions as desired. 

Remark. There is also a different way of obtaining the morphisms of 
crossed 2-fold extensions in Proposition 5.5. In fact, let w*: 
OutC,(es)+ Out,(e,@) be the map in Proposition 4.6, and let I&: Q’ + 
Out,.(e,) be the obvious map which is induced by vs. Then 

ws I = w@v/‘g Q’ + Out, (e, @), 

whence Bs may be identified with the fibre product Aut,(e,) Xoutc+,) Q’, 
where Aut,,(e,) = Aut,(e,) Xc G’. Further, the maps L”: AutG(e,) + Aut,(e,) 
and #‘: Aut,,(e,) -+ Aut,(e, @) in Propositions 2.3 and 2.4 of [ 131, respec- 
tively, induce the desired maps Bs + Bs and Bs --t B”. It is also worth noting 
that the map 

co*: H’(N, A) 3 G’ = Out,,(e,) + Out,(e, @) = H’(N’, A) 3 G’ 

is the obvious one, where “=” means the obvious isomorphisms; see Section 
5.1 above. 

Notice that Propositions 5.4 and 5.5 imply the (well known) fact that the 
differential d,: El” -+ EiYo is natural in both variables. 

6. THE PROOF OF THEOREM 3 

We shall show that the pairs given in Theorem 3 constitute the 
corresponding transgression. All the. rest is straightforward. 
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Let e be a group extension (2.1) that represents a member of H2(N,A)Q. 
We choose a lifting (4.2) of 1, and construct a diagram (4.3). We then 
represent [e] by a: Z + Ext,(ZG,A)Q (a(l) = [c,], c, as in Section 4.1), and 
construct a lifting a, in 

ZQ - z 

I 
no 

I 
(I 

Hom,(J, (G), A ) 7 Ext,(G A ) 

by setting a,(l) =p (cf. Section 4.3). This induces a map q: ZQ -+ T 
(= ker r). Let 

F:O+H’(N,A)+Out,(e)+Q-t 1 

be the extension (2.5) associated with e in Section 2.2. By Proposition 4.4 we 
may identify Out,(e) with ZZ’(Z@,A) Jr Q, where h: ZZ’(A@,A) + T is the 
obvious map given by rule (4.7) above and where the requisite derivation 
d: Q--t T is given by d(q) = a,(q - l), q E Q. 

PROPOSITION 6.1. Let a0 as above befixed. The class [e] E H2(N, A)Q is 
transgressive if and only if there is a Q-map x: ZQ + H’(fl, A) such that 
v = hx. In this case, there is a canonical bijection between Q-maps x with 
q = hx and sections v: Q + Out,(e) = H’(@, A) 3 T Q. 

Proof: By Corollary 1 in Section 2.2, ]e] is transgressive if and only if 
there is a section w: Q-Out,(e) = HI@@, A) 3, Q. Any such section 
determines a derivation 6: Q -+ H’(@, A), hence a Q-map as desired, and 
vice versa. Q.E.D. 

Now let [e] E H2(N, A)Q be transgressive, and let w: Q + Out,(e) be a 
section. In view of the above, w determines a map x: ZQ -+ H’(N”, A) such 
that q = hx. It follows that a lifts to 

o- J2(Q) - B2(Q) - BltQ> 

I 
(7 

I 
a* 

I 
0, 

0 - Horn&?, A) - Hom,(ZG, A) - Hom,(B,(G), A) 

----+ ZQ --+ Z -0 

I 
DO 

I 
a (6-l) 

- Horn,&,(G), A) - Ext,(ZG, A) - 0. 

By the Addendum to Proposition 3.2, the pair (a, -cr) represents the element 
(a, -[a]) of the transgression. Conversely, if (a, -6) represents an element of 
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the transgression, there is a diagram (6.1) (again by 
Proposition 3.2). Hence 
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the Addendum to 

PROPOSITION 6.2. Any element of the transgression 
be obtained as follows: Let [e] E H’(N, A)Q be transgressive. Represent [e] 
by a: Z + Ext,(IG, A) and lift a to a, as above. Then using ao, identtfy 
Out,(e) and H’(N”, A) 3 r Q as above. Let w: Q + Out,(e) be a section. It 
induces a derivation 6: Q + H’(N”, A), hence a Q-map x: ZQ + H’(N”, A) 
such that n = hx as above. Finally, construct a lifting 

0 - J*(Q) - B,(Q) - B,(Q) 

I 
0 

I 
a2 

I 
aI 

0 + Hom,(Z, A) ---+ Hom,(ZG, A) - Hom,(B,(G), A) 

Then ([e], -[al> is an element of the transgression. 

ZQ -0 

I 
X 

H’(N”, A) --+ 0. 

(6.2) 

In view of the main Theorem in [ 10, Sect. 71, the crucial step in the proof 
of Theorem 3 is now provided by the following. 

PROPOSITION 6.3. Let e(X;Rj be the crossed 2fold extension, associated 
in Section 5 to the standard presentation (X, R) of Q. Let [e] E H*(N, A)Q be 
transgressive. Represent [e] by a: Z + Ext,(IG, A) and lift a to a, as above. 
Let I+V: Q + Out,(e) be a section, and construct a diagram (6.1) (or (6.2)). 
Then (6.1) gives rise to a morphism of crossed 2-fold extensions 

e(X;R)’ .O-J-C-F-Q-1 

1-O I y1 b Ii 
(6.3 ) 

&:O-AN-+E-B*-+Q- 1. 

Proof. The exact sequence 

0 + Horn,@ A) + Hom,@G, A) + Hom,(B,(G), A) + H’(N”, A) + 0 

is naturally isomorphic to 

0 + Horn,&, A) + Horn,,@, A) -+ Hom,,&ZF, A) -+ H’(N”, A) + 0, 
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where F is free on G*; P was denoted F in Section 4. Hence, from (6.2) we 
obtain 

o- J,(Q) - h(Q) - Bl(Q) - IQ -0 

I 
0 

I 
a2 

I 
a1 

i 
x 

0 - Horn,@, A > -Hom,&F,A)- Hom&ZcA)-H’(@, A)---+& 

(6.4) 

where x is obtained from a0 and w as in Proposition 6.1. We can now apply 
Proposition 5.1, where the role of the extension (1.1) is played by 

that of e, (the split extension of A by N) by 

that of the map A by a suitable lifting A: F+ F of the obvious projection 
F-Q, and that of 6 by 6=6,:Q+H’(A@,A), 6(q)=x(q- l), qEQ. 
Moreover, by Proposition 5.2 we may identify BS with the semidirect fibre 
product Der(@, A) 3~(~~,,,) F; here the requisite derivation d: F+ H’(NQ, A) 
is the combined map 6pr, where pr: F-+ Q denotes the projection. We obtain 
a commutative diagram 

qx;fo- *O-J- c f F -Q-l 

l-O k’ 
I 
40 

0 
(6.5) 

&o--t~~--+Aj,@ - Der(NQ,A) 3 F-Q-1. 
H’WQ.A) 

The proof is now completed by the following. 

PROPOSITION 6.4. There is a morphism (1,8,, BO, 1): 6- gO of crossed 
2-fold extensions. 

For the proof we need the following. 

LEMMA 6.1. There is a natural action of the group Der(h@, A) 3,+(~,~, F 
on the middle group E of the extension e, such that (5, U) E 
Der(@,A) &NQ,A) F induces left translation with g, on A and conjugation 
with g, on N, where g, E G is the image of u E i? 
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ADDENDUM. This action induces a commutative diagram 

Der(fl, A) 3 F--+ Am,(e) 
H’(NQ,A) 

XId 
I I 
Q --% Out,(e) = H’(Na, A) 3 Q; 

(6.6) 

here rt8 sends (t, u) to the image q,, E Q of u E F. 

Proof. Consider the commutative diagram (4.9) 

1-Nc-NQ--+N-1 

e:O-A -E-N-l 

already used in the proof of Proposition 4.4, where K = npr, and where pr: 
p + (fl)Ab = J,(G) (identified in Section 4.1) is the canonical projection, 
such that a,( 1) = p E Hom,(J,(G), A) (where a,,: ZQ + Hom,(J,(G), A) lifts 
a: Z -+ Ext,(lG, A) as above). 

LEMMA 6.2. The rule (a, n) t--r aB(n), a E A, n E fl, describes a 
projection 71,: A 3 Ne --f E such that 71, is the coequaliser of 

ProoJ By inspection. 

The proof of Lemma 6.1 is now completed as follows: Let (r, u) E 
De@@, A) LwQ,~, E Write g = g, E G and q = qU E Q for the images in G 
and Q of u, respectively. Define maps a,: Nc --t E, a,: A + E by setting 

a,(n) = s(unu-‘) B(unu-‘), nEiP, 

aI = ga, aEA. 

Since (5, u) E. Der(Nc, A) $,I(~Q,~) F, we have [t] = d(u) E H’(Il@, A), hence 
h[s] = hd(u) = a,(q, - l), i.e., 

SING = (l,pl;’ -,u)pr 

=l,Ki,‘-KK; 
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here h: H’(@,A)+ T is the map given by rule (4.7). Consequently, if 
n E P, we have 

a,(n) = 5(unu-‘) + lc(unu-‘) (using additive notation in A) 

= %(n) - K(UnU-‘) + rc(unu-‘) 

Thus we obtain a map A 3 h@ + E given by 

(6 n) t+ a*@> a,(n), aEA, nENQ, 

which coequalises j and K. Hence (r, u) induces a unique map a: E -+ E. 
Clearly, a induces left translation with g, on A and conjugation with g, on N 
whence a is an automorphism of E. Moreover, the rule (‘%U’~ = a(x), x E E, 
describes an action of Der(@, A) &,,(NQ,Aj F on E. 

Proof of Addendum. If a is obtained as above, i.e., (‘,“‘x = a(x), x E E, 
let (a, g,) be the corresponding member of Aut,(e), where g, = g,. It is 
clear that we have a homomorphism Der(p, A) JH1(NQ,A) F-+ Aut,(e), and, 
by abuse of language, we denote (a,g,) by a also. In Proposition 4.4 we 
constructed a map Aut,(e) -+ H’(@, A) 3 T Q given by a F+ ([d,], q,), 
a E Aut,(e). Now, if a is the image of some (t, U) E Der(NQ, A) JHjfNV,n, F, 
we have 

d,(n) = a(O(x;‘nx,)) B(n-‘), nE@, g=g,,EG, 

= a,(x;3zxg) @(n-‘) 

= T(UX;‘nXgU-‘) B(ux,‘nx,u-‘) t?(n-I), 

where ux; ’ E NC. Hence 

d,(n) = t(ux, ‘) + s(n) - e(“‘(r(~~; ‘)) + (’ -ec”))(~(ux, ‘)) E A 

since NC acts trivially on A. We obtain 

d,(n) = r(n) + (‘-ey5(uxg’) + +4x; 1)). 

Consequently, [d,] = [r] E H’(A@, A), and the Addendum is proved. 

Proof of Proposition 6.4. Since B” is the Iibre product Aut,(e) )&G(e) Q 
with respect to w: Q * Out,(e), diagram (6.6) induces a unique map 
6: Der(@, A) 3H1(NQ,Aj F-B”‘. Let O,=z,:A gi@-+E. Then (1,8,,8,, 1) 
is the desired morphism of crossed 2-fold extensions. Q.E.D. 
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7. AN EXAMPLE 

We offer an example where we determine, by our methods, the differentials 
d$* and d:,‘; we believe that our example is the simplest possible for 
producing a non-trivial d$* and d:,‘. 

Consider the group extension 

where i is the obvious inclusion (hence N = Z/2 X Z/2, G = Z/4 X Z/2, 
Q = H/2). Let A = Z/2. 

(i) d,: H*(B/2 x Z/2, Z/2)q* + H*(E/2, H’(Z/2 x Z/2, Z/2)). Now 
H*(L,J2 x Z/2, Z/2)y2 = HZ@‘/2 x Z/2, H/2) r (E/2)‘, and there are three 
groups giving rise to non-trivial extensions of Z/2 by Z/2 X Z/2: the group 
H/4 x Z/2 = (a, b; a4, b*, [a, b]), the dihedral group D, = (a, b; a4, b*, (ab)*) 
and the quaternion group QU = (a, b; a2 = b* = (ab)*). We write 
Z/2 x Z/2 = (u, u; u*, u*, [u, u]) and fix a Z/2-basis {e,,e,, e3) of 
H*(Z/2 x Z/2,2/2): 

e,: O-t2/2~2/4~2/2~2/2xn/2-,1, 

e,: o-,h/2-,2/4Xn/2~2/2Xn/2-,~, 

e,: O-+2/2+ QU Zn/2xn/2-, 1; 

here v,(a) = u, co,(b) = u, q,(a)= v, (o,(b)= u, rp3(a) = u, v,(b) = v. BY 
abuse of notation, we do not distinguish between an extension and its class in 
H*(Z/2 x Z/2, h/2). Now the extension e, + e2 has a Z/4 x Z/2 as middle 
group, a,nd the extensions e, + e,, e2 + e3 and e, + e, $ e3 have the dihedral 
group as middle group. 

We claim: d,(e,) = 0 = d,(e,); d,(e,) # 0. 
Every automorphism of E = Z/4 x Z/2 = (a, 6; a4, b*, [a, b]) fixes a*. 

Since (a’) = A, Au?(E) is the full automorphism group of E. But 
Aut,(N, A) is trivial, whence Auti(E) = Hom(N, A). Hence Aut,(e,) = 
Hom(N, A) x Z/4 x Z/2. Moreover, p: E + Aut,(e,) sends a to a2 E Z/4 c 
Aut,(e,) and b to b E Z/2 c Aut,(e,). It follows that the extension 

if,: 0 + Hom(N, A) + Out,(e,) -+ Z/2 + 1 

splits. For symmetry reasons, Z, also splits. 
On the other hand, by the same argument as above, Aut,(e,) = 

Hom(N,A) x Z/4 x b/2, but Out,(e,) is now the cokernel of 

p: QU + 212 x 212 x 214 x 212 

= (u, v, a, b; u*, v*, a4, b*, [u, v] etc.), 
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where QU = (x, y; x2 = y* = (xy)‘) and p(x) = ua*, p(y) = ub (note that 
Hom(N, A) = H/2 x Z/2 and recall how /? was defined in Section 2.2). Now 
coke@) z Z/4 x E/2 and the extension 

does not split. 

(ii) d,: H’(Z/2, H1(Z/2 x Z/2, Z/2)) -+ H3(E/2, Z/2). AS in Section 2.3, 
let E = (Z/2)3, let {e, , e,, e3} be the obvious E/2-basis, and consider the split 
extension 

e,: 0 --+ n/2@,) + L/2@,) x Z/2@,) x Z/2@,) -+ L/2@,) x L/2(e,) --) 1. 

NOW fP(n/2, Hr(z/2 x n/2, n/2)) = Hom(b/2, fzyn/2 x E/2, n/2)) and 
we identify H’(Z/2 x Z/2, Z/2) with A&(E) as above. Writing Z/2 = 
(x; x2), we choose a basis {q, 0) for H*(Z/2, HI@/2 x H/2, z/2)) 2 
Z/2 x B/2, by setting 

n’X’e2 = e, -t e2, e, , e3 fixed under V(X), 

ecx)e3 = e, + e3, e, , e2 fixed under O(x). 

NOW Aut,(e,) = (u,v,a, b; u*, v2,a4, b2, [u, V] etc.) z L/2 x Z/2 x L/4 x Z/2, 
where ‘e2 = e, + e2, ‘e3 = e, + e3 and all the rest remains fixed under the 
corresponding elements of Aut,(e,). Maintaining the notation of Section 2.3, 
the maps q and 19 determine crossed 2-fold extensions 

and 

q: 0-,12/2-+n/2Xn/2Xn/2-,B”-,n/2~ i 

8: o~n/2-,n/2Xn/2Xn/2~Be~n/2~i; 

the corresponding 8s are the obvious maps. Here Bq = Be = L/4 x B/2 = 
(a, b; a4, b*, [a, b]); BV acts on Z/2 x L/2 x H/2 by the rule 

ae2=e, fe, 

and Be acts on L/2 x Z/2 x L/2 by 

‘e3=el +e, 

with the convention that everything not written down remains fixed. Clearly, 
e is equivalent to 

fj: o+n/2+n/2xn/2-+n/4+n/2+ 1, 
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where Z/2 x Z/2 has basis {e,, ez} and where the generator of Z/4 maps e, 
to e, +e,. It follows from the Theorem in [ 10, Sect. lo] that [q] # 
0 E H3(Z/2, Z/2), since there is no group H of order eight which maps onto 
Z/4 and contains Z/2 x h/2 as a normal subgroup in such a way that 
conjugation in H induces the h/4-action on Z/2 x Z/2. On the other hand, if 
we associate with e a crossed 2-fold extension 8 in a similar way, it is easy 
to see that [8] = 0 E H3(H/2, Z/2). 

It follows that dz[r] is the generator of H3(Z/2, Z/2) E E/2, whence 
E:,’ = 0, and that 0 generates E:,’ z Z/2. 
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