Automorphisms of Group Extensions and Differentials in the Lyndon-Hochschild-Serre Spectral Sequence

Johannes Huebschmann
Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, D-6900, Heidelberg, West Germany
Communicated by Saunders Mac Lane

Received April 3, 1980

1. Introduction

Let

$$
\begin{equation*}
1 \rightarrow N \xrightarrow{i} G \xrightarrow{p} Q \rightarrow 1 \tag{1.1}
\end{equation*}
$$

be a group extension and A a (left) G-module. We note, for clarity, that the extension (1.1) and the module A will always be fixed unless the contrary is admitted explicitly. We consider the Lyndon-Hochschild-Serre (LHS) spectral sequence

$$
\left(E_{r}^{p, q}, d_{r}^{p, q}\right), \quad \text { with } \quad E_{2}^{p, q}=H^{p}\left(Q, H^{q}(N, A)\right)
$$

[7; 16, p. 351$\}$. The purpose of this paper is to examine the differentials

$$
d_{2}^{0,2}: E_{2}^{0,2} \rightarrow E_{2}^{2,1}, \quad d_{2}^{1,1}: E_{2}^{1,1} \rightarrow E_{2}^{3,0}, \quad d_{3}^{0,2}: E_{3}^{0,2} \rightarrow E_{3}^{3,0}
$$

(we shall usually drop the superscripts and write d_{r} instead of $d_{r}^{p, q}$) and the transgression $\tau: E_{2}^{0,2} \longrightarrow E_{2}^{3,0}$ (" \rightharpoonup " denotes an additive relation). We shall give explicit descriptions (see Section 2 below) in terms of group extensions, crossed 2 -fold extensions (see below) and certain automorphisms groups. Our descriptions also turn out to be natural in a strong sense. We note that similar automorphism groups were studied in [20].

The results of this paper were announced in [11]. The differentials we describe in this paper yield, together with the differential d_{2} : $H^{0}\left(Q, H^{1}(N, A)\right) \rightarrow H^{2}\left(Q, A^{N}\right)$, all the information about $H^{2}(G, A)$ that can be obtained from the spectral sequence. This has been pushed further in [13],

0021-8693/81/100296-39\$02.00/0
where we have constructed a certain extension $\operatorname{Xpext}(G, N ; A)$ of $E_{2}^{1,1}$ by $E_{3}^{0,2}$ which fits into a natural exact sequence

$$
H^{2}\left(Q, A^{N}\right) \rightarrow H^{2}(G, A) \rightarrow \operatorname{Xpext}(G, N ; A) \xrightarrow{\Delta} H^{3}\left(Q, A^{N}\right) \rightarrow H^{3}(G, A)
$$

such that Δ lifts the differential $d_{3}^{0,3}$ (this was announced in [12]). We also note that in [13] a conceptual description of $d_{2}: E_{2}^{0,1} \rightarrow E_{2}^{2,0}$ was obtained.

In another paper [14] we shall extend our methods to obtain conceptual descriptions of all differentials

$$
d_{2}^{0, q}: E_{2}^{0, q} \rightarrow E_{2}^{2, q-1} \quad \text { and } \quad d_{2}^{1, q}: E_{2}^{1, q} \rightarrow E_{2}^{3, q-1}, \quad q>1 .
$$

The paper is organised in the following manner: In Section 2 we present our results (Theorems 1, 2 and 3). Section 3 deals with some differentials in the LHS spectral sequence. In Sections 4-6 we prove our theorems. Section 7 offers an example.
Central roles will be played by the concept of a crossed module and that of a crossed 2 -fold extension, the definitions of which we reproduce here for completeness: A crossed module ($С, \Gamma, \partial$) (Whitehead [23, p. 453]) consists of groups C and Γ, an action of Γ on the left of C, written $(\gamma, c) \mapsto{ }^{\gamma} c, \gamma \in \Gamma$, $c \in C$, and a homomorphism $\partial: C \rightarrow \Gamma$ of Γ-groups, where Γ acts on itself by conjugation. The map ∂ must satisfy the rule

$$
b c b^{-1}=\dot{\partial(b)} c, \quad b, c \in C .
$$

A crossed 2 -fold extension ([9] or [10, Sect. 3]) is an exact sequence of groups

$$
e^{2}: 0 \rightarrow A \rightarrow C \xrightarrow{\partial} \Gamma \rightarrow Q \rightarrow 1,
$$

where (C, Γ, ∂) is a crossed module. The group A is then central in C, whence it is Abelian; furthermore, the Γ-action on C induces a Q-action on A. For Q and A fixed, the classes of crossed 2 -fold extensions under the similarity relation generated by morphisms $(1, \cdot, \cdot, 1): e^{2} \rightarrow \hat{e}^{2}$ of crossed 2 fold extensions constitute an Abelian group naturally isomorphic to the cohomology group $H^{3}(Q, A)$; this is a special case of the main Theorem in Section 7 of [10] (see also [9]). We note that such an interpretation of group cohomology was found independently by several other people; see Mac Lane [15]. Here we would like to point out, however, that the interpretation of the third cohomology group in terms of crossed 2 -fold extensions, although not explicitly recognised, is hidden in an old paper of Mac Lane and Whitehead [17].

2. Results

2.1. Automorphisms and Group Extensions

Let Γ be a group and A a (left) Γ-module. Let $\chi_{0}: \Gamma \rightarrow \operatorname{Aut}(\Gamma) \times \operatorname{Aut}(A)$ be the obvious map given by $\chi_{0}(\gamma)=\left(i_{\gamma}, l_{\gamma}\right), \gamma \in \Gamma$, where i_{γ} is the corresponding inner automorphism and l_{γ}, the action $l_{\gamma}(a)={ }^{\gamma} a$ of γ on A; here $\operatorname{Aut}(\Gamma)$ denotes the group of automorphisms of Γ, and $\operatorname{Aut}(A)$ that of A as Abelian group. Denote by $\operatorname{Aut}(\Gamma, A)$ the subgroup of $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(A)$ that consists of pairs (φ, σ) of automorphisms φ of Γ and σ of A such that

$$
\sigma\left({ }^{\gamma} a\right)={ }^{o(\gamma)} \sigma(a), \quad \gamma \in \Gamma, \quad a \in A
$$

We call Aut (Γ, A) the group of automorphisms of the pair (Γ, A).
Proposition 2.1. The group $\operatorname{Aut}(\Gamma, A)$ is the normaliser in $\operatorname{Aut}(\Gamma) \times$ $\operatorname{Aut}(A)$ of $\chi_{0}(\Gamma)$.

Let $\operatorname{Out}(\Gamma, A)=\operatorname{Aut}(\Gamma, A) / \chi_{0}(\Gamma)$ and call it the group of outer automorphisms of the pair (Γ, A). We shall now describe an obvious action of $\operatorname{Out}(\Gamma, A)$ on the cohomology $H^{*}(\Gamma, A)$ (this may be folklore).

Recall that any group homomorphism $f: \Gamma^{\prime} \rightarrow \Gamma$ induces a unique map $f^{*}: H^{*}(\Gamma, A) \rightarrow H^{*}\left(\Gamma^{\prime}, A^{\prime}\right)$; here A^{\prime} is the Γ^{\prime}-module which has the same underlying Abelian group as A but operators from Γ^{\prime} via f. Now, if $(\varphi, \sigma) \in \operatorname{Aut}(\Gamma, A)$, let $f=\varphi^{-1}$, and consider $\left(\varphi^{-1}\right)^{*}: H^{*}(\Gamma, A) \rightarrow H^{*}\left(\Gamma, A^{\prime}\right)$. Since

$$
\sigma\left(^{\omega^{-1}(\gamma)} a\right)={ }^{\gamma}(\sigma(a)), \quad \gamma \in \Gamma, \quad a \in A
$$

σ induces $\sigma_{*}: H^{*}\left(\Gamma, A^{\prime}\right) \rightarrow H^{*}(\Gamma, \Lambda)$. Let

$$
a_{(\omega, \sigma)}=\sigma_{*}\left(\varphi^{-1}\right)^{*}: H^{*}(\Gamma, A) \rightarrow H^{*}(\Gamma, A)
$$

We note that it is convenient to invert the automorphism φ for the formal reason that cohomology is contravariant in the group variable.

Proposition 2.2. The rule $(\varphi, \sigma) \mapsto a_{(\omega, \sigma)}$ induces an action of $\operatorname{Out}(\Gamma, A)$ on (the left of) $H^{*}(\Gamma, A)$.

In our situation, we have the group extension (1.1) and the G-module A. Let $\Gamma=N$, and let N act on A in the obvious way. Then (1.1) furnishes an action $\chi: G \rightarrow \operatorname{Aut}(N, A)$ of G on the pair (N, A) given by $\chi(g)=\left(i_{g}, l_{g}\right)$, $g \in G$, where i_{g} is the conjugation $n \mapsto g n g^{-1}, n \in N$, and l_{g} the action $l_{g}(a)={ }^{g} a$ of g on A. For later reference, denote by $\operatorname{Aut}_{G}(N, A)$ the image of χ. Since χ extends the above homomorphism $\chi_{0}: N \rightarrow \operatorname{Aut}(N, A)$, it induces an outer action $\omega: Q \rightarrow \operatorname{Out}(N, A)$ of Q on the pair (N, A).

Proposition 2.3. This outer action, combined with the action of Out (N, A) on $H^{*}(N, A)$ given above, yields the standard action of Q on $H^{*}(N, A)$.

Consider an extension

$$
\begin{equation*}
e: 0 \rightarrow A \rightarrow E \xrightarrow{\pi} N \rightarrow 1 \tag{2.1}
\end{equation*}
$$

with Abelian kernel A, where we assume that conjugation in E induces that action of N on A which is obtained by restricting the operators from G to N. Let $\operatorname{Aut}^{A}(E)$ denote the group of automorphisms of E which map A to itself. Each $\alpha \in \operatorname{Aut}^{A}(E)$ induces an automorphism l_{α} of A (as Abelian group) and an automorphism i_{a} of N such that $\left(i_{\alpha}, l_{\alpha}\right)$ is a member of $\operatorname{Aut}(N, A)$. The rule $\alpha \mapsto\left(i_{\alpha}, l_{\alpha}\right)$ is in fact a homomorphism $\operatorname{Aut}^{4}(E) \rightarrow \operatorname{Aut}(N, A)$. If Aut ${ }_{G}^{A}(E)$ denotes the pre-image (in $\operatorname{Aut}^{A}(E)$) of $\operatorname{Aut}_{G}(N, A)(\subset \operatorname{Aut}(N, A)$), we have a homomorphism

$$
h=h_{e}: \operatorname{Aut}_{G}^{A}(E) \rightarrow \operatorname{Aut}_{G}(N, A)
$$

which is determined by e. The kernel of h_{e} is isomorphic to the group $\operatorname{Der}(N, A)$ of derivations (=crossed homomorphisms) of N in $A[5$, p. 12; 6, p. 45]. We fix an embedding of $\operatorname{Der}(N, A)$ in Aut $_{G}^{A}(E)$ as follows: If $d: N \rightarrow A$ is a derivation (i.e., $d(n m)=d(n)+{ }^{n} d(m), m, n \in N$) define $\alpha_{d}: E \rightarrow E$ by $\alpha_{d}(x)=d(\pi(x)) \cdot x, x \in E$. We now embed $\operatorname{Der}(N, A)$ in $\operatorname{Aut}_{G}^{A}(E)$ by the rule $d \mapsto \alpha_{d}$.

Proposition 2.4. The map h_{e} is surjective if and only if the class $[e] \in$ $H^{2}(N, A)$ is a member of $H^{2}(N, A)^{2}$.

Proof. By virtue of Proposition 2.3, $[e] \in H^{2}(N, A)^{2}$ if and only if for each $g \in G$ the map $\left(l_{g}\right)_{*}\left(i_{g}^{-1}\right)^{*}: H^{2}(N, A) \rightarrow H^{2}(N, A)$ is the identity. This implies the claim.
2.2. The Differential $d_{2}: H^{0}\left(Q, H^{2}(N, A)\right) \rightarrow H^{2}\left(Q, H^{1}(N, A)\right)$

Let e be a group extension (2.1). Assume now that e represents a member of $H^{2}(N, A)^{Q}$. In Section 2.1 we associated to e the extension

$$
\begin{equation*}
0 \rightarrow \operatorname{Der}(N, A) \rightarrow \operatorname{Aut}_{G}^{A}(E) \rightarrow \operatorname{Aut}_{G}(N, A) \rightarrow 1 . \tag{2.2}
\end{equation*}
$$

If we replace $\mathrm{Aut}_{G}^{A}(E)$ by the fibre product

$$
\operatorname{Aut}_{G}^{A}(E) \underset{\operatorname{Aut}_{G}(N, A)}{X} G,
$$

denoted henceforth by $\operatorname{Aut}_{G}(e)$, we obtain the extension

$$
\begin{equation*}
0 \rightarrow \operatorname{Der}(N, A) \rightarrow \operatorname{Aut}_{G}(e) \rightarrow G \rightarrow 1 . \tag{2.3}
\end{equation*}
$$

There is an obvious map of (2.1) into (2.3):

here ζ sends $a \in A$ to the inner derivation $\left(n \mapsto a-{ }^{n} a, n \in N\right), \beta(x)=$ $\left(i_{x}, \pi(x)\right), x \in E$, and i is the inclusion. Inspection proves the following.

Proposition 2.5. The obvious action of $\operatorname{Aut}_{G}(e)$ on E turns $\left(E, \operatorname{Aut}_{G}(e), \beta\right)$ into a crossed module.

A consequence of this is that $\beta(E)$ is normal in $\operatorname{Aut}_{G}(e)$. We denote the cokernel of β by $\mathrm{Out}_{G}(e)$, since there is an obvious map $\eta: \operatorname{Out}_{G}(e) \rightarrow \operatorname{Out}(E)$, where $\operatorname{Out}(E)$ denotes the group of outer automorphisms of E. If we pass in (2.4) to cokernels, we obtain the extension

$$
\begin{equation*}
\bar{e}: 0 \rightarrow H^{1}(N, A) \rightarrow \operatorname{Out}_{G}(e) \rightarrow Q \rightarrow 1 . \tag{2.5}
\end{equation*}
$$

It is straightforward to check that the class $[\bar{e}] \in H^{2}\left(Q, H^{1}(N, A)\right)$ depends only on $[e] \in H^{2}(N, A)^{Q}=H^{0}\left(Q, H^{2}(N, A)\right)$.

Theorem 1. The rule $e \mapsto \bar{e}$ describes the differential

$$
d_{2}: E_{2}^{0,2} \rightarrow E_{2}^{2,1} .
$$

A proof will be given in Section 4 below. We shall also show that our description is natural in a very strong sense; see Propositions 4.5 and 4.6 below.

For later reference, we note that the above construction also associates with e the crossed 2 -fold extension

$$
\begin{equation*}
0 \rightarrow A^{N} \rightarrow E \xrightarrow{B} \operatorname{Aut}_{G}(e) \rightarrow \mathrm{Out}_{G}(e) \rightarrow 1 . \tag{2.6}
\end{equation*}
$$

Remark 1. In a picturesque way one could say that the image $d_{2}[e]$ extends the well known interpretation of $H^{1}(N, A)$ as the group of automorphisms of E leaving A and $N=E / A$ elementwise fixed, modulo the inner automorphisms induced by elements of A; see e.g., $[5$, p. 12] or $[6$, p. $46]$.

Remark 2. Theorem 1 generalises Theorem 0.2 of [22]; see also p. 265 of [21]. Extensions (1), (6) and (7) in Section 0 of [22] correspond to our extensions (1.1), (2.1) and (2.5), respectively. Sah assumes extension.(1.1) to
be split with N Abelian (i.e., N a Q-module) and the N-action on A to be trivial. We managed to get rid of all these hypotheses.

Since $E_{3}^{0,2}$ is the kernel of d_{2}, we have the following.

Corollary 1. The subgroup $E_{3}^{0,2}$ of transgressive elements consists of those classes of extensions e for which \bar{e} splits.

This suggests that $d_{2}[e]$ should be the obstruction to lifting the outer action $\omega: Q \rightarrow \operatorname{Out}(N, A)$ to somewhat of an outer action on E. In fact, if Out ${ }^{A}(E)$ denotes the cokernel of the obvious map $E \rightarrow$ Aut $^{A}(E)$ which sends a member of E to the corresponding inner automorphism, the map $\operatorname{Aut}^{A}(E) \rightarrow$ $\operatorname{Aut}(N, A)$ in Section 2.1 induces a homomorphism $\operatorname{Out}^{A}(E) \rightarrow \operatorname{Out}(N, A)$ the kernel of which is (isomorphic to) $H^{1}(N, A)$.

Corollary 2. The class $d_{2}[e] \in H^{2}\left(Q, H^{1}(N, A)\right)$ is the obstruction to lifting the outer action $\omega: Q \rightarrow \operatorname{Out}(N, A)$ of Q on (N, A) to $\operatorname{Out}^{A}(E)$.

Proof. The map $\eta:$ Out $_{G}(e) \rightarrow \operatorname{Out}(E)$ maps Out $_{G}(e)$ into $\operatorname{Out}^{A}(E) \subset$ $\operatorname{Out}(E)$ and induces a commutative diagram

with exact rows, whose right-hand square is a pullback diagram. The claim follows.
Q.E.D.

We take the opportunity to correct a slight error in [22]: It is fairly clear from our construction of (2.5) that, in the special case considered by Sah, the middle group of (7) in Section 0 of [22] should be a fibre product

$$
A(\Gamma,[f]) \underset{\operatorname{Aut}_{\Gamma}(K, M)}{X} \Gamma
$$

here $\mathrm{Aut}_{\Gamma}(K, M)$ is the image of the obvious map $\Gamma \rightarrow \operatorname{Aut}(K) \times \operatorname{Aut}(M)$. Sah's description is correct only if this map is injective, i.e., if the action of Γ on (K, M) is faithful. We also note that, in view of the above, on p. 21 of [22] the group M in line 18 from below should perhaps be replaced by $E(f)$.

Remark 3. In very special cases the differential d_{2} can be described as the cup product with certain characteristic classes [1-3]. We tried to obtain such a description in our situation but could not manage to do so.
2.3. The Differential $d_{2}: H^{1}\left(Q, H^{1}(N, A)\right) \rightarrow H^{3}\left(Q, H^{0}(N, A)\right)$

Let e_{s} denote the split extension

$$
e_{s}: 0 \rightarrow A \rightarrow A \upharpoonleft N \rightarrow N \rightarrow 1
$$

Since $\left[e_{s}\right] \in H^{2}(N, A)^{Q}$, the construction in Section 2.2 above associates the extension

$$
\begin{equation*}
\bar{e}_{s}: 0 \rightarrow H^{1}(N, A) \rightarrow \mathrm{Out}_{G}\left(e_{s}\right) \rightarrow Q \rightarrow 1 \tag{2.7}
\end{equation*}
$$

with e_{s}. The obvious action of G on $A \jmath N$ induces a canonical section s_{0} : $G \rightarrow \operatorname{Aut}_{G}\left(e_{s}\right)$ which, in turn, induces a canonical section $\psi_{0}: Q \rightarrow$ Out $_{G}\left(e_{s}\right)$. Hence we my identify $\operatorname{Aut}_{G}\left(e_{s}\right)$ and $\operatorname{Out}_{G}\left(e_{s}\right)$ with $\operatorname{Der}(N, A) \downharpoonleft G$ and $H^{1}(N, A) \upharpoonleft Q$, respectively, in a canonical way. Further, the crossed 2 -fold extension (2.6) now reads

$$
\begin{equation*}
0 \rightarrow A^{N} \rightarrow A \upharpoonleft N \xrightarrow{\beta_{s}} \operatorname{Aut}_{G}\left(e_{s}\right) \rightarrow \operatorname{Out}_{G}\left(e_{s}\right) \rightarrow 1 \tag{2.8}
\end{equation*}
$$

Consider a derivation $\delta: Q \rightarrow H^{1}(N, A)$ representing a class $[\delta] \in$ $H^{1}\left(Q, H^{1}(N, A)\right)$. Setting $\psi_{\delta}(q)=\delta(q) \psi_{0}(q), q \in Q$, we obtain a further section $\psi_{\delta}: Q \rightarrow \operatorname{Out}_{G}\left(e_{s}\right)$ in (2.7). Here we identify $H^{1}(N, A)$ with its isomorphic image in $\mathrm{Out}_{G}\left(e_{s}\right)$. Pulling back (2.8) along ψ_{δ} yields the crossed 2-fold extension

$$
\begin{equation*}
\delta: 0 \rightarrow A^{N} \rightarrow A \upharpoonleft N \xrightarrow{\partial} B^{\delta} \rightarrow Q \rightarrow 1 \tag{2.9}
\end{equation*}
$$

Here B^{δ} is the fibre product

$$
B^{\delta}=\operatorname{Aut}_{G}\left(e_{s}\right) \underset{\text { out }_{G}\left(e_{s}\right)}{\mathrm{X}} Q
$$

it will be convenient to take as B^{δ} the pre-image in $\mathrm{Aut}_{G}\left(e_{s}\right)$ of $\psi_{\delta}(Q) \subset$ Out ${ }_{\sigma}\left(e_{s}\right)$. Further, the map $\partial: A 〕 N \rightarrow B^{\delta}$ is induced by β_{s}, and B^{δ} acts on $A \jmath N$ in the obvious way. As pointed out in the Introduction, δ represents a class $[\delta] \in H^{3}\left(Q, A^{N}\right)$. It is straightforward to check that this class depends only on $[\delta] \in H^{1}\left(Q, H^{1}(N, A)\right)$.

Theorem 2. The rule $\delta \mapsto \delta$ describes the differential

$$
d_{2}: E_{2}^{1,1} \rightarrow E_{2}^{3,0} .
$$

A proof will be given in Section 5 below. Again we shall show that our description is natural in a very strong sense; see Proposition 5.4 and 5.5.
2.4. The Transgression $\tau: E_{2}^{0,2} \rightharpoonup E_{2}^{3,0}$ and the Differential $d_{3}: E_{3}^{0,2} \rightarrow E_{3}^{3,0}$

Let e be a group extension (2.1) whose class is a transgressive element of $H^{2}(N, A)^{Q}$; by Corollary 1, the extension \bar{e} associated with e in Section 2.2 splits. Let $\psi: Q \rightarrow \mathrm{Out}_{G}(e)$ be a section. Pulling back (2.6) along ψ yields the crossed 2 -fold extension

$$
\begin{equation*}
\tilde{e}_{U}: 0 \rightarrow A^{N} \rightarrow E \xrightarrow{\partial} B^{\omega} \rightarrow Q \rightarrow 1 . \tag{2.10}
\end{equation*}
$$

Here B^{4} is the fibre product

$$
B^{\psi}=\operatorname{Aut}_{G}(e) \underset{\text { Out }_{G}(e)}{X} Q,
$$

the map $\partial: E \rightarrow B^{\omega}$ is induced by β, and B^{ψ} acts on E in the obvious way. As we have already explained, \tilde{e}_{ψ} represents a class $\left[\tilde{e}_{\psi}\right] \in H^{3}\left(Q, A^{N}\right)$; this class depends on $[e]$ and ψ.

Theorem 3. (a) The pairs ($[e],\left\{\tilde{e}_{\dot{u}} \mid\right.$), where \bar{e} splits and where ψ is a section of \bar{e}, constitute an additive relation. This additive relation is the transgression $\tau: E_{2}^{0,2} \rightharpoonup E_{2}^{3,0}$.
(b) Combining this relation with the projection $E_{2}^{3,0} \rightarrow E_{3}^{3,0}$ yields a homomorphism $E_{3}^{0,2} \rightarrow E_{3}^{3,0}$ which is the corresponding differential d d_{3}.

This will be proved in Section 6 below. Again the descriptions are natural, in a suitable sense. This is, however, best understood in terms of crossed pairs; see Section 2 of [13].

Remark 4. In the special case that N acts triviaily on A, a similar result as Theorem 3(a) was obtained by Ratcliffe [18].

3. On Differentials in the LHS Spectral Sequence

Let $\left(B_{*}(), \partial\right)$ denote the Bar resolution. The LHS spectral sequence ($E_{r}^{p, q}, d_{r}$), associated with the group extension (1.1) and the G-module A, is obtained by suitably filtering the bicomplex

$$
K^{p, q}=\operatorname{Hom}_{Q}\left(B_{p}(Q), \operatorname{Hom}_{N}\left(B_{q}(G), A\right)\right)
$$

with differentials

$$
\begin{array}{ll}
\left(\delta^{\prime} f\right)\left(b^{\prime}\right)\left(b^{\prime \prime}\right)=(-1)^{p+q+1} f\left(\partial b^{\prime}\right)\left(b^{\prime \prime}\right), & b^{\prime} \in B_{p+1}, \\
\left(b^{\prime \prime} \in B_{q},\right. \\
\left(\delta^{\prime \prime}\right)\left(b^{\prime}\right)\left(b^{\prime \prime}\right)=(-1)^{a+1} f\left(b^{\prime}\right)\left(\partial b^{\prime \prime}\right), & b^{\prime} \in B_{p}, \quad b^{\prime \prime} \in B_{q+1}
\end{array}
$$

(see [16, p. 351], where this spectral sequence is called the Lyndon spectral sequence). For later use, we denote the cokernel of $\partial: B_{t+1} \rightarrow B_{t}$ by C_{t} and
the kernel of $\partial: B_{t} \rightarrow B_{t-1}$ by J_{t}; the corresponding canonical maps will be denoted by pr: $B_{t} \rightarrow C_{t}$ and $k: J_{t} \rightarrow B_{t}$ (we set $B_{-1}=\mathbb{Z}$).

We shall utilize a variant of the description of $E_{2}^{p, q}$ and d_{2} introduced on pp. 341,342 of Mac Lane's book [16] in case of homology:

Define $L_{2}^{p, q} \subset K^{p, q}$ and $M_{2}^{p, q} \subset L_{2}^{p, q}$ by

$$
\begin{aligned}
L_{2}^{p, q} & =\left\{a^{p, q} ; \delta^{\prime \prime} a^{p, q}=0 \text { and } \delta^{\prime} a^{p, q}=-\delta^{\prime \prime} a^{p+1, q-1} \text { for some } a^{p+1, q-1}\right\}, \\
M_{2}^{p, q} & =\left\{\delta^{\prime} b^{p-1, q}+\delta^{\prime \prime} b^{p, q-1} ; \delta^{\prime \prime} b^{p-1, q}=0\right\} .
\end{aligned}
$$

Then $E_{2}^{p, q}=L_{2}^{p, q} / M_{2}^{p, q}$, and the differential

$$
d_{2}: E_{2}^{p, q} \rightarrow E_{2}^{p+2, q-1}
$$

is induced by the additive relation

$$
\begin{align*}
&\left\{\left(a^{p, q}, \delta^{\prime} a^{p+1, q-1}\right) \in K^{p, q} \oplus K^{p+2, q-1}\right. \\
&\left.\delta^{\prime} a^{p, q}+\delta^{\prime \prime} a^{p+1, q-1}=0, \delta^{\prime \prime} a^{p, q}=0\right\} \tag{3.1}
\end{align*}
$$

Now $a^{p . q}: B_{p}(Q) \rightarrow \operatorname{Hom}_{N}\left(B_{q}(G), A\right)$ is Q-linear, and the condition $\delta^{\prime \prime} a^{p . q}=0$ means that the image of $a^{p, q}$ is contained in $\operatorname{Hom}_{N}\left(J_{q-1}(G), A\right)\left(\subset \operatorname{Hom}_{N}\left(B_{q}(G), A\right)\right.$ via $\left.p r: B_{q}(G) \rightarrow C_{q}(G)=J_{q-1}(G)\right)$. Hence $a^{p, q} \in L_{2}^{p, q}$ if and only if there is a commutative square

$$
\begin{align*}
& \left.\begin{array}{rr}
B_{p+1}(-1)^{p+1} a^{p+1 . a-1} \mid
\end{array}\right) \xrightarrow{\partial} \quad \begin{array}{c}
B_{p}(Q) \\
\\
\end{array} \tag{3.2}\\
& \operatorname{Hom}_{N}\left(B_{q-1}(G), A\right) \xrightarrow[k^{*}]{\longrightarrow} \operatorname{Hom}_{N}\left(J_{q-1}(G), A\right) \text {. }
\end{align*}
$$

The cokernel of the second row of (3.2) is (naturally isomorphic to) the cohomology group $H^{q}(N, A)$. Hence any $a^{p, q} \in L_{2}^{p, q}$ induces a Q-linear map

$$
\alpha=\alpha^{\rho, q}: C_{p}(Q) \rightarrow H^{q}(N, A) .
$$

Conversely, any such α gives rise to a commutative diagram

with exact rows such that the combined map $B_{p}(Q) \rightarrow \operatorname{Hom}_{N}\left(J_{q-1}(G), A\right) \rightarrow$ $\operatorname{Hom}_{N}\left(B_{q}(G), A\right)$ is a member of $L_{2}^{p, q}$. We shall refer to (3.3) as a lifting of α; it is uniquely determined by α up to chain homotopy. Hence the class $[\sigma]$ in the cokernel of

$$
\begin{aligned}
& \operatorname{Hom}_{Q}\left(B_{p+1}(Q), \operatorname{Hom}_{N}\left(C_{q-1}(G), A\right)\right) \\
& \quad \rightarrow \operatorname{Hom}_{N}\left(J_{p+1}(Q), \operatorname{Hom}_{N}\left(C_{q-1}(G), A\right)\right)
\end{aligned}
$$

which is the cohomology group $H^{p+2}\left(Q, \operatorname{Hom}_{N}\left(C_{q-1}(G), A\right)\right)$, depends only on α. Furthermore, $[\sigma]$ depends only on the cohomology class

$$
\left[\alpha \mid \in H^{p}\left(Q, H^{q}(N, A)\right)\right.
$$

that is represented by α, and the rule $[\alpha] \mapsto[\sigma]$ describes a homomorphism

$$
H^{p}\left(Q, H^{q}(N, A)\right) \rightarrow H^{p+2}\left(Q, \operatorname{Hom}_{N}\left(C_{q-1}(G), A\right)\right)
$$

We denote this homomorphism by y.
Remark 3.1. The map y coincides with the map

$$
\operatorname{Ext}_{Q}^{p}\left(\mathbb{Z}, H^{q}(N, A)\right) \rightarrow \operatorname{Ext}_{Q}^{p+2}\left(\mathbb{Z}, \operatorname{Hom}_{N}\left(C_{q-1}(G), A\right)\right)
$$

given by Yoneda splicing with the second row of (3.3) (we shall, however, not use this fact).

If r denotes the natural projection

$$
\operatorname{Hom}_{N}\left(C_{q-1}(G), A\right) \rightarrow H^{q-1}(N, A)
$$

we have the following.
Proposition 3.1. The differential

$$
d_{2}: H^{p}\left(Q, H^{q}(N, A)\right) \rightarrow H^{p+2}\left(Q, H^{q-1}(N, A)\right)
$$

is given by $(-1)^{q} r_{*} y$ (where

$$
r_{*}: H^{p+2}\left(Q, \operatorname{Hom}_{N}\left(C_{q-1}(G), A\right)\right) \rightarrow H^{p+2}\left(Q, H^{q-1}(N, A)\right)
$$

is the induced map). In other words: If the Q-linear map $\alpha: C_{p}(Q) \rightarrow H^{q}(N, A)$ represents $[\alpha] \in H^{p}\left(Q, H^{4}(N, A)\right)$, construct a lifting (3.3); then $(-1)^{q}$ times the composite map ro represents $d_{2}[\alpha] \in H^{p+2}\left(Q, H^{q-1}(N, A)\right)$.

Proof. A pair ($a^{p, q}, \delta^{\prime} a^{p+1, q-1}$) belongs to the additive relation (3.1) if and only if it fits into a diagram (3.2). The assertion follows since $\delta^{\prime} a^{p+1, q-1}: B_{p+2}(Q) \rightarrow \operatorname{Hom}_{N}\left(B_{q-1}(G), A\right)$ (or the induced map $J_{p+1}(Q) \rightarrow$ $\left.\operatorname{Hom}_{N}\left(C_{p-1}(G), A\right)\right)$ represents the d_{2}-image of the class represented by $a^{p, q}$.
Q.E.D.

Remark 3.2. The preceding proposition recovers the following cocycle description of d_{2} : Let the p-cochain $f: Q^{p} \rightarrow \operatorname{Hom}_{N}\left(B_{q}(G), A\right)$ represent $[f] \in H^{p}\left(Q, H^{q}(N, A)\right)$; this means that f maps Q^{p} to $\operatorname{Hom}_{N}\left(J_{q-1}(G), A\right)$ $\left(\subset \operatorname{Hom}_{N}\left(B_{q}(G), A\right)\right.$ via $\left.p r: B_{q}(G) \rightarrow J_{q-1}(G)\right)$ in such a way that $r f: Q^{p} \rightarrow$ $H^{q}(N, A)$ is a p-cocycle. It follows that for each $\left[\sigma_{1}|\cdots| \sigma_{p+1}\right] \in Q^{p+1}$ there exists $h_{\left\{\sigma_{1}|\cdots| \sigma_{p+1}\right]} \in \operatorname{Hom}_{N}\left(B_{q-1}(G), A\right)$ such that

$$
\begin{aligned}
h_{\left[\sigma_{1}|\cdots| \sigma_{p+1} \mid\right.} \partial= & \sigma_{1}\left(f\left[\sigma_{2}|\cdots| \sigma_{p+1}\right]\right)+\sum_{i=1}^{p}(-1)^{i} f\left[\sigma_{1}|\cdots| \sigma_{i} \sigma_{i+1}|\cdots| \sigma_{p+1}\right] \\
& +(-1)^{p+1} f\left[\sigma_{1}|\cdots| \sigma_{p}\right]
\end{aligned}
$$

where $\partial: B_{q}(G) \rightarrow B_{q-1}(G)$ is the corresponding map. Define $g: Q^{p+2} \rightarrow$ $\operatorname{Hom}_{N}\left(B_{q-1}(G), A\right)$ by

$$
\begin{aligned}
g\left[\sigma_{1}|\cdots| \sigma_{p+2}\right]= & \sigma_{1} h_{\left[\sigma_{2}|\cdots| \sigma_{p+2}\right]}+\sum_{i=1}^{p+1}(-1)^{i} h_{\left[\sigma_{1}|\cdots| \sigma_{i} \sigma_{i+1}|\cdots| \sigma_{p+2} \mid\right.} \\
& +(-1)^{p+2} h_{\left\{\sigma_{1}|\cdots| \sigma_{p+1}\right]} .
\end{aligned}
$$

Then $(-1)^{q} g$ represents $d_{2}[f]$. We note that a similar description of d_{2} : $H^{0}\left(Q, H^{q}(N, A)\right) \rightarrow H^{2}\left(Q, H^{q-1}(N, A)\right)$ can be found on p. 21 of [22] (it is clear that (5) must read " $g(\sigma, \tau)=\sigma h_{\tau}-h_{\sigma \tau}+h_{\sigma}$ ").

There is an even more direct description of

$$
d_{2}: H^{p}\left(Q, H^{2}(N, A)\right) \rightarrow H^{p+2}\left(Q, H^{1}(N, A)\right)
$$

Let

$$
\begin{equation*}
1 \rightarrow N^{G} \rightarrow F \rightarrow G \rightarrow 1 \tag{3.4}
\end{equation*}
$$

be the free standard presentation; here F is free on a set $\left\{x_{g} ; g \in G^{*}\right\}$, where $G^{*}=G-\{1\}$. Let $N^{Q} \subset F$ denote the pre-image of $N \subset G$.

Lemma 3.1. The cokernel of $\partial^{*}: \operatorname{Hom}_{N}(\mathbb{Z} G, A) \rightarrow \operatorname{Hom}_{N}\left(B_{1}(G), A\right)$ is (naturally isomorphic to) the group $H^{1}\left(N^{Q}, A\right)$, and passing to cokernels in the second row of (3.3) yields, in case $q=2$, an exact sequence of N-modules
$0 \longrightarrow H^{1}(N, A) \xrightarrow{\inf } H^{1}\left(N^{Q}, A\right) \xrightarrow{h} \operatorname{Hom}_{N}\left(J_{1}(G), A\right) \xrightarrow{r} H^{2}(N, A) \longrightarrow 0$.

Here h is the obvious map that sends the class of $\varphi: B_{1}(G) \rightarrow A$ to its restriction $\varphi \mid J_{1}(G)$.

Proof. The projection $F \rightarrow G$ induces natural isomorphisms $\operatorname{Hom}_{N}(\mathbb{Z} G, A)$ $\rightarrow \operatorname{Hom}_{N Q}(\mathbb{Z} F, A)$ and $\operatorname{Hom}_{N}\left(B_{1}(G), A\right) \rightarrow \operatorname{Hom}_{N Q}(I F, A)$ (here " $I \Gamma$ " denotes the augmentation ideal of a group Γ).
Q.E.D.

Remark 3.3. The commutator factor group $\left(N^{G}\right)^{A b}$ is (naturally isomorphic to) $J_{1}(G)$, and the exact sequence (3.5) is the exact sequence (10.6) in [16, p. 354] associated with the group extension $1 \rightarrow N^{G} \rightarrow N^{Q} \rightarrow$ $N \rightarrow 1$ and the N-module A.

The following is immediate from the above:
Addendum to Proposition 3.1. If the Q-linear map $\alpha: C_{p}(Q) \rightarrow$ $H^{2}(N, A)$ represents $[\alpha] \in H^{p}\left(Q, H^{2}(N, A)\right)$, construct a lifting

Then σ represents $d_{2}[\alpha] \in H^{p+2}\left(Q, H^{1}(N, A)\right)$.
Remark 3.4. Proposition 3.1 may be paraphrased by saying that $d_{2}^{p, 2}$ is the map $\operatorname{Ext}_{Q}^{p}\left(\mathbb{Z}, H^{2}(N, A)\right) \rightarrow \operatorname{Ext}_{Q}^{p+2}\left(\mathbb{Z}, H^{1}(N, A)\right)$ given by Yoneda splicing with (3.5).

We shall also need a description of the differentials

$$
d_{3}: E_{3}^{p, q} \rightarrow E_{3}^{p+3, q-2} .
$$

We shall proceed as follows (cf. [16, p. 342, Ex. 2]): Define

$$
L_{3}^{p, q}=\left\{a^{p, q} \in K^{p, q} ; C c\left(a^{p, q}\right)\right\} .
$$

Here $C c\left(a^{p, q}\right)$ shall mean: $a^{p, q}$ maps $B_{p}(Q)$ into $\operatorname{Hom}_{N}\left(J_{q-1}(G), A\right)$ $\left(\subset \operatorname{Hom}_{N}\left(B_{q}(G), A\right)\right.$ as above $)$, and there is a commutative diagram

$\operatorname{Hom}_{N}\left(B_{q-2}(G), A\right) \xrightarrow{\partial^{*}} \operatorname{Hom}_{N}\left(B_{q-1}(G), A\right) \xrightarrow{\kappa^{*}} \operatorname{Hom}_{N}\left(J_{q-1}(G), A\right)$,
where $a^{p+1, q-1} \in K^{p+1, q-1}, a^{p+2, q-2} \in K^{p+2, q-2}$. We also define

$$
M_{3}^{p, q}=\left\{\delta^{\prime} b^{p-1, q}+\delta^{\prime \prime} b^{p, q-1} ; \operatorname{Cb}\left(b^{p-1, q}\right)\right\}
$$

Here $C b\left(b^{p-1, q}\right)$ shall mean: There is a commutative diagram:

where $b^{p-2, q+1} \in K^{p-2, q+1}$. Now $E_{3}^{p, q}=L_{3}^{p, q} / M_{3}^{p, q}$, and the differential d_{3} : $E_{3}^{p, q} \rightarrow E_{3}^{p+3, q-2}$ is induced by the additive relation

$$
\begin{equation*}
\left\{\left(a^{p, q}, \delta^{\prime} a^{p+2, q-2}\right) \in K^{p, q} \oplus K^{p+3, q-2} ; C c\left(a^{p, q}\right)\right\} \tag{3.8}
\end{equation*}
$$

as a closer examination of the arguments in the proof of Proposition 6.1 on p. 341 of [16] shows. Hence

Proposition 3.2. The differential $d_{3}: E_{3}^{p, q} \rightarrow E_{3}^{p+3, q-2}$ may be described as follows: Represent a class in $E_{3}^{p, q}$ by a Q-linear map $\alpha: C_{p}(Q) \rightarrow H^{q}(N, A)$, and lift α to

$$
\begin{aligned}
& \operatorname{Hom}_{N}\left(B_{q-2}(G), A\right) \xrightarrow{\partial^{*}} \operatorname{Hom}_{N}\left(B_{q-1}(G), A\right)
\end{aligned}
$$

Then $a^{p+2, q-2}$ induces a map $\sigma: J_{p+2}(Q) \rightarrow \operatorname{Hom}_{N}\left(C_{q-2}(G), A\right)$, and $(-1)^{p+q+1}$ times the composite map ra: $J_{p+2}(Q) \rightarrow H^{q-1}(N, A)$ represents the d_{3}-image of $[\alpha]$.

ADDENDUM. The transgression $\tau: E_{2}^{0.2} \rightharpoonup E_{2}^{3.0}$ may be described as follows: Let $\alpha: \mathbb{Z} \rightarrow H^{2}(N, A)$ represent a transgressive class; this is the case if and only if α admits a lifting (3.9). Let $\sigma: J_{2}(Q) \rightarrow \operatorname{Hom}_{N}(\mathbb{Z}, A)$ be the induced map as above. Then $([\alpha],-[\sigma])$ is a member of the transgression τ, and any member of t may be obtained in this way.

4. The Proof of Theorem 1

Let

$$
e: 0 \rightarrow A \rightarrow E \rightarrow N \rightarrow 1
$$

be a group extension (2.1) that represents a member of $H^{2}(N, A)^{Q}$. Let

$$
c: 0 \rightarrow A \rightarrow C \rightarrow I G \rightarrow 0
$$

rpresent the corresponding class $[c] \in \operatorname{Ext}_{N}(I G, A) \cong H^{2}(N, A) \quad$ (cf. Proposition 4.1 below). The extension c determines a group extension

$$
\hat{e}: 0 \rightarrow H^{1}(N, A) \rightarrow \hat{E} \rightarrow Q \rightarrow 1
$$

that represents $d_{2}[e] \in H^{2}\left(Q, H^{1}(N, A)\right)$ (Corollary 4.1 below). Theorem 1 is then proved by showing that \hat{e} is equivalent to the extension \bar{e} (2.5); see Proposition 4.4 below.

4.1. $\operatorname{Ext}_{N}(I G, A)$ and $\operatorname{Opext}(N, A)$

The purpose of this subsection is to develop a conceptual description of the standard map $\operatorname{Opext}(N, A) \rightarrow \operatorname{Ext}_{N}(I G, A)$ that identifies the two models Opext (N, A) (operator extensions of A by N) and $\operatorname{Ext}_{N}(I G, A)$ (N-module extension of A by $I G$) of the abstract group $H^{2}(N, A)$.

Let

$$
\begin{equation*}
1 \rightarrow N^{G} \rightarrow F \rightarrow G \rightarrow 1 \tag{4.1}
\end{equation*}
$$

be the free standard presentation such that F is free on a set $\left\{x_{g} ; g \in G^{*}\right\}$, where $G^{*}=G-\{1\}$. Let $N^{Q} \subset F$ denote the pre-image of $N \subset G$. We identify the commutator factor group $\left(N^{G}\right)^{4 b}=N^{G} /\left[N^{G}, N^{G}\right]$ with $J_{1}(G)=$ $\operatorname{ker}\left(B_{1}(G) \rightarrow B_{0}(G)\right)$ by the standard rule $n \mapsto p r(n-1), n \in N^{G}$, where $p r$: $I F \rightarrow B_{1}(G)$ denotes the projection $\left(x_{g}-1\right) \mapsto[g]$ (we could also take $n \mapsto p r(1-n))$. Let $\quad M=N^{Q} /\left[N^{G}, N^{G}\right]$. Now, if e represents $[e] \in$ $\operatorname{Opext}(N, A)$, we may lift the identity map of N to

such that μ is N-linear. In order to map [e] to an element of $\operatorname{Ext}_{N}(I G, A)$, let C_{e} denote the pushout of

in the category of N -modules. It yields a commutative diagram of N -modules

Proposition 4.1. The rule $e \mapsto c_{e}$ induces the standard isomorphism $\operatorname{Opext}(N, A) \rightarrow \operatorname{Ext}_{N}(I G, A)$; this isomorphism is canonical up to a sign depending on how $\left(N^{G}\right)^{A b}$ and $J_{1}(G)$ are identified.

Proof. Straightforward and left to the reader.
We shall always identify $\left(N^{G}\right)^{A b}$ and $J_{1}(G)$ by $n \mapsto p r(n-1), n \in N^{G}$. Then the isomorphism in Proposition 4.1 is canonical.

4.2. A Semidirect Fibre Product

Let K be a group and B a K-module. We shall need a conceptual description of the standard map

$$
\operatorname{Ext}_{K}(I K, B) \rightarrow \operatorname{Opext}(K, B)
$$

that identifies the two models $\mathrm{Ext}_{K}(I K, B)$ (K-module extensions of B by $I K$) and $\operatorname{Opext}(K, B)$ (operator extensions of B by K) of the abstract group $H^{2}(K, B)$:

Let C and D be K-modules, let $h: C \rightarrow D$ be a map of K-modules, and let $d: K \rightarrow D$ be a derivation. We call the subgroup of the semidirect product $C \downharpoonleft K$ consisting of the elements $(x, k) \in C \upharpoonleft K$ such that $h(x)=d(k)$ a semidirect fibre product and denote it by

$$
C \underset{D}{\jmath_{D} K} .
$$

Next, let

$$
0 \rightarrow B \xrightarrow{i} C \xrightarrow{h} D \rightarrow 0
$$

be an extension of K-modules. The above construction provides us with the uniquely determined group extension

$$
0 \rightarrow B \xrightarrow{j} C \underset{D}{\jmath} K \xrightarrow{q} K \rightarrow 1 ;
$$

here $j(b)=(i(b), 1)$ and $q(x, k)=k$, where $b \in B,(x, k) \in C \jmath_{D} K$.
We may, in particular, apply this construction to an extension

$$
c: 0 \rightarrow B \rightarrow C \rightarrow I K \rightarrow 0
$$

in connection with the standard derivation $d: K \rightarrow I K, d(k)=k-1, k \in K$. This yields the group extension (cf. Section 3 of [4])

$$
e_{c}: 0 \rightarrow B \rightarrow C \underset{I K}{\jmath_{I K}} K \rightarrow K \rightarrow 1
$$

Proposition 4.2. The rule $c \mapsto e_{c}$ describes the standard isomorphism $\operatorname{Ext}_{K}(I K, B) \rightarrow \operatorname{Opext}(K, B)$; this isomorphism is canonical up to sign.

The proof is easy and is left to the reader. We note, however, that we could construct $C \jmath_{I K} K$ with respect to the derivation $d(k)=1-k$ also. This explains the ambiguity of sign.

Remark. The inverse to the map $\operatorname{Opext}(N, A) \rightarrow \operatorname{Ext}_{N}(I G, A)$ in Proposition 4.1 is given by sending

$$
0 \rightarrow A \rightarrow C \rightarrow I G \rightarrow 0
$$

to

$$
0 \rightarrow A \rightarrow C \underset{I G}{\jmath_{I G}} N \rightarrow N \rightarrow 1,
$$

where $d(n)=n-1 \in I G, n \in N$ (cf. Section 4.1).

4.3. The Proof of Theorem 1

Let the group extension e represent $[e] \in H^{2}(N, A)^{Q}$. Lift the identity map of N to a diagram (4.2) and construct a diagram (4.3). This yields an extension $c=c_{e}$ of N-modules that represents the corresponding class $[c] \in$ $\operatorname{Ext}_{N}(I G, A)^{Q}$ (Proposition 4.1). Let $\alpha: \mathbb{Z} \rightarrow \operatorname{Ext}_{N}(I G, A)$ send 1 to $[c]$. It is clear that the projection $r: \operatorname{Hom}_{N}\left(J_{1}(G), A\right) \rightarrow \operatorname{Ext}_{N}(I G, A)$ maps μ (occurring in (4.2) and (4.3)) to $\alpha(1)$.

By the Addendum to Proposition 3.1 we have to consider the lifting problem

where h is the map used in Lemma 3.1. A lifting $\alpha_{0}: \mathbb{Z} Q \rightarrow \operatorname{Hom}_{N}\left(J_{1}(G), A\right)$ is a given by $\alpha_{0}(1)=\mu$. Now, for $g \in G, \alpha_{0}(p(g))=l_{g} \mu l_{g}^{-1}$, where $p: G \rightarrow Q$ is the projection in (1.1); note that for $n \in N$ we have $l_{n} \mu l_{n}^{-1}=\mu$ since μ is N-linear. There is no need to construct α_{1}; we shall instead construct directly a group extension representing $d_{2}[\alpha]$.

Let $T=\operatorname{ker}\left(r: \operatorname{Hom}_{N}\left(J_{1}(G), A\right) \rightarrow \operatorname{Ext}_{N}(I G, A)\right)$. Clearly, α_{0} induces a Q $\operatorname{map} I Q \rightarrow T$, and we may take the fibre product $H^{1}\left(N^{Q}, A\right) X_{T} I Q$ (note that, by exactness, h maps $H^{1}\left(N^{Q}, A\right)$ onto $\left.T\right)$.

Proposition 4.3. The fibre product $H^{1}\left(N^{Q}, A\right) X_{T} I Q$ fits into an extension

$$
\begin{equation*}
0 \rightarrow H^{1}(N, A) \rightarrow H^{1}\left(N^{Q}, A\right) X_{T} I Q \rightarrow I Q \rightarrow 0 \tag{4.5}
\end{equation*}
$$

of Q-modules that represents

$$
d_{2}[\alpha] \in \operatorname{Ext}\left(I Q, H^{1}(N, A)\right) \cong H^{2}\left(Q, H^{1}(N, A)\right)
$$

Proof. We may complete the construction of (4.4) by setting $\alpha_{1}[q]=[\varphi]$, where $([\varphi], q-1) \in H^{1}\left(N^{Q}, A\right) X_{T} I Q, \varphi: B_{1}(G) \rightarrow A$ denoting an N-map that represents $[\varphi] \in H^{1}\left(N^{Q}, A\right)$ (see proof of Lemma 3.1). The assertion is now a consequence of the Addendum to Proposition 3.1.
Q.E.D.

Corollary 4.1. The group extension

$$
\begin{equation*}
\hat{e}: 0 \rightarrow H^{1}(N, A) \rightarrow H^{1}\left(N^{Q}, A\right) \underset{T}{\jmath_{T}} Q \rightarrow Q \rightarrow 1 \tag{4.6}
\end{equation*}
$$

represents $\quad d_{2}[\alpha] \in \operatorname{Opext}\left(Q, H^{1}(N, A)\right) \cong H^{2}\left(Q, H^{1}(N, A)\right)$. Here $H^{1}\left(N^{Q}, A\right) 1_{T} Q$ is the semidirect fibre product with respect to the derivation $d: Q \rightarrow T, d(q)=\alpha_{0}(q-1)\left(=l_{g} \mu l_{g}^{-1}-\mu\right.$, where $\left.p(g)=q, g \in G, q \in Q\right)$, and the map $h: H^{1}\left(N^{Q}, A\right) \rightarrow T$, introduced in Section 3.

Proof. Apply Proposition 4.2 to extension (4.5) and observe that $\left(H^{1}\left(N^{Q}, A\right) \mathrm{X}_{T} I Q\right) \jmath_{I Q} Q=H^{1}\left(N^{Q}, A\right) \jmath_{T} Q$.
Q.E.D.

In the group extension (4.6) the group $H^{1}(N, A)$ is the cokernel of k^{*} : $\operatorname{Hom}_{N}(\mathbb{Z} G, A) \rightarrow \operatorname{Hom}_{N}(I G, A)$ and $H^{1}\left(N^{Q}, A\right)$ is the cokernel of $\partial^{*}:$ $\operatorname{Hom}_{N}(\mathbb{Z} G, A) \rightarrow \operatorname{Hom}_{N}\left(B_{1}(G), A\right)$ (cf. Lemma 3.1). It is known that the map

$$
\begin{gathered}
v: \operatorname{Hom}_{N}(I G, A) \rightarrow \operatorname{Der}(N, A), \quad(v(\varphi))(n)=\varphi(n-1), \\
\varphi \in \operatorname{Hom}_{N}(I G, A), \quad n \in N,
\end{gathered}
$$

induces an isomorphism

$$
v_{\#}: \operatorname{coker}\left(k^{*}\right) \rightarrow \operatorname{coker}(A \rightarrow \operatorname{Der}(N, A)) ;
$$

similarly, the map

$$
\rho: \operatorname{Hom}_{N}\left(B_{1}(G), A\right) \rightarrow \operatorname{Der}\left(N^{Q}, A\right),
$$

given by $(\rho(\psi))(n)=(\psi p r)(n-1), \psi \in \operatorname{Hom}_{N}\left(B_{1}(G), A\right), n \in N^{Q}$, where $p r$: $I F \rightarrow B_{1}(G)$ is the projection $x_{g}-1 \mapsto[g]$, induces an isomorphism

$$
\rho_{\#}: \operatorname{coker}\left(\partial^{*}\right) \rightarrow \operatorname{coker}\left(A \rightarrow \operatorname{Der}\left(N^{Q}, A\right)\right)
$$

Corresponding to $h: \operatorname{coker}\left(\partial^{*}\right) \rightarrow T$,

$$
\begin{aligned}
& h^{\prime}: \operatorname{coker}\left(A \rightarrow \operatorname{Der}\left(N^{Q}, A\right)\right) \rightarrow T \\
& \quad=\operatorname{ker}\left(r: \operatorname{Hom}_{N}\left(J_{1}(G), A\right) \rightarrow H^{2}(N, A)\right)
\end{aligned}
$$

is defined by $h^{\prime}|d|=\varphi: J_{1}(G) \rightarrow A$ such that $\varphi p r(n-1)=d(n)$, where $p r$ is as above.

Lemma 4.1. The diagram

is commutative, where the second row is induced by the projection. Furthermore, $h=h^{\prime} \rho_{\#}$.

Proof. The first statement is clear. In order to verify the second, let $x=$ $p r(n-1) \in J_{1}(G), n \in N^{G}$. For $\psi \in \operatorname{Hom}_{N}\left(B_{1}(G), A\right)$ we have

$$
\left(h^{\prime} \rho_{\#}[\psi]\right)(p r(n-1))=(\rho \psi)(n)=\psi(p r(n-1))
$$

Hence $\left.h^{\prime} \rho_{\neq} \mid \psi\right]=\psi \mid J_{1}(G)=h[\psi]$, as h was introduced in Lemma 3.1.
Q.E.D.

In view of Lemma 4.1, we shall now take $\operatorname{coker}(A \rightarrow \operatorname{Der}(N, A))$ as $H^{1}(N, A)$ and $\operatorname{coker}\left(A \rightarrow \operatorname{Der}\left(N^{Q}, A\right)\right)$ as $H^{1}\left(N^{Q}, A\right)$, and we shall no longer distinguish between h and h^{\prime}. It will be convenient to describe $h: H^{1}\left(N^{Q}, A\right) \rightarrow T$ by the rule

$$
\begin{equation*}
(h[d]) p r=d \mid N^{G}, \quad d \in \operatorname{Der}\left(N^{Q}, A\right) \tag{4.7}
\end{equation*}
$$

where pr: $N^{G} \rightarrow\left(N^{G}\right)^{A b}$ is the projection; here $\left(N^{G}\right)^{A b}$ is identified with $J_{1}(G)$ as in Section 4.1, above.

Proposition 4.4. There is a morphism of extensions

such that the combined map $E \rightarrow{ }^{\beta} \operatorname{Aut}_{G}(e) \rightarrow H^{1}\left(N^{Q}, A\right) \jmath_{T} Q$ is zero.
Clearly, this establishes Theorem 1 , since (4.8) induces an equivalence of extensions (2.5) $\rightarrow \hat{e}$.

Proof of Proposition 4.4. From (4.2) we may construct

where $\kappa=\mu p r$ and $\theta=v p r$; here " $p r$ " denotes the corresponding projections.
Let $\alpha \in \mathrm{Aut}_{G}(e)$, and let $g=g_{\alpha} \in G$ be the image in G. Define $d_{\alpha}: N^{Q} \rightarrow A$ by

$$
d_{a}(n)=\alpha\left(\theta\left(x_{g}^{-1} n x_{g}\right)\right) \theta\left(n^{-1}\right), \quad n \in N^{Q}, \quad x_{g} \in F
$$

this yields a derivation from N^{Q} into A, where N^{Q} acts upon A via the projection $N^{Q} \rightarrow N$.

Lemma 4.2. The rule $\alpha \mapsto d_{\alpha}$ induces a derivation $\mathrm{Aut}_{G}(e) \rightarrow H^{1}\left(N^{Q}, A\right)$, where $\mathrm{Aut}_{G}(e)$ acts on $H^{1}\left(N^{Q}, A\right)$ via the obvious projection Aut ${ }_{G}(e) \rightarrow Q$.

Proof. Let $\alpha, \beta \in \mathrm{Aut}_{G}(e)$, and let $x=x_{g_{a}} \in F, y=x_{g_{B}} \in F$, where g_{α}, $g_{B} \in G$ are the corresponding images. Using additive notation in $H^{1}\left(N^{Q}, A\right)$, we have to show that

$$
\left[d_{\alpha \beta}\right]=\left[d_{\alpha}\right]+{ }^{a_{\alpha}}\left[d_{\beta}\right] \in H^{1}\left(N^{Q}, A\right),
$$

where $q_{\alpha} \in Q$ is the image of α. Now

$$
\begin{aligned}
d_{\alpha \beta}(n) & =\left(\alpha \beta \theta\left(y^{-1} x^{-1} n x y\right)\right) \theta\left(n^{-1}\right), \quad n \in N^{Q}, \\
& =\left(\alpha \beta \theta\left(y^{-1} x^{-1} n x y\right)\right)\left(\alpha \theta\left(x^{-1} n^{-1} x\right)\right)+\left(\alpha \theta\left(x^{-1} n x\right)\right) \theta\left(n^{-1}\right) \\
& ={ }^{g_{\alpha}}\left(d_{\beta}\left(x^{-1} n x\right)\right)+d_{\alpha}(n),
\end{aligned}
$$

whence the assertion.
Q.E.D.

We can now complete the proof of Proposition 4.4: The rule $\alpha \mapsto$ $\left(\left[d_{a}\right], q_{\alpha}\right)$ describes a homomorphism $\left.\operatorname{Aut}_{G}(e) \rightarrow H^{1}\left(N^{Q}, A\right)\right\} Q$, where $q_{\alpha} \in Q$ denotes the image in Q. Moreover, for $n \in N^{G}$ we have

$$
\begin{aligned}
d_{\alpha}(n) & =\alpha \kappa\left(x_{g}^{-1} n x_{g}\right)-\kappa(n), \quad g=g_{\alpha} \in G \\
& =\left(l_{g} \kappa i_{x_{g}}^{-1}-\kappa\right)(n)
\end{aligned}
$$

i.e.,

$$
d_{\alpha} \mid N^{G}=\left(l_{g} \mu l_{g}^{-1}-\mu\right) p r,
$$

where pr: $N^{G} \rightarrow\left(N^{G}\right)^{A b}$ is the projection. By rule (4.7) it follows that

$$
h\left[d_{\alpha}\right]=l_{g} \mu l_{g}^{-1}-\mu=d(p g)=d\left(q_{\alpha}\right),
$$

whence $\left(\left\lfloor d_{\alpha}\right]_{,}\right) \in H^{1}\left(N^{Q}, A\right) 1_{T} Q$. Thus we have a map

$$
\operatorname{Aut}_{G}(e) \rightarrow H^{1}\left(N^{Q}, A\right) \underset{T}{1} Q .
$$

For an element $\alpha=\alpha_{d} \in \operatorname{Aut}_{G}(e)$ such that $\alpha(x)=d(\pi x) \cdot x, x \in E$, where $d: N \rightarrow A$ is a derivation (cf. Section 2.1), we have, for $n \in N^{Q}$,

$$
\begin{aligned}
d_{a}(n) & =(\alpha \theta(n)) \theta\left(n^{-1}\right) \\
& =(d p r)(n),
\end{aligned}
$$

where pr: $N^{Q} \rightarrow N$ is the projection; note in particular that $g_{\alpha}=1 \in G$. It follows that $\mathrm{Aut}_{G}(e) \rightarrow H^{1}\left(N^{Q}, A\right) \jmath_{T} Q$ induces a diagram (4.8). To see that the combined map $E \rightarrow{ }^{\beta} \operatorname{Aut}_{G}(e) \rightarrow H^{1}\left(N^{Q}, A\right) \jmath_{T} Q$ is zero, let $\alpha=\beta(y)$, $y \in E$. Now, for $n \in N^{Q}$, we have

$$
\begin{aligned}
d_{a}(n) & =y \theta\left(x^{-1} n x\right) y^{-1} \theta\left(n^{-1}\right), \quad x=x_{g}, \quad g=g_{y} \in N, \\
& =y \theta\left(x^{-1}\right) \theta(n)\left(y \theta\left(x^{-1}\right)\right)^{-1} \theta\left(n^{-1}\right) \\
& =a-{ }^{n} a, \quad \text { where } \quad a=y \theta\left(x^{-1}\right) \in A .
\end{aligned}
$$

Hence d_{α} is an inner derivation, and we are done.
Q.E.D.

Remark. The reader might perhaps believe that in our proof of Theorem 1 there is an argument missing which should establish the independence of the choices of the maps μ and v in (4.2). There is, however, no need to give such an argument: Diagram (4.8) reverses the choices of μ and v in the sense that (4.2) and (4.8) together show that the whole proof is independent of μ and v.

4.4. Naturalness of the Description

Our description of $d_{2}: E_{2}^{0,2} \rightarrow E_{2}^{2,1}$ is natural in a strong sense; what this means will be expressed below in Propositions 4.5 and 4.6 for the module variable and the group extension variable, respectively.

Let $\tau: A \rightarrow A^{\prime}$ be a homomorphism of G-modules. If e is a group extension (2.1) let

$$
\tau e: 0 \rightarrow A^{\prime} \rightarrow E_{\tau} \rightarrow N \rightarrow 1
$$

be the induced extension, representing $\tau_{*}[e] \in H^{2}\left(N, A^{\prime}\right)$; cf., e.g., Section 2.2 of [13]. If $[e] \in H^{2}(N, A)^{Q}$ then $[\tau e] \in H^{2}\left(N, A^{\prime}\right)^{Q}$.

Proposition 4.5. For any extension e of A by N that represents a member of $H^{2}(N, A)^{2}$, the G-map τ induces, in a canonical way, a morphism

$$
\left(\tau_{*}, \omega_{\tau}, 1\right): \bar{e} \rightarrow(\overline{\tau e})
$$

of extensions.
Proof. The map $\omega_{\tau}: \mathrm{Out}_{G}(e) \rightarrow \mathrm{Out}_{G}(\tau e)$ given in Proposition 2.1 of [13] yields the desired morphism of extensions.

Next, let there be given two group extensions, (1.1) and (1.1)', and let $\Phi: G^{\prime} \rightarrow G$ be a homomorphism that maps N^{\prime} into N. Then Φ induces a morphism of extensions and, by abuse of notation, we simply write Φ : $(1.1)^{\prime} \rightarrow$ (1.1).

Now, if e is a group extension (2.1), let

$$
e \Phi: 0 \rightarrow A \rightarrow E^{\Phi} \rightarrow N^{\prime} \rightarrow 1
$$

be the induced extension representing $\Phi^{*}[e] \in H^{2}\left(N^{\prime}, A\right)$; cf., e.g., Section 2.2 of $|13|$. If e represents a member of $H^{2}(N, A)^{Q}$, writing $\operatorname{Out}_{G}(e)=$ $\mathrm{Out}_{G}(e) \mathrm{X}_{Q} Q^{\prime}$, let

$$
\bar{e} \Phi: 0 \rightarrow H^{1}(N, A) \rightarrow \operatorname{Out}_{G}(e) \rightarrow Q^{\prime} \rightarrow 1
$$

be the induced extension, representing $\Phi^{*}[\bar{e}] \in H^{2}\left(Q^{\prime}, H^{1}(N, A)\right)$ (here and below the notation "-*" is abused); notice that $e \Phi$ represents a member of $H^{2}\left(N^{\prime}, A\right)^{Q^{\prime}}$ in this case.

Proposition 4.6. For any extension e of A by N that represents a member of $H^{2}(N, A)^{Q}$, the morphism Φ induces, in a canonical way, morphisms

$$
\left(1, \hat{\omega}^{\Phi}, \Phi\right): \bar{e} \Phi \rightarrow \bar{e}
$$

and

$$
\left(\Phi^{*}, \omega^{\Phi}, 1\right): \bar{e} \Phi \rightarrow(\overline{e \Phi})
$$

of extensions.
Proof. The maps $\hat{\omega}^{\Phi}:$ Out $_{G^{\prime}}(e) \rightarrow$ Out $_{G}(e)$ and $\omega^{\Phi}: \mathrm{Out}_{G^{\prime}}(e) \rightarrow \mathrm{Out}_{G^{\prime}}(e \Phi)$ in Propositions 2.3 and 2.4 of [13], respectively, yield the desired morphisms of extensions.

Notice that Propositions 4.5 and 4.6 imply the (well known) fact that the differential $d_{2}: E_{2}^{0,2} \rightarrow E_{2}^{2,1}$ is natural in both variables.

5. The Proof of Theorem 2

Let $\delta: Q \rightarrow H^{1}(N, A)$ be a derivation. Let $\alpha=\alpha_{\delta}$ be the corresponding Q $\operatorname{map} I Q \rightarrow H^{1}(N, A)(\alpha(q-1)=\delta(q), q \in Q)$. In view of Proposition 3.1, the image $\left.d_{2}(\mid \alpha]\right) \in H^{3}\left(Q, A^{N}\right)$ is obtained as follows: Let $\left(B_{*}(Q), \partial\right)$ be the (normalised) Bar resolution in inhomogeneous form [16, p. 114]. Construct a lifting of α :

Then $-\sigma$ represents the image $d_{2}[\alpha] \in H^{3}\left(Q, A^{N}\right)$.
In order to prove Theorem 2 , let (C, F, ∂) be the free crossed module on the standard presentation $(X ; R)$ of $Q\left[10\right.$, Sect. 4]; here $X=\left\{u_{q} ; q \in Q^{*}\right\}$ and $R=\left\{(r, s)=u_{r} u_{s} u_{r s}^{-1} ; r, s \in Q^{*}\right\}$. Now choose a lifting $\lambda: F \rightarrow G$ of the obvious projection $\pi: F \rightarrow Q$ such that $\pi=p \lambda$, where $p: G \rightarrow Q$ is the projection in (1.1). Further, let

$$
e_{(X ; R)}: 0 \rightarrow J \rightarrow C \rightarrow F \xrightarrow{\pi} Q \rightarrow 1
$$

be the corresponding crossed 2 -fold extension [10, Sects. 3, 4]. It is known $[10$, Sects. 2, 4, 9] that J is a Q-module (the action is induced by the F action on C) generated by the elements

$$
u(r, s, t)={ }^{u_{r}}(s, t)(r, s t)(r s, t)^{-1}(r, s)^{-1} \in C
$$

and that the rule

$$
u(r, s, t) \mapsto(r|s| t]+|r| s t]-[r s \mid t]-|r| s]) \in J_{2}(Q)
$$

describes an isomorphism $J \rightarrow J_{2}(Q)$. In view of the main Theorem in [10, Sect. 7], Theorem 2 is implied by the following.

Proposition 5.1. The above map $\lambda: F \rightarrow G$ and diagram (5.1) determine a lifting

of the identity map of Q in a canonical way.

5.1. The Group B^{δ}

We wish to describe the group B^{δ} (introduced in Section 2.3) as the semidirect fibre product $\operatorname{Der}(N, A) \jmath_{H^{\prime}(N, A)} G$ (see Section 4.1) with respect to the derivation $\delta p: G \rightarrow H^{1}(N, A)$ and the natural projection $\operatorname{Der}(N, A) \rightarrow$ $H^{1}(N, A)$; here G acts on $H^{1}(N, A)$ via the projection $p: G \rightarrow Q$ in (1.1). The requisite action of G on $\operatorname{Der}(N, A)$ is gven by the rule $d \mapsto l_{g} d i_{g}^{-1}$; here $d \in \operatorname{Der}(N, A), g \in G$, and $i_{g}: N \rightarrow N$ denotes conjugation $n \mapsto g n g^{-1}$. Note that this action coincides with that induced from extension (2.3).

Lemma 5.1. The projection $\operatorname{Der}(N, A) \rightarrow H^{1}(N, A)$ is a G-map.
Proof. Consider the commutative triangle

where $(\rho(h))(n)=h(n \quad 1), h \in \operatorname{Hom}_{N}(I G, A), n \in N$. Let $g \in G$ and $n \in N$. For any $h \in \operatorname{Hom}_{N}(I G, A)$, the computation

$$
\begin{aligned}
{ }^{g} h\left(g^{-1}(n-1)-\left(g^{-1} n g-1\right)\right) & ={ }^{8} h\left(g^{-1} n g\left(g^{-1}-1\right)-\left(g^{-1}-1\right)\right) \\
& ={ }^{g g^{-1} n g} h\left(g^{-1}-1\right)-{ }^{g} h\left(g^{-1}-1\right) \\
& ={ }^{(n-1)}\left({ }^{8} h\left(g^{-1}-1\right)\right)
\end{aligned}
$$

shows that for $g \in G$ fixed the two derivations $N \rightarrow A$, given by

$$
n \mapsto{ }^{g} h\left(g^{-1}(n-1)\right)\left(=\rho\left(l_{g} h l_{g}^{-1}\right)(n)\right), \quad n \in N,
$$

and

$$
n \mapsto^{8} h\left(g^{-1} n g-1\right), \quad n \in N
$$

differ by an inner derivation only and thus determine the same class in $H^{1}(N, A)$. The statement of the lemma follows, since the Q-action on $H^{1}(N, A)$ is induced by the rule

$$
(h: I G \rightarrow A) \mapsto\left(l_{g} h l_{g}^{-1}: I G \rightarrow A\right),
$$

i.e., by the Q-action on $\operatorname{Hom}_{N}(I G, A)$.
Q.E.D.

It follows that the construction of the semidirect fibre product $\operatorname{Der}(N, A) \jmath_{H^{\prime}(N, A)} G$ makes sense. We can now identify this group with B^{δ} as follows: As already explained in Section 2.3, the group $\operatorname{Aut}_{G}\left(e_{s}\right)$ splits canonically into $\operatorname{Der}(N, A)] G$; in fact, a canonical section $G \rightarrow \operatorname{Aut}_{G}\left(e_{s}\right)$ is induced by the (obvious) action of G on $A \downharpoonleft N$. The action of $\operatorname{Der}(N, A) \upharpoonleft G$ on $A \upharpoonleft N$ is given explicitly by the rule

$$
\begin{equation*}
{ }^{(d, \delta)}(a, n)=\left({ }^{g} a+d\left(g n g^{-1}\right), g n g^{-1}\right) . \tag{5.3}
\end{equation*}
$$

Furthermore, the group $\mathrm{Out}_{G}\left(e_{s}\right)$ speits canonically into $H^{1}(N, A) \upharpoonleft Q$, and we have a commutative diagram

here $\pi_{\delta}(d, g)=q_{g} \in Q$ (the image of g in Q), and the other maps are the obvious ones.

Proposition 5.2. If we identify $\operatorname{Aut}_{G}\left(e_{s}\right)$ with $\left.\operatorname{Der}(N, A)\right\} G$ as above, then B^{δ} is the subgroup $\left.\operatorname{Der}(N, A)\right]_{H^{\prime}(N, A)} G$.

The projection $B^{\delta} \rightarrow Q$ is now the map π_{δ}, the homomorphism $\partial: A \jmath N \rightarrow B^{\delta}$ is given by $\partial(a, n)=\left(-d_{a}^{i}, n\right), a \in A, n \in N$, and B^{δ} acts on $A \jmath N$ by rule (5.3); here $d_{a}^{i}: N \rightarrow A$ is the inner derivation $d_{a}^{i}(n)={ }^{n} a-a$, $n \in N$.

5.2. The Construction of the Lifting (5.2)

For convenience, we shall replace δ by the crossed 2 -fold extension

$$
\begin{equation*}
0 \rightarrow A^{N} \rightarrow A 〕 N \xrightarrow{\partial^{\prime}} \operatorname{Der}(N, A) \underset{H^{\prime}(N, A)}{1} G \rightarrow Q \rightarrow 1, \tag{5.4}
\end{equation*}
$$

where $\partial^{\prime}(a, n)=\left(d_{a}^{i}, n\right)$, and where $\operatorname{Der}(N, A) \jmath_{H^{\prime}(N, A)} G$ acts on $A \jmath N$ by the rule

$$
{ }^{(d, g)}(a, n)=\left({ }^{8} a-d\left(g n g^{-1}\right), g n g^{-1}\right)
$$

Lemma 5.2. The map $\varphi: A \jmath N \rightarrow A \jmath N, \varphi(a, n)=(-a, n)$, induces a morphism $(-1, \varphi, 1,1):(5.4) \rightarrow \delta$ of crossed 2 -fold extensions.

Proof. Straightforward.
Instead of directly constructing (5.2), we shall construct a morphism $\left(\sigma, \beta_{1}, \beta_{0}, 1\right): e_{(X ; R)} \rightarrow(5.4)$ of crossed 2 -fold extensions.

We maintain the notation at the beginning of this section; further, if u_{q} is a free generator of $F, q \in Q^{*}$, we shall write $\lambda_{q}=\lambda\left(u_{q}\right)$.

Now define $\beta_{0}: F \rightarrow B^{\delta}=\operatorname{Der}(N, A) \int_{H^{\prime}(N, A)} G$ by the rule

$$
\beta_{0}\left(u_{q}\right)=\left(d_{\mu_{0}[q]}, \lambda_{q}\right), \quad q \in Q^{*}
$$

here $d_{\mu_{0}[q]}$ denotes the derivation $N \rightarrow A$ given by

$$
\left.n \mapsto\left(\mu_{0} \mid q\right]\right)(n-1), \quad n \in N
$$

Lemma 5.3. The map β_{0} is well defined, i.e.,

$$
\left[d_{u_{0}[q]}\right]=\delta p\left(\lambda_{q}\right) \in H^{1}(N, A), \quad q \in Q^{*}
$$

Proof. Clearly $\delta p\left(\lambda_{q}\right)=\delta(q)=\alpha(q-1)$, where $\alpha=\alpha_{\delta}: I Q \rightarrow H^{1}(N, A)$. The assertion follows, since μ_{0} lifts α in (5.1).
Q.E.D.

Next we introduce a function

$$
\gamma: Q^{*} \times Q^{*} \rightarrow A \quad\left(Q^{*}=Q-\{1\}\right)
$$

by

$$
\begin{aligned}
\gamma(r, s)= & \mu_{1}[r \mid s](1)+\mu_{0}(r[s])\left(\lambda_{r}-1\right)-\mu_{0}[r s]\left(\lambda_{r} \lambda_{s} \lambda_{r s}^{-1}-1\right) \\
& r, s \in Q^{*}
\end{aligned}
$$

Lemma 5.4. Let $r, s \in Q^{*}$; then

$$
\beta_{0}\left(u_{r} u_{s} u_{r s}^{-1}\right)=\left(d_{\chi r, s)}^{i}, \lambda_{r} \lambda_{s} \lambda_{r s}^{-1}\right)
$$

(where, for $a \in A, d_{a}^{i}$ denotes the inner derivation $N \rightarrow A$ given by $\left.d_{a}^{i}(n)={ }^{n} a-a\right)$.

Since C is the free crossed F-module with basis $\left\{(r, s) ; r, s \in Q^{*}\right\}$ (cf. Section 4 of $[10]$), we may define $\beta_{1}: C \rightarrow A 〕 N$ by

$$
\beta_{1}(r, s)=\left(\gamma(r, s), \lambda_{r} \lambda_{s} \lambda_{r s}^{-1}\right), \quad r, s \in Q^{*}
$$

Proof of Lemma 5.4

Using additive notation in $\operatorname{Der}(N, A)$, the first component of $\beta_{0}\left(u_{r} u_{s} u_{r s}^{-1}\right)$ is the derivation

$$
d_{(r, s)}=d_{\left.\mu_{0} \mid r\right]}+\lambda_{r}\left(d_{\mu_{0}(s)}\right) \quad \lambda_{o}\left(d_{\mu_{0}[r s)}\right): N, A,
$$

where $\lambda_{0}=\lambda_{r} \lambda_{s} \lambda_{r s}^{-1}$. Now, for $n \in N$, we have

$$
\begin{aligned}
& d_{\mu_{0}[r]}(n)=\mu_{0}[r](n-1) ; \\
&\left({ }^{(}\left(d_{\mu_{0}[s]}\right)\right)(n)={ }_{r}\left(\mu_{0}[s]\left(\lambda_{r}^{-1} n \lambda_{r}-1\right)\right) \\
&={ }^{r}\left(\mu_{0}[s]\right)\left(\lambda_{r}\left(\lambda_{r}^{-1} n \lambda_{r}-1\right)\right) \\
&=\mu_{0}(r[s])\left((n-1) \lambda_{r}\right) \\
&=\mu_{0}(r[s])(n-1)+\mu_{0}(r[s])\left((n-1)\left(\lambda_{r}-1\right)\right) \\
&=\mu_{0}(r[s])(n-1)+{ }^{(n-1)}\left(\mu_{0}(r[s])\left(\lambda_{r}-1\right)\right) ; \\
&\left({ }^{\left.\lambda_{0}\left(d_{\mu_{0}[r s}\right)\right)(n)}=\mu_{0}[r s](n-1)+{ }^{(n-1)}\left(\mu_{0}[r s]\left(\lambda_{r} \lambda_{s} \lambda_{r s}^{-1}-1\right)\right) .\right.
\end{aligned}
$$

Hence

$$
\begin{aligned}
d_{(r, s)}(n)= & \left(\mu_{0}[r]+\mu_{0}(r[s])-\mu_{0}[r s]\right)(n-1) \\
& +{ }^{(n-1)}\left(\mu_{0}(r[s])\left(\lambda_{r}-1\right)-\mu_{0}[r s]\left(\lambda_{r} \lambda_{s} \lambda_{r s}^{-1}-1\right)\right) \\
= & \left(\mu_{0} \partial[r \mid s]\right)(n-1)+{ }^{(n-1)}(\cdots) \\
= & \left.{ }^{(n-1)}\left(\mu_{1}|r| s\right](1)+(\cdots)\right)=d_{\not r, s)}^{i}(n) .
\end{aligned}
$$

5.3. The Completion of the Proof

The group $J=\operatorname{ker}(\partial: C \rightarrow F)$ is (as a Q-module) generated by the elements (cf. [10, Sect. 9])

$$
u(r, s, t)={ }^{u r}(s, t)(r, s t)(r s, t)^{-1}(r, s)^{-1}, \quad r, s, t \in Q^{*}
$$

The proof of Theorem 2 is now completed by the following.

Proposimion 5.3. The restriction of β_{1} to J is the map σ; in that connection $u(r, s, t)$ is to be identified with $(r[s \mid t]+[r \mid s t]-[r s \mid t]-[r \mid s]) \in$ $J_{2}(Q)$, as already indicated, and A^{N} is to be identified with $\operatorname{Hom}_{N}(\mathbb{Z}, A)$ in the standard way.

Proof (it is fuzzy but straightforward). The value

$$
\sigma(r[s \mid t]+[r \mid s t]-[r s \mid t]-[r \mid s])
$$

is given by the N-map

$$
\xi=\mu_{1}(r[s \mid t]+[r \mid s t]-[r s \mid t]-[r \mid s]): \mathbb{Z} G \rightarrow A
$$

which, by construction, is trivial on $I G$ (and hence induces an N $\operatorname{map} \mathbb{Z} \rightarrow A$). Thus we have to verify that

$$
\beta_{1}(u(r, s, t))=(\xi(1), 1) \in A 〕 N
$$

To this end, we calculate in $A \downharpoonleft N$ the product of the following four terms (i), (ii), (iii) and (iv) (in A we use additive notation):
(i) $\beta_{1}\left({ }^{u_{r}}(s, t)\right)={ }^{\beta_{0}\left(u_{r}\right)}\left(\gamma(s, t), \lambda_{s} \lambda_{t} \lambda_{s t}^{-1}\right)$;
(ii) $\beta_{1}(r, s t)=\left(\gamma(r, s t), \lambda_{r} \lambda_{s t} \lambda_{r s t}^{-1}\right)$;
(iii) $\beta_{1}\left((r s, t)^{-1}\right)=\left(-{ }^{\lambda_{1}} \gamma(r s, t), \lambda_{1}\right)$, where $\lambda_{1}=\lambda_{r s t} \lambda_{t}^{-1} \lambda_{r s}^{-1}$;
(iv) $\quad \beta_{1}\left((r, s)^{-1}\right)=\left(-\lambda_{2} \gamma(r, s), \lambda_{2}\right), \quad$ where $\lambda_{2}=\lambda_{r s} \lambda_{s}^{-1} \lambda_{r}^{-1}$.

Now

$$
\begin{aligned}
\beta_{1}\left({ }^{\left.u_{r}(s, t)\right)}\right. & ={ }^{\left(d, \lambda_{r}\right)}\left(\gamma(s, t), \lambda_{s} \lambda_{t} \lambda_{s t}^{-1}\right), & & \text { where } d=d_{\mu_{0}[r]}, \\
& =\left(^{\lambda_{r} \gamma}(s, t)-\mu_{0}[r](a-1), a\right), & & \text { where } a=\lambda_{r} \lambda_{s} \lambda_{t} \lambda_{s t}^{-1} \lambda_{r}^{-1} .
\end{aligned}
$$

The second component of the product obviously gives $1 \in N$.
Hence in A we have to work out the sum

$$
\Sigma=\left(\mathrm{i}^{\prime}\right)+\left(\mathrm{ii}^{\prime}\right)+\left(\mathrm{iii}^{\prime}\right)+\left(\mathrm{iv}^{\prime}\right)
$$

where
(i') $\lambda_{r} \gamma(s, t)-\mu_{0}|r|(a-1) ;$
(ii') ${ }^{a} \gamma(r, s t)$;
(iii') $-{ }^{\lambda_{3}} \gamma(r s, t)$, where

$$
\begin{aligned}
& \quad \lambda_{3}=\left(\lambda_{r} \lambda_{s} \lambda_{t} \lambda_{s t}^{-1} \lambda_{r}^{-1}\right)\left(\lambda_{r} \lambda_{s t} \lambda_{r s t}^{-1}\right)\left(\lambda_{r s t} \lambda_{t}^{-1} \lambda_{r s}^{-1}\right) \\
& =-{ }^{b} \gamma(r s, t), \quad \text { where } b=\lambda_{r} \lambda_{s} \lambda_{r s}^{-1} ; \\
& \left(\mathrm{iv}^{\prime}\right) \quad-\gamma(r, s) .
\end{aligned}
$$

By routine calculations, we get

$$
\begin{array}{cl}
\text { (i') } & \left.\left.\mu_{1}(r[s \mid t])\left(\lambda_{r}\right)+\mu_{0}(r s \mid t]\right)\left(\lambda_{r}\left(\lambda_{s}-1\right)\right)-\mu_{0}(r \mid s t]\right)\left(\lambda_{r}(c-1)\right) \\
& -\mu_{0}[r](a-1), \quad \text { where } c=\lambda_{s} \lambda_{t} \lambda_{s t}^{-1} ; \\
\text { (ii') } & \mu_{1}[r \mid s t](a)+\mu_{0}(r \mid s t]\left(a\left(\lambda_{r}-1\right)\right)-\mu_{0}[r s t](a(d-1)), \\
& \text { where } d=\lambda_{r} \lambda_{s t} \lambda_{r s t}^{-1} ;
\end{array}
$$

$$
\begin{gathered}
(\mathrm{iii}) \quad-\mu_{1}[r s \mid t](b)-\mu_{0}(r s[t])\left(b\left(\lambda_{r s}-1\right)\right)+\mu_{0}[r s t](b(e-1)), \\
\text { where } e=\lambda_{r s} \lambda_{t} \lambda_{r s t}^{-1} ; \\
\left(\mathrm{iv}^{\prime}\right) \quad-\mu_{1}[r \mid s](1)-\mu_{0}(r[s])\left(\lambda_{r}-1\right)+\mu_{0}[r s](b-1)
\end{gathered}
$$

The sum of terms with $\mu_{0}(r s[t])$ is

$$
\begin{aligned}
& \mu_{0}(r s[t])\left(\lambda_{r}\left(\lambda_{s}-1\right)-b\left(\lambda_{r s}-1\right)\right) \\
= & \mu_{0}(r s[t])\left(b-\lambda_{r}\right) \\
= & \mu_{0}(r s[t])(b-1)-\mu_{0}(r s[t])\left(\lambda_{r}-1\right) .
\end{aligned}
$$

Likewise, we compute the sum of terms with $\mu_{0}(r[s t])$:

$$
\begin{aligned}
& \mu_{0}(r[s t])\left(a\left(\lambda_{r}-1\right)-\lambda_{r}(c-1)\right) \\
& \quad=\mu_{0}(r[s t])\left(\lambda_{r}-a\right) \\
& \quad=\mu_{0}(r[s t])\left(\lambda_{r}-1\right)-\mu_{0}(r[s t])(a-1)
\end{aligned}
$$

Finally, the sum of terms with $\mu_{0}[r s t]$ is

$$
\begin{aligned}
\mu_{0}[r s t] & (b(e-1)-a(d-1)) \\
= & \mu_{0}[r s t](a-b) \\
= & \left.\mu_{0} \mid r s t\right](a-1)-\mu_{0}[r s t](b-1)
\end{aligned}
$$

If we now sum up suitably, we obtain

$$
\begin{aligned}
\Sigma= & \left.\left.\mu_{1}(r|s| t]\right)\left(\lambda_{r}\right)-\left(\mu_{0}(r[s])+\mu_{0}(r s \mid t]\right)-\mu_{0}(r[s t])\right)\left(\lambda_{r}-1\right) \\
& +\mu_{1}[r \mid s t](a)-\left(\mu_{0}[r]+\mu_{0}(r[s t])-\mu_{0}[r s t]\right)(a-1) \\
& -\mu_{1}[r s \mid t](b)+\left(\mu_{0}[r s]+\mu_{0}(r s[t])-\mu_{0}[r s t]\right)(b-1) \\
& -\mu_{1}[r \mid s](1) \\
= & \left.\mu_{1}(r|s| t]\right)\left(\lambda_{r}\right)+\mu_{1}(r[s \mid t])\left(1-\lambda_{r}\right) \\
& \left.+\mu_{1}[r \mid s t](a)+\mu_{1}|r| s t\right](1-a) \\
& -\mu_{1}[r s \mid t](b)-\mu_{1}[r s \mid t](1-b) \\
& -\mu_{1}[r \mid s](1) \\
= & \left.\left(\mu_{1}(r[s \mid t])+\mu_{1}[r \mid s t]-\mu_{1}[r s \mid t]-\mu_{1}|r| s\right]\right)(1) \\
= & \xi(1) .
\end{aligned}
$$

Q.E.D.

5.4. Naturalness of the Description

Our description of $d_{2}: E_{2}^{1,1} \rightarrow E_{2}^{3,0}$ is again natural in a strong sense; what this means will be expressed below in Propositions 5.4 and 5.5 for the module variable and the group extension variable, respectively.

Let $\tau: A \rightarrow A^{\prime}$ be a homomorphism of G-modules and denote $\tau_{*}: H^{1}(N, A) \rightarrow H^{1}\left(N, A^{\prime}\right)$ the induced map. If $\delta: Q \rightarrow H^{1}(N, A)$ is a derivation it is clear that the combined map $\tau_{*} \delta: Q \rightarrow H^{1}\left(N, A^{\prime}\right)$ is a derivation representing the image $\tau_{*}[\delta] \in H^{1}\left(Q, H^{1}\left(N, A^{\prime}\right)\right)$ (where we abuse the notation "-*").

Proposition 5.4. For any derivation $\delta: Q \rightarrow H^{1}(N, A)$ the G-map τ induces, in a canonical way, a morphism

$$
\left(\tau \mid, \lambda_{\tau}, v_{\tau}, 1\right): \delta \rightarrow\left(\tilde{\tau}_{*} \delta\right)
$$

of crossed 2-fold extensions.
Proof. Let $\lambda_{\tau}: A \downharpoonleft N \rightarrow A^{\prime} \upharpoonleft N$ be the obvious map. Further, by Proposition 5.2, $B^{\delta}=\operatorname{Der}(N, A) \jmath_{H^{1}(N, A)} G$ and $B^{\tau * \delta}=\operatorname{Der}\left(N, A^{\prime}\right) \jmath_{H^{1}\left(N, A^{\prime},\right.} G$; now let v_{τ} be the obvious map.

Remark. There is a different way of obtaining the above morphism $\left(\tau \mid, \lambda_{\tau}, v_{\tau}, 1\right)$ of crossed 2 -fold extensions. In fact, if $\omega_{\tau}: \operatorname{Out}_{G}\left(e_{s}\right) \rightarrow \mathrm{Out}_{G}\left(\tau e_{s}\right)$ is the map in Proposition 4.5 then $\psi_{\tau * \delta}=\omega_{\tau} \psi_{\delta}$. Hence, if $\mu_{\tau}: \operatorname{Aut}_{G}\left(e_{s}\right) \rightarrow$ Aut $_{G}\left(\tau e_{s}\right)$ is the map given in Proposition 2.1 of [13] then μ_{τ} induces the desired map v_{τ}. It is also worth noting that the map

$$
\omega_{\tau}: H^{1}(N, A) \upharpoonleft Q=\operatorname{Out}_{G}\left(e_{s}\right) \rightarrow \operatorname{Out}_{G}\left(\tau e_{s}\right)=H^{1}\left(N, A^{\prime}\right) \upharpoonleft Q
$$

is the obvious one, where "=" means the obvious isomorphisms explained in Section 5.1.

Next, let there be given a morphism $\Phi:(1.1)^{\prime} \rightarrow(1.1)$ of extensions (notation as in Section 4.4). Denote $\Phi^{*}: H^{1}(N, A) \rightarrow H^{1}\left(N^{\prime}, A\right)$ the induced map (the notation "_*" will be abused at several places below). If $\delta: Q \rightarrow H^{1}(N, A)$ is a derivation, it is clear that the combined map

$$
\delta^{\prime}=\Phi^{*} \delta \Phi: Q^{\prime} \rightarrow H^{1}\left(N^{\prime}, A\right)
$$

is a derivation representing $\Phi^{*}[\delta] \in H^{1}\left(Q^{\prime}, H^{1}\left(N^{\prime}, A\right)\right)$; let \hat{B}^{δ} denote the semidirect fibre product $\operatorname{Der}(N, A) \jmath_{H^{\prime}(N, A)} G^{\prime}$ with respect to the derivation $G^{\prime} \rightarrow G \rightarrow Q \rightarrow{ }^{\delta} H^{1}(N, A)$, and let \hat{B}^{δ} act on $A 〕 N^{\prime}$ by the rule (5.3), where
the notation is to be suitably modified. Together with the obvious map $\partial: A \jmath N^{\prime} \rightarrow \hat{B}^{\delta}$ this yields the crossed 2 -fold extension

$$
\delta: 0 \rightarrow A^{N} \rightarrow A \upharpoonleft N^{\prime} \xrightarrow{\partial} \hat{B}^{\delta} \rightarrow Q^{\prime} \rightarrow 1
$$

which clearly represents $\Phi^{*}[\tilde{\delta}] \in H^{3}\left(Q^{\prime}, A^{N}\right)$.
Proposition 5.5. For any derivation $\delta: Q \rightarrow H^{1}(N, A)$ the morphism Φ induces, in a canonical way, morphisms

$$
(1, \cdot, \cdot, \Phi): \delta \rightarrow \delta
$$

and

$$
\left(\Phi^{*}, 1, \cdot, 1\right): \delta \rightarrow \delta^{\prime}
$$

of crossed 2 -fold extensions.
Proof. By Proposition 5.2, we may identify B^{δ} with $\operatorname{Der}(N, A) 1_{H^{\prime}(N, A)} G$ and $B^{\delta^{\prime}}$ with $\operatorname{Der}\left(N^{\prime}, A\right) 1_{H^{4}\left(N^{\prime}, A\right)} G^{\prime}$. Hence Φ induces morphisms of crossed 2 -fold extensions as desired.

Remark. There is also a different way of obtaining the morphisms of crossed 2 -fold extensions in Proposition 5.5. In fact, let ω^{\oplus} : $\mathrm{Out}_{G^{\prime}}\left(e_{s}\right) \rightarrow \operatorname{Out}_{G^{\prime}}\left(e_{s} \Phi\right)$ be the map in Proposition 4.6, and let $\psi_{\delta}^{\prime}: Q^{\prime} \rightarrow$ $\mathrm{Out}_{G}\left(e_{s}\right)$ be the obvious map which is induced by ψ_{δ}. Then

$$
\psi_{\delta^{\prime}}=\omega^{\Phi} \psi_{\delta}^{\prime}: Q^{\prime} \rightarrow \mathrm{Out}_{G^{\prime}}\left(e_{s} \Phi\right),
$$

whence \hat{B}^{δ} may be identified with the fibre product $\operatorname{Aut}_{G}\left(e_{s}\right) \mathrm{X}_{\text {out }_{G} \cdot\left(e_{s}\right)} Q^{\prime}$, where $\operatorname{Aut}_{G}\left(e_{s}\right)=\operatorname{Aut}_{G}\left(e_{s}\right) X_{G} G^{\prime}$. Further, the maps $\hat{\mu}^{\ominus}: \operatorname{Aut}_{G}\left(e_{s}\right) \rightarrow \operatorname{Aut}_{G}\left(e_{s}\right)$ and $\mu^{\Phi}: \operatorname{Aut}_{G}\left(e_{s}\right) \rightarrow \operatorname{Aut}_{G}\left(e_{s} \Phi\right)$ in Propositions 2.3 and 2.4 of [13], respectively, induce the desired maps $\hat{B}^{\delta} \rightarrow B^{\delta}$ and $\hat{B}^{\delta} \rightarrow B^{\delta}$. It is also worth noting that the map

$$
\omega^{\Phi}: H^{1}(N, A) \jmath G^{\prime}=\operatorname{Out}_{G^{\prime}}\left(e_{s}\right) \rightarrow \operatorname{Out}_{G^{\prime}}\left(e_{s} \Phi\right)=H^{1}\left(N^{\prime}, A\right) \upharpoonleft G^{\prime}
$$

is the obvious one, where "=" means the obvious isomorphisms; see Section 5.1 above.

Notice that Propositions 5.4 and 5.5 imply the (well known) fact that the differential $d_{2}: E_{2}^{1,1} \rightarrow E_{2}^{3,0}$ is natural in both variables.

6. The Proof of Theorem 3

We shall show that the pairs given in Theorem 3 constitute the corresponding transgression. All the rest is straightforward.

Let e be a group extension (2.1) that represents a member of $H^{2}(N, A)^{Q}$. We choose a lifting (4.2) of 1_{N} and construct a diagram (4.3). We then represent $[e]$ by $\alpha: \mathbb{Z} \rightarrow \operatorname{Ext}_{N}(I G, A)^{Q}\left(\alpha(1)=\left[c_{e}\right], c_{e}\right.$ as in Section 4.1), and construct a lifting α_{0} in

by setting $\alpha_{0}(1)=\mu$ (cf. Section 4.3). This induces a map $\eta: I Q \rightarrow T$ ($=$ ker r). Let

$$
\bar{e}: 0 \rightarrow H^{1}(N, A) \rightarrow \operatorname{Out}_{G}(e) \rightarrow Q \rightarrow 1
$$

be the extension (2.5) associated with e in Section 2.2. By Proposition 4.4 we may identify $\mathrm{Out}_{G}(e)$ with $H^{1}\left(N^{Q}, A\right) \jmath_{T} Q$, where $h: H^{1}\left(N^{Q}, A\right) \rightarrow T$ is the obvious map given by rule (4.7) above and where the requisite derivation $d: Q \rightarrow T$ is given by $d(q)=\alpha_{0}(q-1), q \in Q$.

Proposition 6.1. Let α_{0} as above be fixed. The class $[e] \in H^{2}(N, A)^{Q}$ is transgressive if and only if there is a Q-map $\chi: I Q \rightarrow H^{1}\left(N^{Q}, A\right)$ such that $\eta=h \chi$. In this case, there is a canonical bijection between Q-maps χ with $\eta=h \chi$ and sections $\psi: Q \rightarrow \operatorname{Out}_{G}(e)=H^{1}\left(N^{Q}, A\right) \jmath_{T} Q$.

Proof. By Corollary 1 in Section 2.2, $\mid e]$ is transgressive if and only if there is a section $\psi: Q \rightarrow \operatorname{Out}_{G}(e)=H^{1}\left(N^{Q}, A\right) J_{T} Q$. Any such section determines a derivation $\delta: Q \rightarrow H^{1}\left(N^{Q}, A\right)$, hence a Q-map as desired, and vice versa.
Q.E.D.

Now let $[e] \in H^{2}(N, A)^{Q}$ be transgressive, and let $\psi: Q \rightarrow \operatorname{Out}_{G}(e)$ be a section. In view of the above, ψ determines a map $\chi: I Q \rightarrow H^{1}\left(N^{Q}, A\right)$ such that $\eta=h \chi$. It follows that α lifts to

By the Addendum to Proposition 3.2, the pair ($\alpha,-\sigma$) represents the element ($\alpha,-[\sigma]$) of the transgression. Conversely, if $(\alpha,-\sigma)$ represents an element of
the transgression, there is a diagram (6.1) (again by the Addendum to Proposition 3.2). Hence

Proposition 6.2. Any element of the transgression $\tau: E_{2}^{0,2} \rightharpoonup E_{2}^{3,0}$ may be obtained as follows: Let $[e] \in H^{2}(N, A)^{0}$ be transgressive. Represent $[e]$ by $\alpha: \mathbb{Z} \rightarrow \operatorname{Ext}_{N}(I G, A)$ and lift α to α_{0} as above. Then using α_{0}, identify Out $_{G}(e)$ and $H^{1}\left(N^{Q}, A\right) 1_{T} Q$ as above. Let $\psi: Q \rightarrow \operatorname{Out}_{G}(e)$ be a section. It induces a derivation $\delta: Q \rightarrow H^{1}\left(N^{Q}, A\right)$, hence a Q-map $\chi: I Q \rightarrow H^{1}\left(N^{Q}, A\right)$ such that $\eta=h \chi$ as above. Finally, construct a lifting

Then $([e],-[\sigma])$ is an element of the transgression.
In view of the main Theorem in [10, Sect. 7], the crucial step in the proof of Theorem 3 is now provided by the following.

Proposition 6.3. Let $e_{(X ; R)}$ be the crossed 2-fold extension, associated in Section 5 to the standard presentation $(X ; R)$ of Q. Let $[e] \in H^{2}(N, A)^{Q}$ be transgressive. Represent $[e]$ by $\alpha: \mathbb{Z} \rightarrow \operatorname{Ext}_{N}(I G, A)$ and lift α to α_{0} as above. Let $\psi: Q \rightarrow \mathrm{Out}_{G}(e)$ be a section, and construct a diagram (6.1) (or (6.2)). Then (6.1) gives rise to a morphism of crossed 2-fold extensions

$$
\begin{align*}
& \tilde{e}_{\psi}: 0 \longrightarrow A^{N} \longrightarrow E \longrightarrow B^{\psi} \longrightarrow Q \longrightarrow 1 . \tag{6.3}
\end{align*}
$$

Proof. The exact sequence

$$
0 \rightarrow \operatorname{Hom}_{N}(\mathbb{Z}, A) \rightarrow \operatorname{Hom}_{N}(\mathbb{Z} G, A) \rightarrow \operatorname{Hom}_{N}\left(B_{1}(G), A\right) \rightarrow H^{1}\left(N^{Q}, A\right) \rightarrow 0
$$

is naturally isomorphic to

$$
0 \rightarrow \operatorname{Hom}_{N^{Q}}(\mathbb{Z}, A) \rightarrow \operatorname{Hom}_{N Q}(\mathbb{Z} \bar{F}, A) \rightarrow \operatorname{Hom}_{N^{Q}}(I \bar{F}, A) \rightarrow H^{1}\left(N^{Q}, A\right) \rightarrow 0,
$$

where \bar{F} is free on $G^{*} ; \bar{F}$ was denoted F in Section 4. Hence, from (6.2) we obtain

where χ is obtained from α_{0} and ψ as in Proposition 6.1. We can now apply Proposition 5.1, where the role of the extension (1.1) is played by

$$
1 \rightarrow N^{Q} \rightarrow \bar{F} \rightarrow Q \rightarrow 1
$$

that of e_{s} (the split extension of A by N) by

$$
0 \rightarrow A \rightarrow A 〕 N^{Q} \rightarrow N^{Q} \rightarrow 1
$$

that of the map λ by a suitable lifting $\lambda: F \rightarrow \bar{F}$ of the obvious projection $F \rightarrow Q$, and that of δ by $\delta=\delta_{\chi}: Q \rightarrow H^{1}\left(N^{Q}, A\right), \delta(q)=\chi(q-1), q \in Q$. Moreover, by Proposition 5.2 we may identify B^{δ} with the semidirect fibre product $\operatorname{Der}\left(N^{Q}, A\right) \jmath_{H^{\prime}\left(N_{Q}, A\right)} \bar{F}$; here the requisite derivation $d: \bar{F} \rightarrow H^{1}\left(N^{Q}, A\right)$ is the combined map $\delta p r$, where $p r: \bar{F} \rightarrow Q$ denotes the projection. We obtain a commutative diagram

The proof is now completed by the following.

Proposition 6.4. There is a morphism $\left(1, \theta_{1}, \theta_{0}, 1\right): \tilde{\delta} \rightarrow \tilde{e}_{\psi}$ of crossed 2-fold extensions.

For the proof we need the following.
Lemma 6.1. There is a natural action of the group $\operatorname{Der}\left(N^{Q}, A\right) J_{H^{1}\left(N^{Q}, A\right)} \bar{F}$ on the middle group E of the extension e, such that $(\tau, u) \in$ $\operatorname{Der}\left(N^{Q}, A\right) \jmath_{H^{1}\left(N^{Q}, A\right)} \bar{F}$ induces left translation with g_{u} on A and conjugation with g_{u} on N, where $g_{u} \in G$ is the image of $u \in \bar{F}$.

ADDENDUM. This action induces a commutative diagram

here π_{δ} sends (τ, u) to the image $q_{u} \in Q$ of $u \in \bar{F}$.
Proof. Consider the commutative diagram (4.9)

already used in the proof of Proposition 4.4, where $\kappa=\pi p r$, and where $p r$: $N^{G} \rightarrow\left(N^{G}\right)^{A b}=J_{1}(G)$ (identified in Section 4.1) is the canonical projection, such that $\alpha_{0}(1)=\mu \in \operatorname{Hom}_{N}\left(J_{1}(G), A\right)$ (where $\alpha_{0}: \mathbb{Z} Q \rightarrow \operatorname{Hom}_{N}\left(J_{1}(G), A\right)$ lifts $\alpha: \mathbb{Z} \rightarrow \operatorname{Ext}_{N}(I G, A)$ as above $)$.

Lemma 6.2. The rule $(a, n) \mapsto a \theta(n), a \in A, \quad n \in N^{Q}$, describes a projection $\pi_{e}: A \downharpoonleft N^{Q} \rightarrow E$ such that π_{e} is the coequaliser of

$$
N^{G} \underset{\kappa}{\stackrel{j}{\Longrightarrow}} A \upharpoonleft N^{Q} .
$$

Proof. By inspection.
The proof of Lemma 6.1 is now completed as follows: Let $(\tau, u) \in$ $\operatorname{Der}\left(N^{Q}, A\right) 1_{H^{\prime}\left(N^{Q}, A\right)} \bar{F}$. Write $g=g_{u} \in G$ and $q=q_{u} \in Q$ for the images in G and Q of u, respectively. Define maps $\alpha_{1}: N^{Q} \rightarrow E, \alpha_{2}: A \rightarrow E$ by setting

$$
\begin{aligned}
& \alpha_{1}(n)=\tau\left(u n u^{-1}\right) \theta\left(u n u^{-1}\right), \quad n \in N^{Q}, \\
& \alpha_{2}(a)={ }^{8} a, \quad a \in A .
\end{aligned}
$$

Since $(\tau, u) \in \operatorname{Der}\left(N^{Q}, A\right) \mathcal{H}_{H^{1}\left(N^{Q}, A\right)} \bar{F}$, we have $[\tau]=d(u) \in H^{1}\left(N^{Q}, A\right)$, hence $h[\tau]=h d(u)=\alpha_{0}\left(q_{u}-1\right)$, i.e.,

$$
\begin{aligned}
\tau \mid N^{G} & =\left(l_{g} \mu l_{g}^{-1}-\mu\right) p r \\
& =l_{g} \kappa i_{u}^{-1}-\kappa ;
\end{aligned}
$$

here $h: H^{1}\left(N^{Q}, A\right) \rightarrow T$ is the map given by rule (4.7). Consequently, if $n \in N^{G}$, we have

$$
\begin{aligned}
\alpha_{1}(n) & \left.=\tau\left(u n u^{-1}\right)+\kappa\left(u n u^{-1}\right) \quad \text { (using additive notation in } A\right) \\
& ={ }^{8} \kappa(n)-\kappa\left(u n u^{-1}\right)+\kappa\left(u n u^{-1}\right) \\
& =\alpha_{2}(\kappa(n)) .
\end{aligned}
$$

Thus we obtain a map $A \backslash N^{Q} \rightarrow E$ given by

$$
(a, n) \mapsto \alpha_{2}(a) \alpha_{1}(n), \quad a \in A, \quad n \in N^{Q}
$$

which coequalises j and κ. Hence (τ, u) induces a unique map $\alpha: E \rightarrow E$. Clearly, α induces left translation with g_{u} on A and conjugation with g_{u} on N whence α is an automorphism of E. Moreover, the rule ${ }^{(\tau, u)} x=\alpha(x), x \in E$, describes an action of $\operatorname{Der}\left(N^{Q}, A\right) \jmath_{H^{1}\left(N^{Q}, A\right)} \bar{F}$ on E.

Proof of Addendum. If α is obtained as above, i.e., ${ }^{(r, u)} x=\alpha(x), x \in E$, let $\left(\alpha, g_{\alpha}\right)$ be the corresponding member of Aut (e), where $g_{\alpha}=g_{u}$. It is clear that we have a homomorphism $\operatorname{Der}\left(N^{Q}, A\right) \hat{\jmath}_{H^{1}\left(N^{Q}, A\right)} \bar{F} \rightarrow \operatorname{Aut}_{G}(e)$, and, by abuse of language, we denote (α, g_{α}) by α also. In Proposition 4.4 we constructed a map $\operatorname{Aut}_{G}(e) \rightarrow H^{1}\left(N^{Q}, A\right) \jmath_{T} Q$ given by $\alpha \mapsto\left(\left[d_{\alpha}\right], q_{\alpha}\right)$, $\alpha \in \operatorname{Aut}_{G}(e)$. Now, if α is the image of some $(\tau, u) \in \operatorname{Der}\left(N^{Q}, A\right) \jmath_{H^{1}\left(N^{Q}, A\right)} \bar{F}$, we have

$$
\begin{aligned}
d_{\alpha}(n) & =\alpha\left(\theta\left(x_{g}^{-1} n x_{g}\right)\right) \theta\left(n^{-1}\right), \quad n \in N^{Q}, \quad g=g_{u} \in G \\
& =\alpha_{1}\left(x_{g}^{-1} n x_{g}\right) \theta\left(n^{-1}\right) \\
& =\tau\left(u x_{g}^{-1} n x_{g} u^{-1}\right) \theta\left(u x_{g}^{-1} n x_{g} u^{-1}\right) \theta\left(n^{-1}\right)
\end{aligned}
$$

where $u x_{g}^{-1} \in N^{G}$. Hence

$$
d_{\alpha}(n)=\tau\left(u x_{g}^{-1}\right)+\tau(n)-{ }^{\theta(n)}\left(\tau\left(u x_{g}^{-1}\right)\right)+{ }^{(1-\theta(n)}\left(\kappa\left(u x_{g}^{-1}\right)\right) \in A
$$

since N^{G} acts trivially on A. We obtain

$$
d_{\alpha}(n)=\tau(n)+{ }^{(1-\theta(n))}\left(\tau\left(u x_{g}^{-1}\right)+\kappa\left(u x_{g}^{-1}\right)\right)
$$

Consequently, $\left[d_{\alpha}\right]=[\tau] \in H^{1}\left(N^{Q}, A\right)$, and the Addendum is proved.
Proof of Proposition 6.4. Since B^{ψ} is the fibre product Aut $_{G}(e) X_{\text {out }_{G}(e)} Q$ with respect to $\psi: Q \rightarrow \mathrm{Out}_{G}(e)$, diagram (6.6) induces a unique map $\theta_{0}: \operatorname{Der}\left(N^{Q}, A\right) \mathcal{J}_{H^{1}\left(N_{Q}^{Q}, A\right)} \bar{F} \rightarrow B^{\omega}$. Let $\theta_{1}=\pi_{e}: A 丁 N^{Q} \rightarrow E$. Then $\left(1, \theta_{1}, \theta_{0}, 1\right)$ is the desired morphism of crossed 2 -fold extensions.
Q.E.D.

7. An Example

We offer an example where we determine, by our methods, the differentials $d_{2}^{0,2}$ and $d_{2}^{1,1}$; we believe that our example is the simplest possible for producing a non-trivial $d_{2}^{0.2}$ and $d_{2}^{1,1}$.

Consider the group extension

$$
1 \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2 \xrightarrow{i} \mathbb{Z} / 4 \times \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 2 \rightarrow 1,
$$

where i is the obvious inclusion (hence $N=\mathbb{Z} / 2 \times \mathbb{Z} / 2, G=\mathbb{Z} / 4 \times \mathbb{Z} / 2$, $Q=\mathbb{Z} / 2$). Let $A=\mathbb{Z} / 2$.
(i) $d_{2}: H^{2}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)^{\mathbb{Z} 2} \rightarrow H^{2}\left(\mathbb{Z} / 2, H^{1}(\mathbb{L} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)\right)$. Now $H^{2}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)^{\mathbb{Z} / 2}=H^{2}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2) \cong(\mathbb{Z} / 2)^{3}$, and there are three groups giving rise to non-trivial extensions of $\mathbb{Z} / 2$ by $\mathbb{Z} / 2 \times \mathbb{Z} / 2$: the group $\mathbb{Z} / 4 \times \mathbb{Z} / 2=\left\langle a, b ; a^{4}, b^{2},[a, b]\right\rangle$, the dihedral group $D_{4}=\left\langle a, b ; a^{4}, b^{2},(a b)^{2}\right\rangle$ and the quaternion group $Q u=\left\langle a, b ; a^{2}=b^{2}=(a b)^{2}\right\rangle$. We write $\mathbb{Z} / 2 \times \mathbb{Z} / 2=\left\langle u, v ; u^{2}, v^{2},[u, v]\right\rangle$ and fix a $\mathbb{Z} / 2$-basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $H^{2}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)$;

$$
\begin{aligned}
& e_{1}: 0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \times \mathbb{Z} / 2 \xrightarrow{\varphi_{1}} \mathbb{Z} / 2 \times \mathbb{Z} / 2 \rightarrow 1, \\
& e_{2}: 0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \times \mathbb{Z} / 2 \xrightarrow{\varphi_{2}} \mathbb{Z} / 2 \times \mathbb{Z} / 2 \rightarrow 1, \\
& e_{3}: 0 \rightarrow \mathbb{Z} / 2 \rightarrow \quad Q u \quad \xrightarrow{\omega_{3}} \mathbb{Z} / 2 \times \mathbb{Z} / 2 \rightarrow 1 ;
\end{aligned}
$$

here $\varphi_{1}(a)=u, \varphi_{1}(b)=v, \varphi_{2}(a)=v, \varphi_{2}(b)=u, \varphi_{3}(a)=u, \varphi_{3}(b)=v$. By abuse of notation, we do not distinguish between an extension and its class in $H^{2}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)$. Now the extension $e_{1}+e_{2}$ has a $\mathbb{Z} / 4 \times \mathbb{Z} / 2$ as middle group, and the extensions $e_{1}+e_{3}, e_{2}+e_{3}$ and $e_{1}+e_{2}+e_{3}$ have the dihedral group as middle group.

We claim: $d_{2}\left(e_{1}\right)=0=d_{2}\left(e_{2}\right) ; d_{2}\left(e_{3}\right) \neq 0$.
Every automorphism of $E=\mathbb{Z} / 4 \times \mathbb{Z} / 2=\left\langle a, b ; a^{4}, b^{2},[a, b]\right\rangle$ fixes a^{2}. Since $\left\langle a^{2}\right\rangle=A, \operatorname{Aut}^{A}(E)$ is the full automorphism group of E. But $\operatorname{Aut}_{G}(N, A)$ is trivial, whence $\operatorname{Aut}_{G}^{A}(E)=\operatorname{Hom}(N, A)$. Hence Aut $\left(e_{1}\right)=$ $\operatorname{Hom}(N, A) \times \mathbb{Z} / 4 \times \mathbb{Z} / 2$. Moreover, $\beta: E \rightarrow \operatorname{Aut}_{G}\left(e_{1}\right)$ sends a to $a^{2} \in \mathbb{Z} / 4 \subset$ $\operatorname{Aut}_{G}\left(e_{1}\right)$ and b to $b \in \mathbb{Z} / 2 \subset \operatorname{Aut}_{G}\left(e_{1}\right)$. It follows that the extension

$$
\bar{e}_{1}: 0 \rightarrow \operatorname{Hom}(N, A) \rightarrow \operatorname{Out}_{G}\left(e_{1}\right) \rightarrow \mathbb{Z} / 2 \rightarrow 1
$$

splits. For symmetry reasons, \bar{e}_{2} also splits.
On the other hand, by the same argument as above, $\operatorname{Aut}_{c}\left(e_{3}\right)=$ $\operatorname{Hom}(N, A) \times \mathbb{Z} / 4 \times \mathbb{Z} / 2$, but $\mathrm{Out}_{G}\left(e_{3}\right)$ is now the cokernel of

$$
\begin{aligned}
\beta: Q u & \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 4 \times \mathbb{Z} / 2 \\
& =\left\langle u, v, a, b ; u^{2}, v^{2}, a^{4}, b^{2},[u, v] \text { etc. }\right\rangle
\end{aligned}
$$

where $Q u=\left\langle x, y ; x^{2}=y^{2}=(x y)^{2}\right\rangle$ and $\beta(x)=v a^{2}, \beta(y)=u b$ (note that $\operatorname{Hom}(N, A)=\mathbb{Z} / 2 \times \mathbb{Z} / 2$ and recall how β was defined in Section 2.2). Now $\operatorname{coker}(\beta) \cong \mathbb{Z} / 4 \times \mathbb{Z} / 2$ and the extension

$$
\bar{e}_{3}: 0 \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \times \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 2 \rightarrow 1
$$

does not split.
(ii) $d_{2}: H^{1}\left(\mathbb{Z} / 2, H^{1}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)\right) \rightarrow H^{3}(\mathbb{Z} / 2, \mathbb{Z} / 2)$. As in Section 2.3, let $E=(\mathbb{Z} / 2)^{3}$, let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the obvious $\mathbb{Z} / 2$-basis, and consider the split extension

$$
e_{s}: 0 \rightarrow \mathbb{Z} / 2\left(e_{1}\right) \rightarrow \mathbb{Z} / 2\left(e_{1}\right) \times \mathbb{Z} / 2\left(e_{2}\right) \times \mathbb{Z} / 2\left(e_{3}\right) \rightarrow \mathbb{Z} / 2\left(e_{2}\right) \times \mathbb{Z} / 2\left(e_{3}\right) \rightarrow 1 .
$$

Now $H^{1}\left(\mathbb{Z} / 2, H^{1}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)\right)=\operatorname{Hom}\left(\mathbb{Z} / 2, H^{1}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)\right)$ and we identify $H^{1}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)$ with $\operatorname{Aut}_{G}^{A}(E)$ as above. Writing $\mathbb{Z} / 2=$ $\left\langle x ; x^{2}\right\rangle$, we choose a basis $\{\eta, \theta\}$ for $H^{2}\left(\mathbb{Z} / 2, H^{1}(\mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 2)\right) \cong$ $\mathbb{Z} / 2 \times \mathbb{Z} / 2$, by setting

$$
\begin{array}{ll}
{ }^{n(x)} e_{2}=e_{1}+e_{2}, & e_{1}, e_{3} \text { fixed under } \eta(x), \\
{ }^{\theta(x)} e_{3}=e_{1}+e_{3}, & e_{1}, e_{2} \text { fixed under } \theta(x) .
\end{array}
$$

Now $\operatorname{Aut}_{{ }_{G}}\left(e_{s}\right)=\left\langle u, v, a, b ; u^{2}, v^{2}, a^{4}, b^{2},[u, v]\right.$ etc. $\rangle \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 4 \times \mathbb{Z} / 2$, where ${ }^{u} e_{2}=e_{1}+e_{2},{ }^{v} e_{3}=e_{1}+e_{3}$ and all the rest remains fixed under the corresponding elements of $\operatorname{Aut}_{G}\left(e_{s}\right)$. Maintaining the notation of Section 2.3, the maps η and θ determine crossed 2 -fold extensions

$$
\tilde{\eta}: 0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2 \rightarrow B^{\eta} \rightarrow \mathbb{Z} / 2 \rightarrow 1
$$

and

$$
\tilde{\theta}: 0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2 \rightarrow B^{\theta} \rightarrow \mathbb{Z} / 2 \rightarrow 1
$$

the corresponding ∂ 's are the obvious maps. Here $B^{n}=B^{\theta}=\mathbb{Z} / 4 \times \mathbb{Z} / 2=$ $\left.\left\langle a, b ; a^{4}, b^{2}, \mid a, b\right\rangle\right\rangle ; B^{\eta}$ acts on $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2$ by the rule

$$
{ }^{a} e_{2}=e_{1}+e_{2}
$$

and B^{θ} acts on $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2$ by

$$
{ }^{a} e_{3}=e_{1}+e_{3}
$$

with the convention that everything not written down remains fixed. Clearly, $\tilde{\eta}$ is equivalent to

$$
\hat{\eta}: 0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2 \rightarrow 1
$$

where $\mathbb{Z} / 2 \times \mathbb{Z} / 2$ has basis $\left\{e_{1}, e_{2}\right\}$ and where the generator of $\mathbb{Z} / 4$ maps e_{2} to $e_{1}+e_{2}$. It follows from the Theorem in $[10$, Sect. 10] that $[\hat{\eta}] \neq$ $0 \in H^{3}(\mathbb{Z} / 2, \mathbb{Z} / 2)$, since there is no group H of order eight which maps onto $\mathbb{Z} / 4$ and contains $\mathbb{Z} / 2 \times \mathbb{Z} / 2$ as a normal subgroup in such a way that conjugation in H induces the $\mathbb{Z} / 4$-action on $\mathbb{Z} / 2 \times \mathbb{Z} / 2$. On the other hand, if we associate with $\tilde{\theta}$ a crossed 2 -fold extension $\hat{\theta}$ in a similar way, it is easy to see that $|\hat{\theta}|=0 \in H^{3}(\mathbb{Z} / 2, \mathbb{Z} / 2)$.

It follows that $d_{2}[\eta]$ is the generator of $H^{3}(\mathbb{Z} / 2, \mathbb{Z} / 2) \cong \mathbb{Z} / 2$, whence $E_{3}^{3,0}=0$, and that θ generates $E_{3}^{1,1} \cong \mathbb{Z} / 2$.

Acknowledgments

I am grateful to Professor S. Mac Lane for the stimulus provided by conversations with him; also, it should be noted that he encouraged me to write the paper. I would like to thank the referee; he pointed out an error in the first draft of the manuscript, and his careful examination caught a number of other small points. I am grateful to D. Holt, who has drawn my attention to Sah's papers [20-22].

References

1. M. André, Le d_{2} de la suite spectrale en cohomologie des groupes, C. R. Acad. Sci. Paris 260 (1965), 2669-2671.
2. L. S. Charlap and A. T. Vasquez, The cohomology of group extensions, Trans. Amer. Math. Soc. 124 (1966), 24-40.
3. L. S. Charlap and A. T. Vasquez, Characteristic classes for modules over groups, I, Trans. Amer. Math. Soc. 137 (1969), 533-549.
4. R. H. Crowell, Corresponding group and module sequences, Nagoya Math. J. 19 (1961), 27-40.
5. S. Eilenberg, Topological methods in abstract algebra. Cohomology theory of groups, Bull. Amer. Math. Soc. 55 (1949), 3-37.
6. K. W. Grufnberg, "Cohomological Topics in Group Theory," Lecture Notes in Mathematics No. 143, Springer-Verlag, Berlin/Heidelberg/New York, 1970.
7. G. P. Hochschild and J. P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134.
8. D. F. Holt, An interpretation of the cohomology groups $H^{n}(G, M)$, J. Algebra 60 (1979), 307-320.
9. J. Huebschmann, "Verschränkte n-fache Erweiterungen von Gruppen und Cohomologic," Diss. ETH Nr. 5999, Eidg. Technische Hochschule, Zürich, 1977.
10. J. Huebschmann, Crossed n-fold extensions of groups and cohomology, Comm. Math. Helv. 55 (1980), 302-313.
1I. J. Huebschmann, Sur les premières différentielles de la suite spectrale cohomologique d'une extension de groupes, C. R. Acad. Sci. Paris Ser. A 285 (1977), 929-931.
11. J. Huebschmann, Extensions de groupes et paires croisées, C. R. Acad. Sci. Paris Ser. A 285 (1977), 993-995.
12. J. Huebschmann, Group extensions, crossed pairs and an eight term exact sequence, J. Reine Angew. Math. 321 (1981), 150-172.
13. J. Huebschmann, Automorphisms of crossed n-fold extensions and differentials in the Lyndon-Hochschild-Serre spectral sequence, in preparation.
14. S. Mac Lane, Historical note, J. Algebra 60 (1979), 319-320; Appendix to [8] above.
15. S. Mac Lane, "Homology," Grundlehren der Mathematischen Wissenschaften, No. 114, Springer-Verlag, Berlin/Heidelberg/New York, 1967.
16. S. Mac Lane and J. H. C. Whitehead, On the 3-type of a complex, Proc. Nat. Acad. Sci. USA 36 (1950), 41-48.
17. J. G. Ratcliffe, On the second transgression of the Lyndon-Hochschild-Serre spectral sequence, J. Algebra 61 (1979), 593-598.
18. J. G. Ratcliffe, Crossed extensions, Trans. Amer. Math. Soc. 257 (1980), 73-89.
19. C. H. Sah, Automorphisms of finite groups, J. Algebra 10 (1968), 47-68; addendum, J. Algebra 44 (1977), 573-575.
20. C. II. SAh, Cohomology of split group extensions, J. Algebra 29 (1974), 255-302.
21. C. H. SaH, Cohomology of split group extensions, II, J. Algebra 45 (1977), 17-68.
22. J. H. C. Whitehead, Combinatorial homotopy, II, Bull. Amer. Math. Soc. 55 (1949), 453-496.
