JOURNAL OF ALGEBRA 72, 296-334 (1981)

Automorphisms of Group Extensions and Differentials in the Lyndon–Hochschild–Serre Spectral Sequence

JOHANNES HUEBSCHMANN

Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, D-6900, Heidelberg, West Germany

Communicated by Saunders Mac Lane

Received April 3, 1980

1. INTRODUCTION

Let

$$1 \to N \xrightarrow{i} G \xrightarrow{p} Q \to 1 \tag{1.1}$$

be a group extension and A a (left) G-module. We note, for clarity, that the extension (1.1) and the module A will always be fixed unless the contrary is admitted explicitly. We consider the Lyndon-Hochschild-Serre (LHS) spectral sequence

$$(E_r^{p,q}, d_r^{p,q}),$$
 with $E_2^{p,q} = H^p(Q, H^q(N, A))$

[7; 16, p. 351]. The purpose of this paper is to examine the differentials

$$d_2^{0,2}: E_2^{0,2} \to E_2^{2,1}, \qquad d_2^{1,1}: E_2^{1,1} \to E_2^{3,0}, \qquad d_3^{0,2}: E_3^{0,2} \to E_3^{3,0}$$

(we shall usually drop the superscripts and write d_r instead of $d_r^{p,q}$) and the transgression $\tau: E_2^{0,2} \rightarrow E_2^{3,0}$ (" \rightarrow " denotes an additive relation). We shall give explicit descriptions (see Section 2 below) in terms of group extensions, crossed 2-fold extensions (see below) and certain automorphisms groups. Our descriptions also turn out to be natural in a strong sense. We note that similar automorphism groups were studied in [20].

The results of this paper were announced in [11]. The differentials we describe in this paper yield, together with the differential d_2 : $H^0(Q, H^1(N, A)) \rightarrow H^2(Q, A^N)$, all the information about $H^2(G, A)$ that can be obtained from the spectral sequence. This has been pushed further in [13],

where we have constructed a certain extension Xpext(G, N; A) of $E_2^{1,1}$ by $E_3^{0,2}$ which fits into a natural exact sequence

$$H^{2}(Q, A^{N}) \rightarrow H^{2}(G, A) \rightarrow \operatorname{Xpext}(G, N; A) \xrightarrow{\Delta} H^{3}(Q, A^{N}) \rightarrow H^{3}(G, A)$$

such that Δ lifts the differential $d_3^{0,3}$ (this was announced in [12]). We also note that in [13] a conceptual description of $d_2: E_2^{0,1} \to E_2^{2,0}$ was obtained.

In another paper [14] we shall extend our methods to obtain conceptual descriptions of all differentials

$$d_2^{0,q}: E_2^{0,q} \to E_2^{2,q-1}$$
 and $d_2^{1,q}: E_2^{1,q} \to E_2^{3,q-1}$, $q > 1$.

The paper is organised in the following manner: In Section 2 we present our results (Theorems 1, 2 and 3). Section 3 deals with some differentials in the LHS spectral sequence. In Sections 4-6 we prove our theorems. Section 7 offers an example.

Central roles will be played by the concept of a crossed module and that of a crossed 2-fold extension, the definitions of which we reproduce here for completeness: A crossed module (C, Γ, ∂) (Whitehead [23, p. 453]) consists of groups C and Γ , an action of Γ on the left of C, written $(\gamma, c) \mapsto {}^{\gamma}c, \gamma \in \Gamma$, $c \in C$, and a homomorphism $\partial: C \to \Gamma$ of Γ -groups, where Γ acts on itself by conjugation. The map ∂ must satisfy the rule

$$bcb^{-1} = {}^{\partial(b)}c, \qquad b, c \in C.$$

A crossed 2-fold extension ([9] or [10, Sect. 3]) is an exact sequence of groups

$$e^2: 0 \to A \to C \xrightarrow{\partial} \Gamma \to Q \to 1,$$

where (C, Γ, ∂) is a crossed module. The group A is then central in C, whence it is Abelian; furthermore, the Γ -action on C induces a Q-action on A. For Q and A fixed, the classes of crossed 2-fold extensions under the similarity relation generated by morphisms $(1, \cdot, \cdot, 1): e^2 \rightarrow \hat{e}^2$ of crossed 2fold extensions constitute an Abelian group naturally isomorphic to the cohomology group $H^3(Q, A)$; this is a special case of the main Theorem in Section 7 of [10] (see also [9]). We note that such an interpretation of group cohomology was found independently by several other people; see Mac Lane [15]. Here we would like to point out, however, that the interpretation of the third cohomology group in terms of crossed 2-fold extensions, although not explicitly recognised, is hidden in an old paper of Mac Lane and Whitehead [17].

2. RESULTS

2.1. Automorphisms and Group Extensions

Let Γ be a group and A a (left) Γ -module. Let $\chi_0: \Gamma \to \operatorname{Aut}(\Gamma) \times \operatorname{Aut}(A)$ be the obvious map given by $\chi_0(\gamma) = (i_{\gamma}, l_{\gamma}), \gamma \in \Gamma$, where i_{γ} is the corresponding inner automorphism and l_{γ} the action $l_{\gamma}(a) = {}^{\gamma}a$ of γ on A; here $\operatorname{Aut}(\Gamma)$ denotes the group of automorphisms of Γ , and $\operatorname{Aut}(A)$ that of A as Abelian group. Denote by $\operatorname{Aut}(\Gamma, A)$ the subgroup of $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(A)$ that consists of pairs (φ, σ) of automorphisms φ of Γ and σ of A such that

$$\sigma({}^{\gamma}a) = {}^{\varphi(\gamma)}\sigma(a), \qquad \gamma \in \Gamma, \quad a \in A.$$

We call Aut(Γ , A) the group of automorphisms of the pair (Γ , A).

PROPOSITION 2.1. The group $\operatorname{Aut}(\Gamma, A)$ is the normaliser in $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(A)$ of $\chi_0(\Gamma)$.

Let $\operatorname{Out}(\Gamma, A) = \operatorname{Aut}(\Gamma, A)/\chi_0(\Gamma)$ and call it the group of outer automorphisms of the pair (Γ, A) . We shall now describe an obvious action of $\operatorname{Out}(\Gamma, A)$ on the cohomology $H^*(\Gamma, A)$ (this may be folklore).

Recall that any group homomorphism $f: \Gamma' \to \Gamma$ induces a unique map $f^*: H^*(\Gamma, A) \to H^*(\Gamma', A')$; here A' is the Γ' -module which has the same underlying Abelian group as A but operators from Γ' via f. Now, if $(\varphi, \sigma) \in \operatorname{Aut}(\Gamma, A)$, let $f = \varphi^{-1}$, and consider $(\varphi^{-1})^*: H^*(\Gamma, A) \to H^*(\Gamma, A')$. Since

$$\sigma({}^{\sigma^{-1}(\gamma)}a) = {}^{\gamma}(\sigma(a)), \qquad \gamma \in \Gamma, \quad a \in A,$$

 σ induces $\sigma_*: H^*(\Gamma, A') \to H^*(\Gamma, A)$. Let

$$a_{(\varphi,\sigma)} = \sigma_*(\varphi^{-1})^* \colon H^*(\Gamma, A) \to H^*(\Gamma, A).$$

We note that it is convenient to invert the automorphism φ for the formal reason that cohomology is contravariant in the group variable.

PROPOSITION 2.2. The rule $(\varphi, \sigma) \mapsto a_{(\varphi,\sigma)}$ induces an action of $Out(\Gamma, A)$ on (the left of) $H^*(\Gamma, A)$.

In our situation, we have the group extension (1.1) and the G-module A. Let $\Gamma = N$, and let N act on A in the obvious way. Then (1.1) furnishes an action $\chi: G \to \operatorname{Aut}(N, A)$ of G on the pair (N, A) given by $\chi(g) = (i_g, l_g)$, $g \in G$, where i_g is the conjugation $n \mapsto gng^{-1}$, $n \in N$, and l_g the action $l_g(a) = {}^g a$ of g on A. For later reference, denote by $\operatorname{Aut}(N, A)$ the image of χ . Since χ extends the above homomorphism $\chi_0: N \to \operatorname{Aut}(N, A)$, it induces an outer action $\omega: Q \to \operatorname{Out}(N, A)$ of Q on the pair (N, A). **PROPOSITION 2.3.** This outer action, combined with the action of Out(N, A) on $H^*(N, A)$ given above, yields the standard action of Q on $H^*(N, A)$.

Consider an extension

$$e: 0 \to A \to E \xrightarrow{\pi} N \to 1 \tag{2.1}$$

with Abelian kernel A, where we assume that conjugation in E induces that action of N on A which is obtained by restricting the operators from G to N. Let $\operatorname{Aut}^{A}(E)$ denote the group of automorphisms of E which map A to itself. Each $\alpha \in \operatorname{Aut}^{A}(E)$ induces an automorphism l_{α} of A (as Abelian group) and an automorphism i_{α} of N such that (i_{α}, l_{α}) is a member of $\operatorname{Aut}(N, A)$. The rule $\alpha \mapsto (i_{\alpha}, l_{\alpha})$ is in fact a homomorphism $\operatorname{Aut}^{A}(E) \to \operatorname{Aut}(N, A)$. If $\operatorname{Aut}^{A}_{G}(E)$ denotes the pre-image (in $\operatorname{Aut}^{A}(E)$) of $\operatorname{Aut}_{G}(N, A)$ ($\subset \operatorname{Aut}(N, A)$), we have a homomorphism

$$h = h_{e}$$
: Aut_G^A(E) \rightarrow Aut_G(N, A)

which is determined by *e*. The kernel of h_e is isomorphic to the group Der(N, A) of derivations (=crossed homomorphisms) of N in A [5, p. 12; 6, p. 45]. We fix an embedding of Der(N, A) in $Aut_G^A(E)$ as follows: If $d: N \to A$ is a derivation (i.e., $d(nm) = d(n) + {}^nd(m)$, $m, n \in N$) define $\alpha_d: E \to E$ by $\alpha_d(x) = d(\pi(x)) \cdot x, x \in E$. We now embed Der(N, A) in $Aut_G^A(E)$ by the rule $d \mapsto \alpha_d$.

PROPOSITION 2.4. The map h_e is surjective if and only if the class $[e] \in H^2(N, A)$ is a member of $H^2(N, A)^Q$.

Proof. By virtue of Proposition 2.3, $[e] \in H^2(N, A)^Q$ if and only if for each $g \in G$ the map $(l_g)_* (i_g^{-1})^* : H^2(N, A) \to H^2(N, A)$ is the identity. This implies the claim.

2.2. The Differential d_2 : $H^0(Q, H^2(N, A)) \rightarrow H^2(Q, H^1(N, A))$

Let e be a group extension (2.1). Assume now that e represents a member of $H^2(N, A)^Q$. In Section 2.1 we associated to e the extension

$$0 \to \operatorname{Der}(N, A) \to \operatorname{Aut}_{G}^{A}(E) \to \operatorname{Aut}_{G}(N, A) \to 1.$$
(2.2)

If we replace $\operatorname{Aut}_{G}^{A}(E)$ by the fibre product

$$\operatorname{Aut}_{G}^{A}(E) \underset{\operatorname{Aut}_{G}(N,A)}{\mathsf{X}} G,$$

denoted henceforth by $Aut_{G}(e)$, we obtain the extension

$$0 \to \operatorname{Der}(N, A) \to \operatorname{Aut}_{G}(e) \to G \to 1.$$
(2.3)

There is an obvious map of (2.1) into (2.3):

here ζ sends $a \in A$ to the inner derivation $(n \mapsto a - {}^{n}a, n \in N)$, $\beta(x) = (i_x, \pi(x)), x \in E$, and *i* is the inclusion. Inspection proves the following.

PROPOSITION 2.5. The obvious action of $Aut_G(e)$ on E turns $(E, Aut_G(e), \beta)$ into a crossed module.

A consequence of this is that $\beta(E)$ is normal in $\operatorname{Aut}_G(e)$. We denote the cokernel of β by $\operatorname{Out}_G(e)$, since there is an obvious map $\eta: \operatorname{Out}_G(e) \to \operatorname{Out}(E)$, where $\operatorname{Out}(E)$ denotes the group of outer automorphisms of E. If we pass in (2.4) to cokernels, we obtain the extension

$$\bar{e}: 0 \to H^1(N, A) \to \operatorname{Out}_G(e) \to Q \to 1.$$
(2.5)

It is straightforward to check that the class $[\bar{e}] \in H^2(Q, H^1(N, A))$ depends only on $[e] \in H^2(N, A)^Q = H^0(Q, H^2(N, A))$.

THEOREM 1. The rule $e \mapsto \overline{e}$ describes the differential

$$d_2: E_2^{0,2} \to E_2^{2,1}$$

A proof will be given in Section 4 below. We shall also show that our description is natural in a very strong sense; see Propositions 4.5 and 4.6 below.

For later reference, we note that the above construction also associates with e the crossed 2-fold extension

$$0 \to A^N \to E \xrightarrow{\beta} \operatorname{Aut}_G(e) \to \operatorname{Out}_G(e) \to 1.$$
(2.6)

Remark 1. In a picturesque way one could say that the image $d_2[e]$ extends the well known interpretation of $H^1(N, A)$ as the group of automorphisms of E leaving A and N = E/A elementwise fixed, modulo the inner automorphisms induced by elements of A; see e.g., [5, p. 12] or [6, p. 46].

Remark 2. Theorem 1 generalises Theorem 0.2 of [22]; see also p. 265 of [21]. Extensions (1), (6) and (7) in Section 0 of [22] correspond to our extensions (1.1), (2.1) and (2.5), respectively. Sah assumes extension (1.1) to

be split with N Abelian (i.e., N a Q-module) and the N-action on A to be trivial. We managed to get rid of all these hypotheses.

Since $E_3^{0,2}$ is the kernel of d_2 , we have the following.

COROLLARY 1. The subgroup $E_3^{0,2}$ of transgressive elements consists of those classes of extensions e for which \tilde{e} splits.

This suggests that $d_2[e]$ should be the obstruction to lifting the outer action $\omega: Q \to \operatorname{Out}(N, A)$ to somewhat of an outer action on E. In fact, if $\operatorname{Out}^A(E)$ denotes the cokernel of the obvious map $E \to \operatorname{Aut}^A(E)$ which sends a member of E to the corresponding inner automorphism, the map $\operatorname{Aut}^A(E) \to$ $\operatorname{Aut}(N, A)$ in Section 2.1 induces a homomorphism $\operatorname{Out}^A(E) \to \operatorname{Out}(N, A)$ the kernel of which is (isomorphic to) $H^1(N, A)$.

COROLLARY 2. The class $d_2[e] \in H^2(Q, H^1(N, A))$ is the obstruction to lifting the outer action $\omega: Q \to \text{Out}(N, A)$ of Q on (N, A) to $\text{Out}^A(E)$.

Proof. The map $\eta: \operatorname{Out}_G(e) \to \operatorname{Out}(E)$ maps $\operatorname{Out}_G(e)$ into $\operatorname{Out}^A(E) \subset \operatorname{Out}(E)$ and induces a commutative diagram

$$\begin{array}{ccc} 0 \longrightarrow H^{1}(N, A) \longrightarrow \operatorname{Out}_{G}(e) \longrightarrow & Q & \longrightarrow 1 \\ & & & \downarrow & & \downarrow^{\omega} \\ 0 \longrightarrow H^{1}(N, A) \longrightarrow \operatorname{Out}^{A}(E) \longrightarrow \operatorname{Out}(N, A) \end{array}$$

with exact rows, whose right-hand square is a pullback diagram. The claim follows. Q.E.D.

We take the opportunity to correct a slight error in [22]: It is fairly clear from our construction of (2.5) that, in the special case considered by Sah, the middle group of (7) in Section 0 of [22] should be a fibre product

$$A(\Gamma, [f]) \underset{\operatorname{Aut}_{\Gamma}(K,M)}{\mathsf{X}} \Gamma;$$

here $\operatorname{Aut}_{\Gamma}(K, M)$ is the image of the obvious map $\Gamma \to \operatorname{Aut}(K) \times \operatorname{Aut}(M)$. Sah's description is correct only if this map is injective, i.e., if the action of Γ on (K, M) is faithful. We also note that, in view of the above, on p. 21 of [22] the group M in line 18 from below should perhaps be replaced by E(f).

Remark 3. In very special cases the differential d_2 can be described as the cup product with certain characteristic classes [1-3]. We tried to obtain such a description in our situation but could not manage to do so.

2.3. The Differential d_2 : $H^1(Q, H^1(N, A)) \rightarrow H^3(Q, H^0(N, A))$

Let e_s denote the split extension

$$e_s: 0 \to A \to A \ j \ N \to N \to 1.$$

Since $[e_s] \in H^2(N, A)^Q$, the construction in Section 2.2 above associates the extension

$$\bar{e}_s: 0 \to H^1(N, A) \to \operatorname{Out}_G(e_s) \to Q \to 1$$
(2.7)

with e_s . The obvious action of G on $A \downarrow N$ induces a canonical section s_0 : $G \rightarrow \operatorname{Aut}_G(e_s)$ which, in turn, induces a canonical section $\psi_0: Q \rightarrow \operatorname{Out}_G(e_s)$. Hence we my identify $\operatorname{Aut}_G(e_s)$ and $\operatorname{Out}_G(e_s)$ with $\operatorname{Der}(N, A) \downarrow G$ and $H^1(N, A) \downarrow Q$, respectively, in a canonical way. Further, the crossed 2-fold extension (2.6) now reads

$$0 \to A^N \to A \ \ 1 N \xrightarrow{\beta_s} \operatorname{Aut}_G(e_s) \to \operatorname{Out}_G(e_s) \to 1.$$
(2.8)

Consider a derivation $\delta: Q \to H^1(N, A)$ representing a class $[\delta] \in H^1(Q, H^1(N, A))$. Setting $\psi_{\delta}(q) = \delta(q) \psi_0(q)$, $q \in Q$, we obtain a further section $\psi_{\delta}: Q \to \operatorname{Out}_G(e_s)$ in (2.7). Here we identify $H^1(N, A)$ with its isomorphic image in $\operatorname{Out}_G(e_s)$. Pulling back (2.8) along ψ_{δ} yields the crossed 2-fold extension

$$\overline{\delta}: 0 \to A^N \to A \ \downarrow N \xrightarrow{\partial} B^\delta \to Q \to 1.$$
(2.9)

Here B^{δ} is the fibre product

$$B^{\delta} = \operatorname{Aut}_{G}(e_{s}) \underset{\operatorname{Out}_{G}(e_{s})}{\mathsf{X}} Q;$$

it will be convenient to take as B^{δ} the pre-image in $\operatorname{Aut}_{G}(e_{s})$ of $\psi_{\delta}(Q) \subset \operatorname{Out}_{G}(e_{s})$. Further, the map $\partial : A \not i N \to B^{\delta}$ is induced by β_{s} , and B^{δ} acts on $A \not i N$ in the obvious way. As pointed out in the Introduction, δ represents a class $[\delta] \in H^{3}(Q, A^{N})$. It is straightforward to check that this class depends only on $[\delta] \in H^{1}(Q, H^{1}(N, A))$.

THEOREM 2. The rule $\delta \mapsto \tilde{\delta}$ describes the differential

$$d_2: E_2^{1,1} \to E_2^{3,0}$$

A proof will be given in Section 5 below. Again we shall show that our description is natural in a very strong sense; see Proposition 5.4 and 5.5.

2.4. The Transgression $\tau: E_2^{0,2} \longrightarrow E_2^{3,0}$ and the Differential $d_3: E_3^{0,2} \rightarrow E_3^{3,0}$

Let e be a group extension (2.1) whose class is a transgressive element of $H^2(N, A)^Q$; by Corollary 1, the extension \bar{e} associated with e in Section 2.2 splits. Let $\psi: Q \to \text{Out}_G(e)$ be a section. Pulling back (2.6) along ψ yields the crossed 2-fold extension

$$\tilde{e}_{\psi}: 0 \to A^N \to E \xrightarrow{\partial} B^{\psi} \to Q \to 1.$$
(2.10)

Here B^{φ} is the fibre product

$$B^{\psi} = \operatorname{Aut}_{G}(e) \underset{\operatorname{Out}_{G}(e)}{\mathsf{X}} Q,$$

the map $\partial: E \to B^{\psi}$ is induced by β , and B^{ψ} acts on E in the obvious way. As we have already explained, \tilde{e}_{ψ} represents a class $[\tilde{e}_{\psi}] \in H^3(Q, A^N)$; this class depends on [e] and ψ .

THEOREM 3. (a) The pairs ([e], $[\tilde{e}_{\psi}]$), where \bar{e} splits and where ψ is a section of \bar{e} , constitute an additive relation. This additive relation is the transgression $\tau: E_2^{0,2} \rightarrow E_2^{3,0}$.

(b) Combining this relation with the projection $E_2^{3,0} \rightarrow E_3^{3,0}$ yields a homomorphism $E_3^{0,2} \rightarrow E_3^{3,0}$ which is the corresponding differential d_3 .

This will be proved in Section 6 below. Again the descriptions are natural, in a suitable sense. This is, however, best understood in terms of crossed pairs; see Section 2 of [13].

Remark 4. In the special case that N acts trivially on A, a similar result as Theorem 3(a) was obtained by Ratcliffe [18].

3. ON DIFFERENTIALS IN THE LHS SPECTRAL SEQUENCE

Let $(B_*(), \partial)$ denote the Bar resolution. The LHS spectral sequence $(E_r^{p,q}, d_r)$, associated with the group extension (1.1) and the *G*-module *A*, is obtained by suitably filtering the bicomplex

$$K^{p,q} = \operatorname{Hom}_{O}(B_{p}(Q), \operatorname{Hom}_{N}(B_{q}(G), A))$$

with differentials

$$\begin{aligned} & (\delta'f)(b')(b'') = (-1)^{p+q+1} f(\partial b')(b''), \qquad b' \in B_{p+1}, \quad b'' \in B_q, \\ & (\delta''f)(b')(b'') = (-1)^{q+1} f(b')(\partial b''), \qquad b' \in B_p, \qquad b'' \in B_{q+1} \end{aligned}$$

(see [16, p. 351], where this spectral sequence is called the Lyndon spectral sequence). For later use, we denote the cokernel of $\partial: B_{t+1} \to B_t$ by C_t and

the kernel of $\partial: B_t \to B_{t-1}$ by J_t ; the corresponding canonical maps will be denoted by $pr: B_t \to C_t$ and $k: J_t \to B_t$ (we set $B_{-1} = \mathbb{Z}$).

We shall utilize a variant of the description of $E_2^{p,q}$ and d_2 introduced on pp. 341, 342 of Mac Lane's book [16] in case of homology:

Define
$$L_2^{p,q} \subset K^{p,q}$$
 and $M_2^{p,q} \subset L_2^{p,q}$ by
 $L_2^{p,q} = \{a^{p,q}; \delta''a^{p,q} = 0 \text{ and } \delta'a^{p,q} = -\delta''a^{p+1,q-1} \text{ for some } a^{p+1,q-1}\},$
 $M_2^{p,q} = \{\delta'b^{p-1,q} + \delta''b^{p,q-1}; \delta''b^{p-1,q} = 0\}.$

Then $E_2^{p,q} = L_2^{p,q}/M_2^{p,q}$, and the differential

$$d_2: E_2^{p,q} \to E_2^{p+2,q-1}$$

is induced by the additive relation

$$\{(a^{p,q}, \delta' a^{p+1,q-1}) \in K^{p,q} \oplus K^{p+2,q-1}; \\ \delta' a^{p,q} + \delta'' a^{p+1,q-1} = 0, \, \delta'' a^{p,q} = 0\}.$$
(3.1)

Now $a^{p,q}: B_p(Q) \to \operatorname{Hom}_N(B_q(G), A)$ is Q-linear, and the condition $\delta'' a^{p,q} = 0$ means that the image of $a^{p,q}$ is contained in $\operatorname{Hom}_N(J_{q-1}(G), A) (\subset \operatorname{Hom}_N(B_q(G), A)$ via $pr: B_q(G) \to C_q(G) = J_{q-1}(G))$. Hence $a^{p,q} \in L_2^{p,q}$ if and only if there is a commutative square

The cokernel of the second row of (3.2) is (naturally isomorphic to) the cohomology group $H^{q}(N, A)$. Hence any $a^{p,q} \in L_{2}^{p,q}$ induces a Q-linear map

$$\alpha = \alpha^{p,q} \colon C_p(Q) \to H^q(N,A).$$

Conversely, any such α gives rise to a commutative diagram

with exact rows such that the combined map $B_p(Q) \to \operatorname{Hom}_N(J_{q-1}(G), A) \to \operatorname{Hom}_N(B_q(G), A)$ is a member of $L_2^{p,q}$. We shall refer to (3.3) as a *lifting* of α ; it is uniquely determined by α up to chain homotopy. Hence the class $[\sigma]$ in the cokernel of

$$\operatorname{Hom}_{Q}(B_{p+1}(Q), \operatorname{Hom}_{N}(C_{q-1}(G), A))$$

$$\rightarrow \operatorname{Hom}_{N}(J_{p+1}(Q), \operatorname{Hom}_{N}(C_{q-1}(G), A)),$$

which is the cohomology group $H^{p+2}(Q, \operatorname{Hom}_{N}(C_{q-1}(G), A))$, depends only on α . Furthermore, $[\sigma]$ depends only on the cohomology class

$$[\alpha] \in H^p(Q, H^q(N, A))$$

that is represented by α , and the rule $[\alpha] \mapsto [\sigma]$ describes a homomorphism

$$H^{p}(Q, H^{q}(N, A)) \to H^{p+2}(Q, \operatorname{Hom}_{N}(C_{q-1}(G), A)).$$

We denote this homomorphism by y.

Remark 3.1. The map y coincides with the map

$$\operatorname{Ext}_{O}^{p}(\mathbb{Z}, H^{q}(N, A)) \to \operatorname{Ext}_{O}^{p+2}(\mathbb{Z}, \operatorname{Hom}_{N}(C_{q-1}(G), A))$$

given by Yoneda splicing with the second row of (3.3) (we shall, however, not use this fact).

If r denotes the natural projection

$$\operatorname{Hom}_{N}(C_{q-1}(G), A) \to H^{q-1}(N, A),$$

we have the following.

PROPOSITION 3.1. The differential

$$d_2: H^p(Q, H^q(N, A)) \to H^{p+2}(Q, H^{q-1}(N, A))$$

is given by $(-1)^q r_* y$ (where

$$r_*: H^{p+2}(Q, \operatorname{Hom}_N(C_{q-1}(G), A)) \to H^{p+2}(Q, H^{q-1}(N, A))$$

is the induced map). In other words: If the Q-linear map $\alpha: C_p(Q) \to H^q(N, A)$ represents $[\alpha] \in H^p(Q, H^q(N, A))$, construct a lifting (3.3); then $(-1)^q$ times the composite map $r\sigma$ represents $d_2[\alpha] \in H^{p+2}(Q, H^{q-1}(N, A))$.

Proof. A pair $(a^{p,q}, \delta' a^{p+1,q-1})$ belongs to the additive relation (3.1) if and only if it fits into a diagram (3.2). The assertion follows since $\delta' a^{p+1,q-1}: B_{p+2}(Q) \to \operatorname{Hom}_N(B_{q-1}(G), A)$ (or the induced map $J_{p+1}(Q) \to$ $\operatorname{Hom}_N(C_{p-1}(G), A)$) represents the d_2 -image of the class represented by $a^{p,q}$. Q.E.D. Remark 3.2. The preceding proposition recovers the following cocycle description of d_2 : Let the *p*-cochain $f: Q^p \to \operatorname{Hom}_N(B_q(G), A)$ represent $[f] \in H^p(Q, H^q(N, A))$; this means that f maps Q^p to $\operatorname{Hom}_N(J_{q-1}(G), A)$ ($\subset \operatorname{Hom}_N(B_q(G), A)$ via $pr: B_q(G) \to J_{q-1}(G)$) in such a way that $rf: Q^p \to H^q(N, A)$ is a *p*-cocycle. It follows that for each $[\sigma_1 | \cdots | \sigma_{p+1}] \in Q^{p+1}$ there exists $h_{[\sigma_1|\cdots | \sigma_{p+1}]} \in \operatorname{Hom}_N(B_{q-1}(G), A)$ such that

$$h_{[\sigma_1|\cdots|\sigma_{p+1}]}\partial = \sigma_1(f[\sigma_2|\cdots|\sigma_{p+1}]) + \sum_{i=1}^p (-1)^i f[\sigma_1|\cdots|\sigma_i\sigma_{i+1}|\cdots|\sigma_{p+1}] + (-1)^{p+1} f[\sigma_1|\cdots|\sigma_p],$$

where $\partial: B_q(G) \to B_{q-1}(G)$ is the corresponding map. Define $g: Q^{p+2} \to \operatorname{Hom}_N(B_{q-1}(G), A)$ by

$$g[\sigma_1|\cdots|\sigma_{p+2}] = \sigma_1 h_{[\sigma_2|\cdots|\sigma_{p+2}]} + \sum_{i=1}^{p+1} (-1)^i h_{[\sigma_1|\cdots|\sigma_i\sigma_{i+1}|\cdots|\sigma_{p+2}]} + (-1)^{p+2} h_{[\sigma_1|\cdots|\sigma_{p+1}]}.$$

Then $(-1)^q g$ represents $d_2[f]$. We note that a similar description of d_2 : $H^0(Q, H^q(N, A)) \rightarrow H^2(Q, H^{q-1}(N, A))$ can be found on p. 21 of [22] (it is clear that (5) must read " $g(\sigma, \tau) = \sigma h_{\tau} - h_{\sigma \tau} + h_{\sigma}$ ").

There is an even more direct description of

$$d_2: H^p(Q, H^2(N, A)) \to H^{p+2}(Q, H^1(N, A)).$$

Let

$$1 \to N^G \to F \to G \to 1 \tag{3.4}$$

be the free standard presentation; here F is free on a set $\{x_g; g \in G^*\}$, where $G^* = G - \{1\}$. Let $N^Q \subset F$ denote the pre-image of $N \subset G$.

LEMMA 3.1. The cokernel of ∂^* : Hom_N($\mathbb{Z}G, A$) \rightarrow Hom_N($B_1(G), A$) is (naturally isomorphic to) the group $H^1(N^0, A)$, and passing to cokernels in the second row of (3.3) yields, in case q = 2, an exact sequence of N-modules

$$0 \longrightarrow H^{1}(N, A) \xrightarrow{\inf} H^{1}(N^{Q}, A) \xrightarrow{h} \operatorname{Hom}_{N}(J_{1}(G), A) \xrightarrow{r} H^{2}(N, A) \longrightarrow 0.(3.5)$$

Here h is the obvious map that sends the class of $\varphi: B_1(G) \to A$ to its restriction $\varphi|J_1(G)$.

Proof. The projection $F \to G$ induces natural isomorphisms $\operatorname{Hom}_{N}(\mathbb{Z}G, A) \to \operatorname{Hom}_{NQ}(\mathbb{Z}F, A)$ and $\operatorname{Hom}_{N}(B_{1}(G), A) \to \operatorname{Hom}_{NQ}(IF, A)$ (here "II" denotes the augmentation ideal of a group Γ). Q.E.D.

Remark 3.3. The commutator factor group $(N^G)^{Ab}$ is (naturally isomorphic to) $J_1(G)$, and the exact sequence (3.5) is the exact sequence (10.6) in [16, p. 354] associated with the group extension $1 \rightarrow N^G \rightarrow N^Q \rightarrow N \rightarrow 1$ and the N-module A.

The following is immediate from the above:

ADDENDUM TO PROPOSITION 3.1. If the Q-linear map $\alpha: C_p(Q) \rightarrow H^2(N, A)$ represents $[\alpha] \in H^p(Q, H^2(N, A))$, construct a lifting

Then σ represents $d_2[\alpha] \in H^{p+2}(Q, H^1(N, A))$.

Remark 3.4. Proposition 3.1 may be paraphrased by saying that $d_2^{p,2}$ is the map $\operatorname{Ext}_Q^p(\mathbb{Z}, H^2(N, A)) \to \operatorname{Ext}_Q^{p+2}(\mathbb{Z}, H^1(N, A))$ given by Yoneda splicing with (3.5).

We shall also need a description of the differentials

$$d_3: E_3^{p,q} \to E_3^{p+3,q-2}.$$

We shall proceed as follows (cf. [16, p. 342, Ex. 2]): Define

$$L_3^{p,q} = \{ a^{p,q} \in K^{p,q}; Cc(a^{p,q}) \}.$$

Here $Cc(a^{p,q})$ shall mean: $a^{p,q}$ maps $B_p(Q)$ into $\operatorname{Hom}_N(J_{q-1}(G), A)$ ($\subset \operatorname{Hom}_N(B_q(G), A)$ as above), and there is a commutative diagram

$$B_{p+2}(Q) \xrightarrow{\partial} B_{p+1}(Q) \xrightarrow{\partial} B_p(Q)$$

$$\downarrow^{a^{p+2,q-2}} \qquad \downarrow^{(-1)^{p+1}a^{p+1,q-1}} \qquad \downarrow^{a^{p,q}} \qquad (3.7)$$

$$\operatorname{Hom}_{N}(B_{q-2}(G), A) \xrightarrow{\partial^{*}} \operatorname{Hom}_{N}(B_{q-1}(G), A) \xrightarrow{k^{*}} \operatorname{Hom}_{N}(J_{q-1}(G), A),$$
where $a^{p+1,q-1} \in K^{p+1,q-1}, a^{p+2,q-2} \in K^{p+2,q-2}.$ We also define

$$M_3^{p,q} = \{ \delta' b^{p-1,q} + \delta'' b^{p,q-1}; Cb(b^{p-1,q}) \}.$$

Here $Cb(b^{p-1,q})$ shall mean: There is a commutative diagram:

$$B_{p-1}(Q) \longrightarrow B_{p-2}(Q)$$

$$\downarrow^{b^{p-1,q}} \qquad \qquad \downarrow^{b^{p-2,q+1}}$$

$$\operatorname{Hom}_{N}(B_{q}(G), A) \longrightarrow \operatorname{Hom}_{N}(J_{q}(G), A),$$

where $b^{p-2,q+1} \in K^{p-2,q+1}$. Now $E_3^{p,q} = L_3^{p,q}/M_3^{p,q}$, and the differential d_3 : $E_3^{p,q} \to E_3^{p+3,q-2}$ is induced by the additive relation

$$\{(a^{p,q},\delta'a^{p+2,q-2})\in K^{p,q}\oplus K^{p+3,q-2}; Cc(a^{p,q})\},$$
(3.8)

as a closer examination of the arguments in the proof of Proposition 6.1 on p. 341 of [16] shows. Hence

PROPOSITION 3.2. The differential $d_3: E_3^{p,q} \to E_3^{p+3,q-2}$ may be described as follows: Represent a class in $E_3^{p,q}$ by a Q-linear map $\alpha: C_p(Q) \to H^q(N, A)$, and lift α to

$$B_{p+2}(Q) \xrightarrow{\partial} B_{p+1}(Q)$$

$$\downarrow^{a^{p+2,q-2}} \qquad \downarrow^{a^{p+1,q-1}}$$

$$\operatorname{Hom}_{N}(B_{q-2}(G), A) \xrightarrow{\partial^{*}} \operatorname{Hom}_{N}(B_{q-1}(G), A)$$

$$\xrightarrow{\partial} B_{p}(Q) \xrightarrow{} C_{p}(Q) \xrightarrow{} 0$$

$$\downarrow^{a^{p,q}} \qquad \downarrow^{a} \qquad (3.9)$$

$$\xrightarrow{k^{*}} \operatorname{Hom}_{N}(J_{q-1}(G), A) \xrightarrow{r} H^{q}(N, A) \longrightarrow 0.$$

Then $a^{p+2,q-2}$ induces a map $\sigma: J_{p+2}(Q) \to \operatorname{Hom}_N(C_{q-2}(G), A)$, and $(-1)^{p+q+1}$ times the composite map $r\sigma: J_{p+2}(Q) \to H^{q-1}(N, A)$ represents the d_3 -image of $[\alpha]$.

ADDENDUM. The transgression $\tau: E_2^{0,2} \longrightarrow E_2^{3,0}$ may be described as follows: Let $\alpha: \mathbb{Z} \to H^2(N, A)$ represent a transgressive class; this is the case if and only if α admits a lifting (3.9). Let $\sigma: J_2(Q) \to \operatorname{Hom}_N(\mathbb{Z}, A)$ be the induced map as above. Then $([\alpha], -[\sigma])$ is a member of the transgression τ , and any member of τ may be obtained in this way.

4. The Proof of Theorem 1

Let

$$e: 0 \to A \to E \to N \to 1$$

be a group extension (2.1) that represents a member of $H^2(N, A)^Q$. Let

$$c: 0 \to A \to C \to IG \to 0$$

rpresent the corresponding class $[c] \in \operatorname{Ext}_N(IG, A) \cong H^2(N, A)$ (cf. Proposition 4.1 below). The extension c determines a group extension

$$\hat{e}: 0 \to H^1(N, A) \to \hat{E} \to Q \to 1$$

that represents $d_2[e] \in H^2(Q, H^1(N, A))$ (Corollary 4.1 below). Theorem 1 is then proved by showing that \hat{e} is equivalent to the extension \bar{e} (2.5); see Proposition 4.4 below.

4.1. $\operatorname{Ext}_{N}(IG, A)$ and $\operatorname{Opext}(N, A)$

The purpose of this subsection is to develop a conceptual description of the standard map $\text{Opext}(N, A) \rightarrow \text{Ext}_N(IG, A)$ that identifies the two models Opext(N, A) (operator extensions of A by N) and $\text{Ext}_N(IG, A)$ (N-module extension of A by IG) of the abstract group $H^2(N, A)$.

Let

$$1 \to N^G \to F \to G \to 1 \tag{4.1}$$

be the free standard presentation such that F is free on a set $\{x_g; g \in G^*\}$, where $G^* = G - \{1\}$. Let $N^Q \subset F$ denote the pre-image of $N \subset G$. We identify the commutator factor group $(N^G)^{Ab} = N^G/[N^G, N^G]$ with $J_1(G) =$ $\ker(B_1(G) \to B_0(G))$ by the standard rule $n \mapsto pr(n-1)$, $n \in N^G$, where pr: $IF \to B_1(G)$ denotes the projection $(x_g - 1) \mapsto [g]$ (we could also take $n \mapsto pr(1-n)$). Let $M = N^Q/[N^G, N^G]$. Now, if e represents $[e] \in$ Opext(N, A), we may lift the identity map of N to

$$\begin{array}{cccc} 0 \longrightarrow J_1(G) \longrightarrow M \longrightarrow N \longrightarrow 1 \\ & & \downarrow^{\mu} & \downarrow^{\nu} & \parallel \\ e: 0 \longrightarrow A & \longrightarrow E \longrightarrow N \longrightarrow 1, \end{array}$$
(4.2)

such that μ is N-linear. In order to map [e] to an element of $\text{Ext}_N(IG, A)$, let C_e denote the pushout of

$$J_1(G) \longrightarrow B_1(G)$$

$$\downarrow^{\mu}$$

$$A$$

in the category of N-modules. It yields a commutative diagram of N-modules

$$\begin{array}{cccc} 0 \longrightarrow J_1(G) \longrightarrow B_1(G) \longrightarrow IG \longrightarrow 0 \\ & & \downarrow^{\mu} & \downarrow & \parallel \\ c_e: 0 \longrightarrow A \longrightarrow C_e & \longrightarrow IG \longrightarrow 0. \end{array}$$
(4.3)

PROPOSITION 4.1. The rule $e \mapsto c_e$ induces the standard isomorphism $\operatorname{Opext}(N, A) \to \operatorname{Ext}_N(IG, A)$; this isomorphism is canonical up to a sign depending on how $(N^G)^{Ab}$ and $J_1(G)$ are identified.

Proof. Straightforward and left to the reader.

We shall always identify $(N^G)^{Ab}$ and $J_1(G)$ by $n \mapsto pr(n-1)$, $n \in N^G$. Then the isomorphism in Proposition 4.1 is canonical.

4.2. A Semidirect Fibre Product

Let K be a group and B a K-module. We shall need a conceptual description of the standard map

$$\operatorname{Ext}_{K}(IK, B) \to \operatorname{Opext}(K, B)$$

that identifies the two models $\operatorname{Ext}_{K}(IK, B)$ (K-module extensions of B by IK) and $\operatorname{Opext}(K, B)$ (operator extensions of B by K) of the abstract group $H^{2}(K, B)$:

Let C and D be K-modules, let $h: C \to D$ be a map of K-modules, and let $d: K \to D$ be a derivation. We call the subgroup of the semidirect product $C \downarrow K$ consisting of the elements $(x, k) \in C \downarrow K$ such that h(x) = d(k) a semidirect fibre product and denote it by

$$C \stackrel{\uparrow}{}_{D} K$$

Next, let

$$0 \to B \xrightarrow{i} C \xrightarrow{h} D \to 0$$

be an extension of K-modules. The above construction provides us with the uniquely determined group extension

$$0 \to B \xrightarrow{j} C \underset{D}{\uparrow} K \xrightarrow{q} K \to 1;$$

here j(b) = (i(b), 1) and q(x, k) = k, where $b \in B$, $(x, k) \in C \downarrow_D K$.

We may, in particular, apply this construction to an extension

$$c: 0 \to B \to C \to IK \to 0$$

in connection with the standard derivation $d: K \to IK$, d(k) = k - 1, $k \in K$. This yields the group extension (cf. Section 3 of [4])

$$e_c: 0 \to B \to C \ \underset{IK}{\downarrow} K \to K \to 1.$$

PROPOSITION 4.2. The rule $c \mapsto e_c$ describes the standard isomorphism $\text{Ext}_{\kappa}(IK, B) \rightarrow \text{Opext}(K, B)$; this isomorphism is canonical up to sign.

The proof is easy and is left to the reader. We note, however, that we could construct $C \downarrow_{IK} K$ with respect to the derivation d(k) = 1 - k also. This explains the ambiguity of sign.

Remark. The inverse to the map $Opext(N, A) \rightarrow Ext_N(IG, A)$ in Proposition 4.1 is given by sending

$$0 \to A \to C \to IG \to 0$$

to

$$0 \to A \to C \stackrel{1}{\underset{IG}{\to}} N \to N \to 1,$$

where $d(n) = n - 1 \in IG$, $n \in N$ (cf. Section 4.1).

4.3. The Proof of Theorem 1

Let the group extension e represent $[e] \in H^2(N, A)^Q$. Lift the identity map of N to a diagram (4.2) and construct a diagram (4.3). This yields an extension $c = c_e$ of N-modules that represents the corresponding class $[c] \in$ $\operatorname{Ext}_N(IG, A)^Q$ (Proposition 4.1). Let $\alpha: \mathbb{Z} \to \operatorname{Ext}_N(IG, A)$ send 1 to [c]. It is clear that the projection r: $\operatorname{Hom}_N(J_1(G), A) \to \operatorname{Ext}_N(IG, A)$ maps μ (occurring in (4.2) and (4.3)) to $\alpha(1)$.

By the Addendum to Proposition 3.1 we have to consider the lifting problem

where h is the map used in Lemma 3.1. A lifting $\alpha_0: \mathbb{Z}Q \to \operatorname{Hom}_N(J_1(G), A)$ is a given by $\alpha_0(1) = \mu$. Now, for $g \in G$, $\alpha_0(p(g)) = l_g \mu l_g^{-1}$, where $p: G \to Q$ is the projection in (1.1); note that for $n \in N$ we have $l_n \mu l_n^{-1} = \mu$ since μ is *N*-linear. There is no need to construct α_1 ; we shall instead construct directly a group extension representing $d_2[\alpha]$. Let $T = \ker(r: \operatorname{Hom}_N(J_1(G), A) \to \operatorname{Ext}_N(IG, A))$. Clearly, a_0 induces a Q-map $IQ \to T$, and we may take the fibre product $H^1(N^Q, A) \times_T IQ$ (note that, by exactness, h maps $H^1(N^Q, A)$ onto T).

PROPOSITION 4.3. The fibre product $H^1(N^Q, A) X_T IQ$ fits into an extension

$$0 \to H^1(N, A) \to H^1(N^Q, A) X_T IQ \to IQ \to 0$$
(4.5)

of Q-modules that represents

$$d_2[\alpha] \in \operatorname{Ext}(IQ, H^1(N, A)) \cong H^2(Q, H^1(N, A)).$$

Proof. We may complete the construction of (4.4) by setting $\alpha_1[q] = [\varphi]$, where $([\varphi], q-1) \in H^1(N^Q, A) \times_T IQ$, $\varphi: B_1(G) \to A$ denoting an N-map that represents $[\varphi] \in H^1(N^Q, A)$ (see proof of Lemma 3.1). The assertion is now a consequence of the Addendum to Proposition 3.1. Q.E.D.

COROLLARY 4.1. The group extension

$$\hat{e}: 0 \to H^1(N, A) \to H^1(N^Q, A) \underset{T}{\downarrow} Q \to Q \to 1$$
(4.6)

represents $d_2[\alpha] \in \text{Opext}(Q, H^1(N, A)) \cong H^2(Q, H^1(N, A))$. Here $H^1(N^Q, A) \downarrow_T Q$ is the semidirect fibre product with respect to the derivation $d: Q \to T, d(q) = \alpha_0(q-1) (= l_g \mu l_g^{-1} - \mu, \text{ where } p(g) = q, g \in G, q \in Q), \text{ and the map } h: H^1(N^Q, A) \to T, \text{ introduced in Section } 3.$

Proof. Apply Proposition 4.2 to extension (4.5) and observe that $(H^1(N^Q, A)X_T IQ) \downarrow_{IQ} Q = H^1(N^Q, A) \downarrow_T Q.$ Q.E.D.

In the group extension (4.6) the group $H^1(N, A)$ is the cokernel of k^* : Hom_N($\mathbb{Z}G, A$) \rightarrow Hom_N(IG, A) and $H^1(N^Q, A)$ is the cokernel of ∂^* : Hom_N($\mathbb{Z}G, A$) \rightarrow Hom_N($B_1(G), A$) (cf. Lemma 3.1). It is known that the map

$$v: \operatorname{Hom}_{N}(IG, A) \to \operatorname{Der}(N, A), \qquad (v(\varphi))(n) = \varphi(n-1),$$
$$\varphi \in \operatorname{Hom}_{N}(IG, A), \qquad n \in N,$$

induces an isomorphism

$$v_{\#}$$
: coker $(k^*) \rightarrow$ coker $(A \rightarrow \text{Der}(N, A));$

similarly, the map

$$\rho: \operatorname{Hom}_{N}(B_{1}(G), A) \to \operatorname{Der}(N^{Q}, A),$$

given by $(\rho(\psi))(n) = (\psi pr)(n-1)$, $\psi \in \operatorname{Hom}_N(B_1(G), A)$, $n \in N^Q$, where pr: $IF \to B_1(G)$ is the projection $x_g - 1 \mapsto [g]$, induces an isomorphism

$$\rho_{\#}$$
: coker(∂^{*}) \rightarrow coker($A \rightarrow \text{Der}(N^{Q}, A)$).

Corresponding to $h: \operatorname{coker}(\partial^*) \to T$,

$$h': \operatorname{coker}(A \to \operatorname{Der}(N^{Q}, A)) \to T$$
$$= \operatorname{ker}(r: \operatorname{Hom}_{N}(J_{1}(G), A) \to H^{2}(N, A))$$

is defined by $h'[d] = \varphi: J_1(G) \to A$ such that $\varphi pr(n-1) = d(n)$, where pr is as above.

LEMMA 4.1. The diagram

is commutative, where the second row is induced by the projection. Furthermore, $h = h' \rho_{*}$.

Proof. The first statement is clear. In order to verify the second, let $x = pr(n-1) \in J_1(G)$, $n \in N^G$. For $\psi \in \text{Hom}_N(B_1(G), A)$ we have

$$(h'\rho_{\#}[\psi])(pr(n-1)) = (\rho\psi)(n) = \psi(pr(n-1)).$$

Hence $h'\rho_{\#}[\psi] = \psi | J_1(G) = h[\psi]$, as h was introduced in Lemma 3.1. Q.E.D.

In view of Lemma 4.1, we shall now take $\operatorname{coker}(A \to \operatorname{Der}(N, A))$ as $H^1(N, A)$ and $\operatorname{coker}(A \to \operatorname{Der}(N^Q, A))$ as $H^1(N^Q, A)$, and we shall no longer distinguish between h and h'. It will be convenient to describe $h: H^1(N^Q, A) \to T$ by the rule

$$(h[d]) pr = d | N^G, \qquad d \in \operatorname{Der}(N^Q, A), \tag{4.7}$$

where $pr: N^G \to (N^G)^{Ab}$ is the projection; here $(N^G)^{Ab}$ is identified with $J_1(G)$ as in Section 4.1, above.

PROPOSITION 4.4. There is a morphism of extensions

$$\begin{array}{cccc} 0 \longrightarrow \operatorname{Der}(N,A) \longrightarrow & \operatorname{Aut}_{G}(e) & \longrightarrow G \longrightarrow 1 \\ & & & \downarrow & & \downarrow^{p} \\ \hat{e}: 0 \longrightarrow & H^{1}(N,A) \longrightarrow & H^{1}(H^{Q},A) \underset{T}{\downarrow} Q \longrightarrow Q \longrightarrow 1 \end{array}$$
(4.8)

such that the combined map $E \to {}^{\beta} \operatorname{Aut}_G(e) \to H^1(N^Q, A) \downarrow_T Q$ is zero.

Clearly, this establishes Theorem 1, since (4.8) induces an equivalence of extensions $(2.5) \rightarrow \hat{e}$.

Proof of Proposition 4.4. From (4.2) we may construct

where $\kappa = \mu pr$ and $\theta = vpr$; here "pr" denotes the corresponding projections.

Let $\alpha \in \operatorname{Aut}_G(e)$, and let $g = g_\alpha \in G$ be the image in G. Define $d_\alpha \colon N^Q \to A$ by

$$d_{\alpha}(n) = \alpha(\theta(x_{\beta}^{-1}nx_{\beta})) \ \theta(n^{-1}), \qquad n \in \mathbb{N}^{Q}, \quad x_{\beta} \in F;$$

this yields a derivation from N^Q into A, where N^Q acts upon A via the projection $N^Q \rightarrow N$.

LEMMA 4.2. The rule $a \mapsto d_{\alpha}$ induces a derivation $\operatorname{Aut}_{G}(e) \to H^{1}(N^{Q}, A)$, where $\operatorname{Aut}_{G}(e)$ acts on $H^{1}(N^{Q}, A)$ via the obvious projection $\operatorname{Aut}_{G}(e) \to Q$.

Proof. Let α , $\beta \in \operatorname{Aut}_G(e)$, and let $x = x_{g_\alpha} \in F$, $y = x_{g_\beta} \in F$, where g_α , $g_\beta \in G$ are the corresponding images. Using additive notation in $H^1(N^Q, A)$, we have to show that

$$[d_{\alpha\beta}] = [d_{\alpha}] + {}^{q_{\alpha}}[d_{\beta}] \in H^1(N^Q, A),$$

where $q_{\alpha} \in Q$ is the image of α . Now

$$d_{\alpha\beta}(n) = (\alpha\beta\theta(y^{-1}x^{-1}nxy)) \theta(n^{-1}), \qquad n \in N^Q,$$

= $(\alpha\beta\theta(y^{-1}x^{-1}nxy))(\alpha\theta(x^{-1}n^{-1}x)) + (\alpha\theta(x^{-1}nx)) \theta(n^{-1})$
= ${}^{g_\alpha}(d_\beta(x^{-1}nx)) + d_\alpha(n),$

whence the assertion.

Q.E.D.

We can now complete the proof of Proposition 4.4: The rule $a \mapsto ([d_{\alpha}], q_{\alpha})$ describes a homomorphism $\operatorname{Aut}_{G}(e) \to H^{1}(N^{Q}, A) \downarrow Q$, where $q_{\alpha} \in Q$ denotes the image in Q. Moreover, for $n \in N^{G}$ we have

$$\begin{aligned} d_{\alpha}(n) &= \alpha \kappa (x_{g}^{-1}nx_{g}) - \kappa(n), \qquad g = g_{\alpha} \in G, \\ &= (l_{g}\kappa i_{x_{g}}^{-1} - \kappa)(n), \end{aligned}$$

i.e.,

$$d_{\alpha}|N^{G}=(l_{g}\mu l_{g}^{-1}-\mu)\,pr,$$

where $pr: N^G \to (N^G)^{Ab}$ is the projection. By rule (4.7) it follows that

$$h[d_{\alpha}] = l_g \mu l_g^{-1} - \mu = d(pg) = d(q_{\alpha}),$$

whence $([d_{\alpha}], q_{\alpha}) \in H^{1}(N^{Q}, A) \downarrow_{T} Q$. Thus we have a map

$$\operatorname{Aut}_{G}(e) \to H^{1}(N^{Q}, A) \underset{T}{\downarrow} Q.$$

For an element $\alpha = \alpha_d \in \operatorname{Aut}_G(e)$ such that $\alpha(x) = d(\pi x) \cdot x$, $x \in E$, where $d: N \to A$ is a derivation (cf. Section 2.1), we have, for $n \in N^Q$,

$$d_{\alpha}(n) = (\alpha \theta(n)) \theta(n^{-1})$$
$$= (dpr)(n),$$

where $pr: N^{Q} \to N$ is the projection; note in particular that $g_{\alpha} = 1 \in G$. It follows that $\operatorname{Aut}_{G}(e) \to H^{1}(N^{Q}, A) \downarrow_{T} Q$ induces a diagram (4.8). To see that the combined map $E \to^{\beta} \operatorname{Aut}_{G}(e) \to H^{1}(N^{Q}, A) \downarrow_{T} Q$ is zero, let $\alpha = \beta(y)$, $y \in E$. Now, for $n \in N^{Q}$, we have

$$d_{\alpha}(n) = y\theta(x^{-1}nx) y^{-1}\theta(n^{-1}), \qquad x = x_g, \quad g = g_y \in N,$$

$$= y\theta(x^{-1}) \theta(n)(y\theta(x^{-1}))^{-1} \theta(n^{-1})$$

$$= a - {}^n a, \qquad \text{where} \qquad a = y\theta(x^{-1}) \in A.$$

Hence d_{α} is an inner derivation, and we are done.

Remark. The reader might perhaps believe that in our proof of Theorem 1 there is an argument missing which should establish the independence of the choices of the maps μ and ν in (4.2). There is, however, no need to give such an argument: Diagram (4.8) reverses the choices of μ and ν in the sense that (4.2) and (4.8) together show that the whole proof is independent of μ and ν .

Q.E.D.

4.4. Naturalness of the Description

Our description of $d_2: E_2^{0,2} \rightarrow E_2^{2,1}$ is *natural* in a strong sense; what this means will be expressed below in Propositions 4.5 and 4.6 for the module variable and the group extension variable, respectively.

Let $\tau: A \to A'$ be a homomorphism of G-modules. If e is a group extension (2.1) let

$$\tau e \colon 0 \to A' \to E_{\tau} \to N \to 1$$

be the induced extension, representing $\tau_*[e] \in H^2(N, A')$; cf., e.g., Section 2.2 of [13]. If $[e] \in H^2(N, A)^Q$ then $[\tau e] \in H^2(N, A')^Q$.

PROPOSITION 4.5. For any extension e of A by N that represents a member of $H^2(N, A)^Q$, the G-map τ induces, in a canonical way, a morphism

$$(\tau_*, \omega_\tau, 1): \bar{e} \to (\tau e)$$

of extensions.

Proof. The map ω_{τ} : Out_G(e) \rightarrow Out_G(τe) given in Proposition 2.1 of [13] yields the desired morphism of extensions.

Next, let there be given two group extensions, (1.1) and (1.1)', and let $\Phi: G' \to G$ be a homomorphism that maps N' into N. Then Φ induces a morphism of extensions and, by abuse of notation, we simply write Φ : (1.1)' \to (1.1).

Now, if e is a group extension (2.1), let

$$e\Phi: 0 \to A \to E^{\Phi} \to N' \to 1$$

be the induced extension representing $\Phi^*[e] \in H^2(N', A)$; cf., e.g., Section 2.2 of [13]. If *e* represents a member of $H^2(N, A)^Q$, writing $\operatorname{Out}_{G'}(e) = \operatorname{Out}_G(e) X_Q Q'$, let

$$\bar{e}\Phi: 0 \to H^1(N, A) \to \operatorname{Out}_{G'}(e) \to Q' \to 1$$

be the induced extension, representing $\Phi^*[\bar{e}] \in H^2(Q', H^1(N, A))$ (here and below the notation "-*" is abused); notice that $e\Phi$ represents a member of $H^2(N', A)^{Q'}$ in this case.

PROPOSITION 4.6. For any extension e of A by N that represents a member of $H^2(N, A)^Q$, the morphism Φ induces, in a canonical way, morphisms

$$(1, \hat{\omega}^{\Phi}, \Phi): \bar{e}\Phi \to \bar{e}$$

and

$$(\Phi^*, \omega^{\Phi}, 1)$$
: $\bar{e}\Phi \rightarrow (e\Phi)$

of extensions.

Proof. The maps $\hat{\omega}^{\Phi}$: $\operatorname{Out}_{G'}(e) \to \operatorname{Out}_{G}(e)$ and ω^{Φ} : $\operatorname{Out}_{G'}(e) \to \operatorname{Out}_{G'}(e\Phi)$ in Propositions 2.3 and 2.4 of [13], respectively, yield the desired morphisms of extensions.

Notice that Propositions 4.5 and 4.6 imply the (well known) fact that the differential $d_2: E_2^{0,2} \rightarrow E_2^{2,1}$ is natural in both variables.

5. The Proof of Theorem 2

Let $\delta: Q \to H^1(N, A)$ be a derivation. Let $\alpha = \alpha_{\delta}$ be the corresponding Q-map $IQ \to H^1(N, A)$ ($\alpha(q-1) = \delta(q), q \in Q$). In view of Proposition 3.1, the image $d_2([\alpha]) \in H^3(Q, A^N)$ is obtained as follows: Let $(B_*(Q), \partial)$ be the (normalised) Bar resolution in inhomogeneous form [16, p. 114]. Construct a lifting of α :

Then $-\sigma$ represents the image $d_2[\alpha] \in H^3(Q, A^N)$.

In order to prove Theorem 2, let (C, F, ∂) be the free crossed module on the standard presentation (X; R) of Q [10, Sect. 4]; here $X = \{u_q; q \in Q^*\}$ and $R = \{(r, s) = u_r u_s u_{rs}^{-1}; r, s \in Q^*\}$. Now choose a lifting $\lambda: F \to G$ of the obvious projection $\pi: F \to Q$ such that $\pi = p\lambda$, where $p: G \to Q$ is the projection in (1.1). Further, let

$$e_{(X;R)}: 0 \to J \to C \to F \xrightarrow{\pi} Q \to 1$$

be the corresponding crossed 2-fold extension [10, Sects. 3, 4]. It is known [10, Sects. 2, 4, 9] that J is a Q-module (the action is induced by the F-action on C) generated by the elements

$$u(r, s, t) = {}^{u_r}(s, t)(r, st)(rs, t)^{-1} (r, s)^{-1} \in C,$$

and that the rule

$$u(r, s, t) \mapsto (r[s|t] + [r|st] - [rs|t] - [r|s]) \in J_2(Q)$$

describes an isomorphism $J \rightarrow J_2(Q)$. In view of the main Theorem in [10, Sect. 7], Theorem 2 is implied by the following.

PROPOSITION 5.1. The above map $\lambda: F \to G$ and diagram (5.1) determine a lifting

$$e_{(X;R)}: 0 \longrightarrow J \longrightarrow C \longrightarrow F \longrightarrow Q \longrightarrow 1$$

$$\downarrow^{-\sigma} \qquad \downarrow^{\beta_1} \qquad \downarrow^{\beta_0} \qquad \parallel \qquad (5.2)$$

$$\delta: 0 \longrightarrow A^N \longrightarrow A \downarrow N \longrightarrow B^{\delta} \longrightarrow Q \longrightarrow 1$$

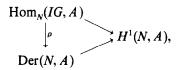
of the identity map of Q in a canonical way.

5.1. The Group B^{δ}

We wish to describe the group B^{δ} (introduced in Section 2.3) as the semidirect fibre product $\operatorname{Der}(N, A) \downarrow_{H^1(N,A)} G$ (see Section 4.1) with respect to the derivation $\delta p: G \to H^1(N, A)$ and the natural projection $\operatorname{Der}(N, A) \to H^1(N, A)$; here G acts on $H^1(N, A)$ via the projection $p: G \to Q$ in (1.1). The requisite action of G on $\operatorname{Der}(N, A)$ is given by the rule $d \mapsto l_g di_g^{-1}$; here $d \in \operatorname{Der}(N, A)$, $g \in G$, and $i_g: N \to N$ denotes conjugation $n \mapsto gng^{-1}$. Note that this action coincides with that induced from extension (2.3).

LEMMA 5.1. The projection $Der(N, A) \rightarrow H^{1}(N, A)$ is a G-map.

Proof. Consider the commutative triangle



where $(\rho(h))(n) = h(n-1)$, $h \in \text{Hom}_N(IG, A)$, $n \in N$. Let $g \in G$ and $n \in N$. For any $h \in \text{Hom}_N(IG, A)$, the computation

$${}^{g}h(g^{-1}(n-1) - (g^{-1}ng - 1)) = {}^{g}h(g^{-1}ng(g^{-1} - 1) - (g^{-1} - 1))$$

= ${}^{gg^{-1}ng}h(g^{-1} - 1) - {}^{g}h(g^{-1} - 1)$
= ${}^{(n-1)}({}^{g}h(g^{-1} - 1))$

shows that for $g \in G$ fixed the two derivations $N \to A$, given by

$$n \mapsto {}^{g}h(g^{-1}(n-1)) (= \rho(l_{g}hl_{g}^{-1})(n)), \quad n \in \mathbb{N},$$

and

$$n \mapsto {}^{g}h(g^{-1}ng-1), \qquad n \in N,$$

differ by an inner derivation only and thus determine the same class in $H^1(N, A)$. The statement of the lemma follows, since the Q-action on $H^1(N, A)$ is induced by the rule

$$(h: IG \to A) \longmapsto (l_g h l_g^{-1}: IG \to A),$$

i.e., by the Q-action on $\operatorname{Hom}_{N}(IG, A)$.

It follows that the construction of the semidirect fibre product $Der(N, A) \downarrow_{H^{1}(N,A)} G$ makes sense. We can now identify this group with B^{δ} as follows: As already explained in Section 2.3, the group $Aut_{G}(e_{s})$ splits canonically into $Der(N, A) \downarrow G$; in fact, a canonical section $G \rightarrow Aut_{G}(e_{s})$ is induced by the (obvious) action of G on $A \downarrow N$. The action of $Der(N, A) \downarrow G$ on $A \downarrow N$ is given explicitly by the rule

$$^{(d,g)}(a,n) = ({}^{g}a + d(gng^{-1}), gng^{-1}).$$
 (5.3)

Furthermore, the group $\operatorname{Out}_G(e_s)$ speits canonically into $H^1(N, A) \downarrow Q$, and we have a commutative diagram

$$\begin{array}{c|c} \operatorname{Der}(N,A) & \underset{H^{1}(N,A)}{1} G \longrightarrow \operatorname{Der}(N,A) \downarrow G \\ & & \\ & & \\ & & \\ & & \\ Q & \xrightarrow{\sigma_{1}} H^{1}(N,A) \downarrow Q; \end{array}$$

here $\pi_{\delta}(d, g) = q_g \in Q$ (the image of g in Q), and the other maps are the obvious ones.

PROPOSITION 5.2. If we identify $\operatorname{Aut}_G(e_s)$ with $\operatorname{Der}(N, A) \downarrow G$ as above, then B^{δ} is the subgroup $\operatorname{Der}(N, A) \downarrow_{H^1(N, A)} G$.

The projection $B^{\delta} \to Q$ is now the map π_{δ} , the homomorphism $\partial: A \downarrow N \to B^{\delta}$ is given by $\partial(a, n) = (-d_a^i, n), a \in A, n \in N$, and B^{δ} acts on $A \downarrow N$ by rule (5.3); here $d_a^i: N \to A$ is the inner derivation $d_a^i(n) = {}^n a - a, n \in N$.

5.2. The Construction of the Lifting (5.2)

For convenience, we shall replace δ by the crossed 2-fold extension

$$0 \to A^N \to A \ \ 1 N \xrightarrow{\partial'} \operatorname{Der}(N, A) \ \ 1_{H^1(N, A)} \ G \to Q \to 1,$$
(5.4)

where $\partial'(a, n) = (d_a^i, n)$, and where $\text{Der}(N, A) \mathfrak{I}_{H^1(N, A)} G$ acts on $A \mathfrak{I} N$ by the rule

$$^{(d,g)}(a,n) = ({}^{g}a - d(gng^{-1}), gng^{-1}).$$

O.E.D.

LEMMA 5.2. The map $\varphi: A \downarrow N \rightarrow A \downarrow N$, $\varphi(a, n) = (-a, n)$, induces a morphism $(-1, \varphi, 1, 1)$: $(5.4) \rightarrow \delta$ of crossed 2-fold extensions.

Proof. Straightforward.

Instead of directly constructing (5.2), we shall construct a morphism $(\sigma, \beta_1, \beta_0, 1): e_{(X;R)} \rightarrow (5.4)$ of crossed 2-fold extensions.

We maintain the notation at the beginning of this section; further, if u_q is a free generator of F, $q \in Q^*$, we shall write $\lambda_q = \lambda(u_q)$. Now define $\beta_0: F \to B^{\delta} = \text{Der}(N, A) \downarrow_{H^1(N, A)} G$ by the rule

$$\beta_0(u_q) = (d_{\mu_0[q]}, \lambda_q), \qquad q \in Q^*;$$

here $d_{\mu_0[q]}$ denotes the derivation $N \to A$ given by

$$n \mapsto (\mu_0[q])(n-1), \quad n \in N.$$

LEMMA 5.3. The map β_0 is well defined, i.e.,

$$[d_{\mu_0[q]}] = \delta p(\lambda_q) \in H^1(N, A), \qquad q \in Q^*.$$

Proof. Clearly $\delta p(\lambda_q) = \delta(q) = \alpha(q-1)$, where $\alpha = \alpha_{\delta} : IQ \to H^1(N, A)$. O.E.D. The assertion follows, since μ_0 lifts α in (5.1).

Next we introduce a function

$$\gamma: Q^* \times Q^* \to A \quad (Q^* = Q - \{1\})$$

by

$$\gamma(r,s) = \mu_1[r|s](1) + \mu_0(r[s])(\lambda_r - 1) - \mu_0[rs](\lambda_r \lambda_s \lambda_{rs}^{-1} - 1),$$

r, s \in Q^*.

LEMMA 5.4. Let $r, s \in Q^*$; then

$$\beta_0(u_r u_s u_{rs}^{-1}) = (d_{\gamma(r,s)}^i, \lambda_r \lambda_s \lambda_{rs}^{-1})$$

(where, for $a \in A$, d_a^i denotes the inner derivation $N \to A$ given by $d_a^i(n) = {}^n a - a).$

Since C is the free crossed F-module with basis $\{(r, s); r, s \in Q^*\}$ (cf. Section 4 of [10]), we may define $\beta_1: C \to A \downarrow N$ by

$$\beta_1(r,s) = (\gamma(r,s), \lambda_r \lambda_s \lambda_{rs}^{-1}), \quad r,s \in Q^*.$$

Proof of Lemma 5.4

Using additive notation in Der(N, A), the first component of $\beta_0(u_r u_s u_{rs}^{-1})$ is the derivation

$$d_{(r,s)} = d_{\mu_0[r]} + {}^{\lambda_r}(d_{\mu_0[s]}) - {}^{\lambda_0}(d_{\mu_0[rs]}): N \to A,$$

where $\lambda_0 = \lambda_r \lambda_s \lambda_{rs}^{-1}$. Now, for $n \in N$, we have

$$\begin{aligned} d_{\mu_0[r]}(n) &= \mu_0[r](n-1);\\ (^{\lambda_r}(d_{\mu_0[s]}))(n) &= ^{\lambda_r}(\mu_0[s])(\lambda_r^{-1}n\lambda_r - 1))\\ &= r(\mu_0[s])(\lambda_r(\lambda_r^{-1}n\lambda_r - 1))\\ &= \mu_0(r[s])((n-1)\lambda_r)\\ &= \mu_0(r[s])(n-1) + \mu_0(r[s])((n-1)(\lambda_r - 1))\\ &= \mu_0(r[s])(n-1) + ^{(n-1)}(\mu_0(r[s])(\lambda_r - 1));\\ (^{\lambda_0}(d_{\mu_0[rs]}))(n) &= \mu_0[rs](n-1) + ^{(n-1)}(\mu_0[rs](\lambda_r\lambda_s\lambda_{rs}^{-1} - 1)). \end{aligned}$$

Hence

$$d_{(r,s)}(n) = (\mu_0[r] + \mu_0(r[s]) - \mu_0[rs])(n-1) + {}^{(n-1)}(\mu_0(r[s])(\lambda_r - 1) - \mu_0[rs](\lambda_r \lambda_s \lambda_{rs}^{-1} - 1)) = (\mu_0 \partial [r|s])(n-1) + {}^{(n-1)}(\cdots) = {}^{(n-1)}(\mu_1[r|s](1) + (\cdots)) = d_{\gamma(r,s)}^i(n).$$

5.3. The Completion of the Proof

The group $J = \ker(\partial: C \to F)$ is (as a Q-module) generated by the elements (cf. [10, Sect. 9])

$$u(r, s, t) = {}^{u_r}(s, t)(r, st)(rs, t)^{-1}(r, s)^{-1}, \quad r, s, t \in Q^*.$$

The proof of Theorem 2 is now completed by the following.

PROPOSITION 5.3. The restriction of β_1 to J is the map σ ; in that connection u(r, s, t) is to be identified with $(r[s|t] + [r|st] - [rs|t] - [r|s]) \in J_2(Q)$, as already indicated, and A^N is to be identified with $\operatorname{Hom}_N(\mathbb{Z}, A)$ in the standard way.

Proof (it is fuzzy but straightforward). The value

$$\sigma(r[s|t] + [r|st] - [rs|t] - [r|s])$$

is given by the N-map

$$\xi = \mu_1(r[s|t] + [r|st] - [rs|t] - [r|s]): \mathbb{Z}G \to A$$

which, by construction, is trivial on IG (and hence induces an $N - \max \mathbb{Z} \to A$). Thus we have to verify that

$$\beta_1(u(r, s, t)) = (\xi(1), 1) \in A \ 1 N.$$

To this end, we calculate in $A \downarrow N$ the product of the following four terms (i), (ii), (iii) and (iv) (in A we use additive notation):

(i)
$$\beta_1({}^{u_r(s,t)}) = {}^{\beta_0(u_r)}(\gamma(s,t),\lambda_s\lambda_t\lambda_{st}^{-1});$$

(ii) $\beta_1(r,st) = (\gamma(r,st),\lambda_r\lambda_{st}\lambda_{rst}^{-1});$
(iii) $\beta_1((rs,t)^{-1}) = (-{}^{\lambda_1}\gamma(rs,t),\lambda_1),$ where $\lambda_1 = \lambda_{rst}\lambda_t^{-1}\lambda_{rs}^{-1};$
(iv) $\beta_1((r,s)^{-1}) = (-{}^{\lambda_2}\gamma(r,s),\lambda_2),$ where $\lambda_2 = \lambda_{rs}\lambda_s^{-1}\lambda_r^{-1}.$

Now

$$\beta_1({}^{u_r}(s,t)) = {}^{(d,\lambda_r)}(\gamma(s,t),\lambda_s\lambda_t\lambda_{st}^{-1}), \qquad \text{where } d = d_{\mu_0[r]},$$
$$= ({}^{\lambda_r}\gamma(s,t) - \mu_0[r](a-1),a), \qquad \text{where } a = \lambda_r\lambda_s\lambda_t\lambda_{st}^{-1}\lambda_r^{-1}.$$

The second component of the product obviously gives $1 \in N$. Hence in A we have to work out the sum

$$\Sigma = (i') + (ii') + (iii') + (iv'),$$

where

(i')
$${}^{\lambda}\gamma(s,t) - \mu_0[r](a-1);$$

(ii') ${}^{a}\gamma(r,st);$
(iii') $-{}^{\lambda_3}\gamma(rs,t),$ where
 $\lambda_3 = (\lambda_r \lambda_s \lambda_t \lambda_{st}^{-1} \lambda_r^{-1})(\lambda_r \lambda_{st} \lambda_{rst}^{-1})(\lambda_{rst} \lambda_t^{-1} \lambda_{rs}^{-1});$
 $= -{}^{b}\gamma(rs,t),$ where $b = \lambda_r \lambda_s \lambda_{rs}^{-1};$
(iv') $-\gamma(r,s).$

By routine calculations, we get

(i')
$$\mu_1(r[s|t])(\lambda_r) + \mu_0(rs[t])(\lambda_r(\lambda_s - 1)) - \mu_0(r[st])(\lambda_r(c - 1)) - \mu_0[r](a - 1),$$
 where $c = \lambda_s \lambda_t \lambda_{st}^{-1}$;

(ii')
$$\mu_1[r|st](a) + \mu_0(r[st](a(\lambda_r - 1)) - \mu_0[rst](a(d - 1))),$$

where $d = \lambda_r \lambda_{st} \lambda_{rst}^{-1};$

(iii')
$$-\mu_1[rs|t](b) - \mu_0(rs[t])(b(\lambda_{rs} - 1)) + \mu_0[rst](b(e - 1)),$$

where $e = \lambda_{rs}\lambda_t\lambda_{rst}^{-1};$
(iv') $-\mu_1[r|s](1) - \mu_0(r[s])(\lambda_r - 1) + \mu_0[rs](b - 1).$

The sum of terms with $\mu_0(rs[t])$ is

$$\mu_0(rs[t])(\lambda_r(\lambda_s - 1) - b(\lambda_{rs} - 1))$$

= $\mu_0(rs[t])(b - \lambda_r)$
= $\mu_0(rs[t])(b - 1) - \mu_0(rs[t])(\lambda_r - 1).$

Likewise, we compute the sum of terms with $\mu_0(r[st])$:

$$\mu_0(r[st])(a(\lambda_r - 1) - \lambda_r(c - 1)) = \mu_0(r[st])(\lambda_r - a) = \mu_0(r[st])(\lambda_r - 1) - \mu_0(r[st])(a - 1).$$

Finally, the sum of terms with $\mu_0[rst]$ is

$$\mu_0[rst](b(e-1) - a(d-1))$$

= $\mu_0[rst](a-b)$
= $\mu_0[rst](a-1) - \mu_0[rst](b-1).$

If we now sum up suitably, we obtain

$$\begin{split} \Sigma &= \mu_1(r[s|t])(\lambda_r) - (\mu_0(r[s]) + \mu_0(rs[t]) - \mu_0(r[st]))(\lambda_r - 1) \\ &+ \mu_1[r[st](a) - (\mu_0[r] + \mu_0(r[st]) - \mu_0[rst])(a - 1) \\ &- \mu_1[r[s](b) + (\mu_0[rs] + \mu_0(rs[t]) - \mu_0[rst])(b - 1) \\ &- \mu_1[r[s](1) \\ &= \mu_1(r[s|t])(\lambda_r) + \mu_1(r[s|t])(1 - \lambda_r) \\ &+ \mu_1[r[st](a) + \mu_1[r[st](1 - a) \\ &- \mu_1[rs|t](b) - \mu_1[rs|t](1 - b) \\ &- \mu_1[r[s](1) \\ &= (\mu_1(r[s|t]) + \mu_1[r[st] - \mu_1[rs|t] - \mu_1[r|s])(1) \\ &= \xi(1). \end{split}$$

5.4. Naturalness of the Description

Our description of $d_2: E_2^{1,1} \rightarrow E_2^{3,0}$ is again *natural* in a strong sense; what this means will be expressed below in Propositions 5.4 and 5.5 for the module variable and the group extension variable, respectively.

Let $\tau: A \to A'$ be a homomorphism of G-modules and denote $\tau_*: H^1(N, A) \to H^1(N, A')$ the induced map. If $\delta: Q \to H^1(N, A)$ is a derivation it is clear that the combined map $\tau_* \delta: Q \to H^1(N, A')$ is a derivation representing the image $\tau_*[\delta] \in H^1(Q, H^1(N, A'))$ (where we abuse the notation "-*").

PROPOSITION 5.4. For any derivation $\delta: Q \to H^1(N, A)$ the G-map τ induces, in a canonical way, a morphism

$$(\tau | , \lambda_{\tau}, \nu_{\tau}, 1): \delta \to (\tilde{\tau}_* \delta)$$

of crossed 2-fold extensions.

Proof. Let $\lambda_{\tau}: A \ \ N \to A' \ \ N$ be the obvious map. Further, by Proposition 5.2, $B^{\delta} = \operatorname{Der}(N, A) \ \ J_{H^{1}(N, A)} G$ and $B^{\tau_{*}\delta} = \operatorname{Der}(N, A') \ \ J_{H^{1}(N, A')} G$; now let ν_{τ} be the obvious map.

Remark. There is a different way of obtaining the above morphism $(\tau |, \lambda_{\tau}, v_{\tau}, 1)$ of crossed 2-fold extensions. In fact, if ω_{τ} : $\operatorname{Out}_{G}(e_{s}) \to \operatorname{Out}_{G}(\tau e_{s})$ is the map in Proposition 4.5 then $\psi_{\tau_{*}\delta} = \omega_{\tau}\psi_{\delta}$. Hence, if μ_{τ} : $\operatorname{Aut}_{G}(e_{s}) \to \operatorname{Aut}_{G}(\tau e_{s})$ is the map given in Proposition 2.1 of [13] then μ_{τ} induces the desired map v_{τ} . It is also worth noting that the map

$$\omega_{\tau}: H^{1}(N, A) \downarrow Q = \operatorname{Out}_{G}(e_{s}) \to \operatorname{Out}_{G}(\tau e_{s}) = H^{1}(N, A') \downarrow Q$$

is the obvious one, where "=" means the obvious isomorphisms explained in Section 5.1.

Next, let there be given a morphism $\Phi: (1.1)' \to (1.1)$ of extensions (notation as in Section 4.4). Denote $\Phi^*: H^1(N, A) \to H^1(N', A)$ the induced map (the notation "-*" will be abused at several places below). If $\delta: Q \to H^1(N, A)$ is a derivation, it is clear that the combined map

$$\delta' = \boldsymbol{\Phi}^* \delta \boldsymbol{\Phi} \colon Q' \to H^1(N', A)$$

is a derivation representing $\Phi^*[\delta] \in H^1(Q', H^1(N', A))$; let \hat{B}^{δ} denote the semidirect fibre product $\text{Der}(N, A) \downarrow_{H^1(N, A)} G'$ with respect to the derivation $G' \to G \to Q \to^{\delta} H^1(N, A)$, and let \hat{B}^{δ} act on $A \downarrow N'$ by the rule (5.3), where

the notation is to be suitably modified. Together with the obvious map $\partial: A \downarrow N' \rightarrow \hat{B}^{\delta}$ this yields the crossed 2-fold extension

$$\delta: 0 \to A^N \to A \uparrow N' \stackrel{\partial}{\longrightarrow} \hat{B}^\delta \to Q' \to 1$$

which clearly represents $\Phi^*[\delta] \in H^3(Q', A^N)$.

PROPOSITION 5.5. For any derivation $\delta: Q \to H^1(N, A)$ the morphism Φ induces, in a canonical way, morphisms

$$(1, \cdot, \cdot, \Phi): \delta \to \delta$$

and

$$(\Phi^*, 1, \cdot, 1)$$
: $\delta \to \tilde{\delta}'$

of crossed 2-fold extensions.

Proof. By Proposition 5.2, we may identify B^{δ} with $Der(N, A) \downarrow_{H^{1}(N, A)} G$ and $B^{\delta'}$ with $Der(N', A) \downarrow_{H^{1}(N', A)} G'$. Hence Φ induces morphisms of crossed 2-fold extensions as desired.

Remark. There is also a different way of obtaining the morphisms of crossed 2-fold extensions in Proposition 5.5. In fact, let ω^{Φ} : $\operatorname{Out}_{G'}(e_s) \to \operatorname{Out}_{G'}(e_s \Phi)$ be the map in Proposition 4.6, and let $\psi'_{\delta}: Q' \to \operatorname{Out}_{G'}(e_s)$ be the obvious map which is induced by ψ_{δ} . Then

$$\psi_{\delta'} = \omega^{\Phi} \psi'_{\delta} \colon Q' \to \operatorname{Out}_{G'}(e_s \Phi),$$

whence \hat{B}^{δ} may be identified with the fibre product $\operatorname{Aut}_{G'}(e_s) \times_{\operatorname{Out}_{G'}(e_s)} Q'$, where $\operatorname{Aut}_{G'}(e_s) = \operatorname{Aut}_G(e_s) \times_G G'$. Further, the maps $\hat{\mu}^{\Phi}$: $\operatorname{Aut}_{G'}(e_s) \to \operatorname{Aut}_G(e_s)$ and μ^{Φ} : $\operatorname{Aut}_{G'}(e_s) \to \operatorname{Aut}_{G'}(e_s \Phi)$ in Propositions 2.3 and 2.4 of [13], respectively, induce the desired maps $\hat{B}^{\delta} \to B^{\delta}$ and $\hat{B}^{\delta} \to B^{\delta'}$. It is also worth noting that the map

$$\omega^{\Phi}$$
: $H^{1}(N, A) \downarrow G' = \operatorname{Out}_{G'}(e_{s}) \to \operatorname{Out}_{G'}(e_{s}\Phi) = H^{1}(N', A) \downarrow G'$

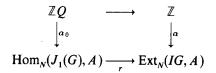
is the obvious one, where "=" means the obvious isomorphisms; see Section 5.1 above.

Notice that Propositions 5.4 and 5.5 imply the (well known) fact that the differential $d_2: E_2^{1,1} \rightarrow E_2^{3,0}$ is natural in both variables.

6. The Proof of Theorem 3

We shall show that the pairs given in Theorem 3 constitute the corresponding transgression. All the rest is straightforward.

Let *e* be a group extension (2.1) that represents a member of $H^2(N, A)^Q$. We choose a lifting (4.2) of 1_N and construct a diagram (4.3). We then represent [e] by $\alpha: \mathbb{Z} \to \operatorname{Ext}_N(IG, A)^Q$ ($\alpha(1) = [c_e]$, c_e as in Section 4.1), and construct a lifting α_0 in



by setting $\alpha_0(1) = \mu$ (cf. Section 4.3). This induces a map $\eta: IQ \to T$ (= ker r). Let

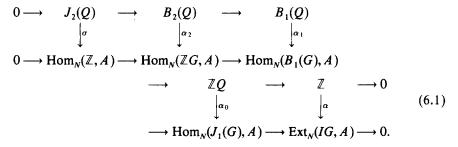
$$\bar{e}: 0 \to H^1(N, A) \to \operatorname{Out}_{\bar{e}}(e) \to Q \to 1$$

be the extension (2.5) associated with e in Section 2.2. By Proposition 4.4 we may identify $\operatorname{Out}_G(e)$ with $H^1(N^Q, A) \downarrow_T Q$, where $h: H^1(N^Q, A) \to T$ is the obvious map given by rule (4.7) above and where the requisite derivation $d: Q \to T$ is given by $d(q) = \alpha_0(q-1), q \in Q$.

PROPOSITION 6.1. Let α_0 as above be fixed. The class $[e] \in H^2(N, A)^Q$ is transgressive if and only if there is a Q-map $\chi: IQ \to H^1(N^Q, A)$ such that $\eta = h\chi$. In this case, there is a canonical bijection between Q-maps χ with $\eta = h\chi$ and sections $\psi: Q \to \text{Out}_G(e) = H^1(N^Q, A) \downarrow_T Q$.

Proof. By Corollary 1 in Section 2.2, [e] is transgressive if and only if there is a section $\psi: Q \to \operatorname{Out}_G(e) = H^1(N^Q, A) \downarrow_T Q$. Any such section determines a derivation $\delta: Q \to H^1(N^Q, A)$, hence a Q-map as desired, and vice versa. Q.E.D.

Now let $[e] \in H^2(N, A)^Q$ be transgressive, and let $\psi: Q \to \text{Out}_G(e)$ be a section. In view of the above, ψ determines a map $\chi: IQ \to H^1(N^Q, A)$ such that $\eta = h\chi$. It follows that α lifts to



By the Addendum to Proposition 3.2, the pair $(\alpha, -\sigma)$ represents the element $(\alpha, -[\sigma])$ of the transgression. Conversely, if $(\alpha, -\sigma)$ represents an element of

the transgression, there is a diagram (6.1) (again by the Addendum to Proposition 3.2). Hence

PROPOSITION 6.2. Any element of the transgression $\tau: E_2^{0,2} \rightarrow E_2^{3,0}$ may be obtained as follows: Let $[e] \in H^2(N, A)^Q$ be transgressive. Represent [e]by $\alpha: \mathbb{Z} \rightarrow \operatorname{Ext}_N(IG, A)$ and lift α to α_0 as above. Then using α_0 , identify $\operatorname{Out}_G(e)$ and $H^1(N^Q, A) \downarrow_T Q$ as above. Let $\psi: Q \rightarrow \operatorname{Out}_G(e)$ be a section. It induces a derivation $\delta: Q \rightarrow H^1(N^Q, A)$, hence a Q-map $\chi: IQ \rightarrow H^1(N^Q, A)$ such that $\eta = h\chi$ as above. Finally, construct a lifting

Then $([e], -[\sigma])$ is an element of the transgression.

In view of the main Theorem in [10, Sect. 7], the crucial step in the proof of Theorem 3 is now provided by the following.

PROPOSITION 6.3. Let $e_{(X;R)}$ be the crossed 2-fold extension, associated in Section 5 to the standard presentation (X;R) of Q. Let $[e] \in H^2(N,A)^Q$ be transgressive. Represent [e] by $\alpha: \mathbb{Z} \to \operatorname{Ext}_N(IG, A)$ and lift α to α_0 as above. Let $\psi: Q \to \operatorname{Out}_G(e)$ be a section, and construct a diagram (6.1) (or (6.2)). Then (6.1) gives rise to a morphism of crossed 2-fold extensions

$$e_{(X;R)}: 0 \longrightarrow J \longrightarrow C \longrightarrow F \longrightarrow Q \longrightarrow 1$$

$$\downarrow^{-\sigma} \qquad \downarrow^{\gamma_1} \qquad \downarrow^{\gamma_0} \qquad \parallel$$

$$\tilde{e}_{\psi}: 0 \longrightarrow A^N \longrightarrow E \longrightarrow B^{\psi} \longrightarrow Q \longrightarrow 1.$$
(6.3)

Proof. The exact sequence

$$0 \to \operatorname{Hom}_{N}(\mathbb{Z}, A) \to \operatorname{Hom}_{N}(\mathbb{Z}G, A) \to \operatorname{Hom}_{N}(B_{1}(G), A) \to H^{1}(N^{Q}, A) \to 0$$

is naturally isomorphic to

$$0 \to \operatorname{Hom}_{N^{Q}}(\mathbb{Z}, A) \to \operatorname{Hom}_{N^{Q}}(\mathbb{Z}\overline{F}, A) \to \operatorname{Hom}_{N^{Q}}(I\overline{F}, A) \to H^{1}(N^{Q}, A) \to 0,$$

where \overline{F} is free on G^* ; \overline{F} was denoted F in Section 4. Hence, from (6.2) we obtain

where χ is obtained from α_0 and ψ as in Proposition 6.1. We can now apply Proposition 5.1, where the role of the extension (1.1) is played by

$$1 \to N^Q \to \overline{F} \to Q \to 1,$$

that of e_s (the split extension of A by N) by

$$0 \to A \to A \ \ 1 \ N^Q \to N^Q \to 1,$$

that of the map λ by a suitable lifting $\lambda: F \to \overline{F}$ of the obvious projection $F \to Q$, and that of δ by $\delta = \delta_{\chi}: Q \to H^1(N^Q, A)$, $\delta(q) = \chi(q-1)$, $q \in Q$. Moreover, by Proposition 5.2 we may identify B^{δ} with the semidirect fibre product $\operatorname{Der}(N^Q, A) \downarrow_{H^1(N^Q, A)} \overline{F}$; here the requisite derivation $d: \overline{F} \to H^1(N^Q, A)$ is the combined map δpr , where $pr: \overline{F} \to Q$ denotes the projection. We obtain a commutative diagram

$$e_{(X;R)}: 0 \longrightarrow J \longrightarrow C \longrightarrow F \longrightarrow Q \longrightarrow 1$$

$$\downarrow^{-\sigma} \qquad \downarrow^{\beta_1} \qquad \qquad \downarrow^{\beta_0} \qquad \parallel \qquad (6.5)$$

$$\delta: 0 \longrightarrow A^N \longrightarrow A \downarrow N^Q \longrightarrow \operatorname{Der}(N^Q, A) \underset{H^1(N^Q, A)}{\downarrow} \overline{F} \longrightarrow Q \longrightarrow 1.$$

The proof is now completed by the following.

PROPOSITION 6.4. There is a morphism $(1, \theta_1, \theta_0, 1)$: $\delta \to \tilde{e}_{\psi}$ of crossed 2-fold extensions.

For the proof we need the following.

LEMMA 6.1. There is a natural action of the group $\text{Der}(N^Q, A) \downarrow_{H^1(N^Q, A)} \overline{F}$ on the middle group E of the extension e, such that $(\tau, u) \in$ $\text{Der}(N^Q, A) \downarrow_{H^1(N^Q, A)} \overline{F}$ induces left translation with g_u on A and conjugation with g_u on N, where $g_u \in G$ is the image of $u \in \overline{F}$. ADDENDUM. This action induces a commutative diagram

here π_{δ} sends (τ, u) to the image $q_u \in Q$ of $u \in \overline{F}$.

Proof. Consider the commutative diagram (4.9)

already used in the proof of Proposition 4.4, where $\kappa = \pi pr$, and where pr: $N^G \to (N^G)^{Ab} = J_1(G)$ (identified in Section 4.1) is the canonical projection, such that $\alpha_0(1) = \mu \in \operatorname{Hom}_N(J_1(G), A)$ (where $\alpha_0: \mathbb{Z}Q \to \operatorname{Hom}_N(J_1(G), A)$ lifts $\alpha: \mathbb{Z} \to \operatorname{Ext}_N(IG, A)$ as above).

LEMMA 6.2. The rule $(a, n) \mapsto a\theta(n)$, $a \in A$, $n \in N^Q$, describes a projection $\pi_e: A \downarrow N^Q \to E$ such that π_e is the coequaliser of

$$N^G \xrightarrow{j}_{\kappa} A \ \ 1 N^Q.$$

Proof. By inspection.

The proof of Lemma 6.1 is now completed as follows: Let $(\tau, u) \in$ Der $(N^Q, A) \downarrow_{H^1(N^Q, A)} \overline{F}$. Write $g = g_u \in G$ and $q = q_u \in Q$ for the images in G and Q of u, respectively. Define maps $\alpha_1 \colon N^Q \to E$, $\alpha_2 \colon A \to E$ by setting

$$\alpha_1(n) = \tau(unu^{-1}) \,\theta(unu^{-1}), \qquad n \in N^{\mathcal{Q}},$$
$$\alpha_2(a) = {}^{s}a, \qquad a \in A.$$

Since $(\tau, u) \in \text{Der}(N^Q, A) \downarrow_{H^1(N^Q, A)} \overline{F}$, we have $[\tau] = d(u) \in H^1(N^Q, A)$, hence $h[\tau] = hd(u) = \alpha_0(q_u - 1)$, i.e.,

$$\tau | N^G = (l_g \mu l_g^{-1} - \mu) pr$$
$$= l_g \kappa i_u^{-1} - \kappa;$$

here $h: H^1(N^Q, A) \to T$ is the map given by rule (4.7). Consequently, if $n \in N^G$, we have

$$\alpha_1(n) = \tau(unu^{-1}) + \kappa(unu^{-1}) \qquad \text{(using additive notation in } A)$$
$$= {}^g\kappa(n) - \kappa(unu^{-1}) + \kappa(unu^{-1})$$
$$= \alpha_2(\kappa(n)).$$

Thus we obtain a map $A \downarrow N^Q \rightarrow E$ given by

$$(a, n) \mapsto \alpha_2(a) \alpha_1(n), \quad a \in A, \quad n \in N^Q,$$

which coequalises j and κ . Hence (τ, u) induces a unique map $\alpha: E \to E$. Clearly, α induces left translation with g_u on A and conjugation with g_u on N whence α is an automorphism of E. Moreover, the rule ${}^{(\tau,u)}x = \alpha(x), x \in E$, describes an action of $\text{Der}(N^Q, A) \downarrow_{H^1(N^Q, A)} \overline{F}$ on E.

Proof of Addendum. If α is obtained as above, i.e., ${}^{(\tau,u)}x = \alpha(x), x \in E$, let (α, g_{α}) be the corresponding member of $\operatorname{Aut}_{G}(e)$, where $g_{\alpha} = g_{u}$. It is clear that we have a homomorphism $\operatorname{Der}(N^{Q}, A) \downarrow_{H^{1}(N^{Q}, A)} \overline{F} \to \operatorname{Aut}_{G}(e)$, and, by abuse of language, we denote (α, g_{α}) by α also. In Proposition 4.4 we constructed a map $\operatorname{Aut}_{G}(e) \to H^{1}(N^{Q}, A) \downarrow_{T} Q$ given by $\alpha \mapsto ([d_{\alpha}], q_{\alpha})$, $\alpha \in \operatorname{Aut}_{G}(e)$. Now, if α is the image of some $(\tau, u) \in \operatorname{Der}(N^{Q}, A) \downarrow_{H^{1}(N^{Q}, A)} \overline{F}$, we have

$$\begin{aligned} d_{\alpha}(n) &= \alpha(\theta(x_{g}^{-1}nx_{g})) \ \theta(n^{-1}), \qquad n \in N^{Q}, \quad g = g_{u} \in G, \\ &= \alpha_{1}(x_{g}^{-1}nx_{g}) \ \theta(n^{-1}) \\ &= \tau(ux_{g}^{-1}nx_{g}u^{-1}) \ \theta(ux_{g}^{-1}nx_{g}u^{-1}) \ \theta(n^{-1}), \end{aligned}$$

where $ux_{e}^{-1} \in N^{G}$. Hence

$$d_{\alpha}(n) = \tau(ux_{g}^{-1}) + \tau(n) - {}^{\theta(n)}(\tau(ux_{g}^{-1})) + {}^{(1-\theta(n))}(\kappa(ux_{g}^{-1})) \in A$$

since N^G acts trivially on A. We obtain

$$d_{\alpha}(n) = \tau(n) + {}^{(1-\theta(n))}(\tau(ux_g^{-1}) + \kappa(ux_g^{-1})).$$

Consequently, $[d_{\alpha}] = [\tau] \in H^1(N^Q, A)$, and the Addendum is proved.

Proof of Proposition 6.4. Since B^{ψ} is the fibre product $\operatorname{Aut}_{G}(e) X_{\operatorname{Out}_{G}(e)} Q$ with respect to $\psi: Q \to \operatorname{Out}_{G}(e)$, diagram (6.6) induces a unique map $\theta_{0}: \operatorname{Der}(N^{Q}, A) \downarrow_{H^{1}(N^{Q}, A)} \overline{F} \to B^{\psi}$. Let $\theta_{1} = \pi_{e}: A \downarrow N^{Q} \to E$. Then $(1, \theta_{1}, \theta_{0}, 1)$ is the desired morphism of crossed 2-fold extensions. Q.E.D.

7. AN EXAMPLE

We offer an example where we determine, by our methods, the differentials $d_2^{0,2}$ and $d_2^{1,1}$; we believe that our example is the simplest possible for producing a non-trivial $d_2^{0,2}$ and $d_2^{1,1}$.

Consider the group extension

$$1 \to \mathbb{Z}/2 \times \mathbb{Z}/2 \xrightarrow{i} \mathbb{Z}/4 \times \mathbb{Z}/2 \to \mathbb{Z}/2 \to 1,$$

where *i* is the obvious inclusion (hence $N = \mathbb{Z}/2 \times \mathbb{Z}/2$, $G = \mathbb{Z}/4 \times \mathbb{Z}/2$, $Q = \mathbb{Z}/2$). Let $A = \mathbb{Z}/2$.

(i) $d_2: H^2(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2)^{\mathbb{Z}/2} \to H^2(\mathbb{Z}/2, H^1(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2))$. Now $H^2(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2)^{\mathbb{Z}/2} = H^2(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2) \cong (\mathbb{Z}/2)^3$, and there are three groups giving rise to non-trivial extensions of $\mathbb{Z}/2$ by $\mathbb{Z}/2 \times \mathbb{Z}/2$: the group $\mathbb{Z}/4 \times \mathbb{Z}/2 = \langle a, b; a^4, b^2, [a, b] \rangle$, the dihedral group $D_4 = \langle a, b; a^4, b^2, (ab)^2 \rangle$ and the quaternion group $Qu = \langle a, b; a^2 = b^2 = (ab)^2 \rangle$. We write $\mathbb{Z}/2 \times \mathbb{Z}/2 = \langle u, v; u^2, v^2, [u, v] \rangle$ and fix a $\mathbb{Z}/2$ -basis $\{e_1, e_2, e_3\}$ of $H^2(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2)$:

$$e_{1}: 0 \to \mathbb{Z}/2 \to \mathbb{Z}/4 \times \mathbb{Z}/2 \xrightarrow{\varphi_{1}} \mathbb{Z}/2 \times \mathbb{Z}/2 \to 1,$$

$$e_{2}: 0 \to \mathbb{Z}/2 \to \mathbb{Z}/4 \times \mathbb{Z}/2 \xrightarrow{\varphi_{2}} \mathbb{Z}/2 \times \mathbb{Z}/2 \to 1,$$

$$e_{3}: 0 \to \mathbb{Z}/2 \to Qu \xrightarrow{\varphi_{3}} \mathbb{Z}/2 \times \mathbb{Z}/2 \to 1;$$

here $\varphi_1(a) = u$, $\varphi_1(b) = v$, $\varphi_2(a) = v$, $\varphi_2(b) = u$, $\varphi_3(a) = u$, $\varphi_3(b) = v$. By abuse of notation, we do not distinguish between an extension and its class in $H^2(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2)$. Now the extension $e_1 + e_2$ has a $\mathbb{Z}/4 \times \mathbb{Z}/2$ as middle group, and the extensions $e_1 + e_3$, $e_2 + e_3$ and $e_1 + e_2 + e_3$ have the dihedral group as middle group.

We claim: $d_2(e_1) = 0 = d_2(e_2)$; $d_2(e_3) \neq 0$.

Every automorphism of $E = \mathbb{Z}/4 \times \mathbb{Z}/2 = \langle a, b; a^4, b^2, [a, b] \rangle$ fixes a^2 . Since $\langle a^2 \rangle = A$, Aut⁴(E) is the full automorphism group of E. But Aut_G(N, A) is trivial, whence Aut⁴_G(E) = Hom(N, A). Hence Aut_G(e_1) = Hom(N, A) \times \mathbb{Z}/4 \times \mathbb{Z}/2. Moreover, $\beta: E \to \text{Aut}_G(e_1)$ sends a to $a^2 \in \mathbb{Z}/4 \subset$ Aut_G(e_1) and b to $b \in \mathbb{Z}/2 \subset \text{Aut}_G(e_1)$. It follows that the extension

$$\bar{e}_1: 0 \to \operatorname{Hom}(N, A) \to \operatorname{Out}_G(e_1) \to \mathbb{Z}/2 \to 1$$

splits. For symmetry reasons, \bar{e}_2 also splits.

On the other hand, by the same argument as above, $\operatorname{Aut}_G(e_3) = \operatorname{Hom}(N, A) \times \mathbb{Z}/4 \times \mathbb{Z}/2$, but $\operatorname{Out}_G(e_3)$ is now the cokernel of

$$\beta: Qu \to \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/4 \times \mathbb{Z}/2$$
$$= \langle u, v, a, b; u^2, v^2, a^4, b^2, [u, v] \text{ etc.} \rangle,$$

where $Qu = \langle x, y; x^2 = y^2 = (xy)^2 \rangle$ and $\beta(x) = va^2$, $\beta(y) = ub$ (note that $Hom(N, A) = \mathbb{Z}/2 \times \mathbb{Z}/2$ and recall how β was defined in Section 2.2). Now $coker(\beta) \cong \mathbb{Z}/4 \times \mathbb{Z}/2$ and the extension

$$\bar{e}_3: 0 \to \mathbb{Z}/2 \times \mathbb{Z}/2 \to \mathbb{Z}/4 \times \mathbb{Z}/2 \to \mathbb{Z}/2 \to 1$$

does not split.

(ii) $d_2: H^1(\mathbb{Z}/2, H^1(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2)) \to H^3(\mathbb{Z}/2, \mathbb{Z}/2)$. As in Section 2.3, let $E = (\mathbb{Z}/2)^3$, let $\{e_1, e_2, e_3\}$ be the obvious $\mathbb{Z}/2$ -basis, and consider the split extension

$$e_s: 0 \to \mathbb{Z}/2(e_1) \to \mathbb{Z}/2(e_1) \times \mathbb{Z}/2(e_2) \times \mathbb{Z}/2(e_3) \to \mathbb{Z}/2(e_2) \times \mathbb{Z}/2(e_3) \to 1.$$

Now $H^1(\mathbb{Z}/2, H^1(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2)) = \text{Hom}(\mathbb{Z}/2, H^1(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2))$ and we identify $H^1(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2)$ with $\text{Aut}_G^4(E)$ as above. Writing $\mathbb{Z}/2 = \langle x; x^2 \rangle$, we choose a basis $\{\eta, \theta\}$ for $H^2(\mathbb{Z}/2, H^1(\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2)) \cong \mathbb{Z}/2 \times \mathbb{Z}/2$, by setting

$${}^{\eta(x)}e_2 = e_1 + e_2, \qquad e_1, e_3 \text{ fixed under } \eta(x),$$

 ${}^{\theta(x)}e_3 = e_1 + e_3, \qquad e_1, e_2 \text{ fixed under } \theta(x).$

Now Aut_G(e_s) = $\langle u, v, a, b; u^2, v^2, a^4, b^2, [u, v] \text{ etc.} \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/4 \times \mathbb{Z}/2$, where ${}^{u}e_2 = e_1 + e_2$, ${}^{v}e_3 = e_1 + e_3$ and all the rest remains fixed under the corresponding elements of Aut_G(e_s). Maintaining the notation of Section 2.3, the maps η and θ determine crossed 2-fold extensions

$$\tilde{\eta}: \ 0 \to \mathbb{Z}/2 \to \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \to B^n \to \mathbb{Z}/2 \to 1$$

and

$$\tilde{\theta}: \ 0 \to \mathbb{Z}/2 \to \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \to B^{\theta} \to \mathbb{Z}/2 \to 1;$$

the corresponding ∂ 's are the obvious maps. Here $B^n = B^\theta = \mathbb{Z}/4 \times \mathbb{Z}/2 = \langle a, b; a^4, b^2, |a, b| \rangle$; B^n acts on $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$ by the rule

$${}^{a}e_{2} = e_{1} + e_{2}$$

and B^{θ} acts on $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$ by

$$^ae_3=e_1+e_3$$

with the convention that everything not written down remains fixed. Clearly, $\tilde{\eta}$ is equivalent to

$$\hat{\eta}\colon 0\to \mathbb{Z}/2\to \mathbb{Z}/2\times \mathbb{Z}/2\to \mathbb{Z}/4\to \mathbb{Z}/2\to 1,$$

where $\mathbb{Z}/2 \times \mathbb{Z}/2$ has basis $\{e_1, e_2\}$ and where the generator of $\mathbb{Z}/4$ maps e_2 to $e_1 + e_2$. It follows from the Theorem in [10, Sect. 10] that $[\hat{\eta}] \neq 0 \in H^3(\mathbb{Z}/2, \mathbb{Z}/2)$, since there is no group H of order eight which maps onto $\mathbb{Z}/4$ and contains $\mathbb{Z}/2 \times \mathbb{Z}/2$ as a normal subgroup in such a way that conjugation in H induces the $\mathbb{Z}/4$ -action on $\mathbb{Z}/2 \times \mathbb{Z}/2$. On the other hand, if we associate with $\tilde{\theta}$ a crossed 2-fold extension $\hat{\theta}$ in a similar way, it is easy to see that $|\hat{\theta}| = 0 \in H^3(\mathbb{Z}/2, \mathbb{Z}/2)$.

It follows that $d_2[\eta]$ is the generator of $H^3(\mathbb{Z}/2, \mathbb{Z}/2) \cong \mathbb{Z}/2$, whence $E_3^{3,0} = 0$, and that θ generates $E_3^{1,1} \cong \mathbb{Z}/2$.

ACKNOWLEDGMENTS

I am grateful to Professor S. Mac Lane for the stimulus provided by conversations with him; also, it should be noted that he encouraged me to write the paper. I would like to thank the referee; he pointed out an error in the first draft of the manuscript, and his careful examination caught a number of other small points. I am grateful to D. Holt, who has drawn my attention to Sah's papers [20-22].

References

- M. ANDRÉ, Le d₂ de la suite spectrale en cohomologie des groupes, C. R. Acad. Sci. Paris 260 (1965), 2669-2671.
- L. S. CHARLAP AND A. T. VASQUEZ, The cohomology of group extensions, Trans. Amer. Math. Soc. 124 (1966), 24-40.
- 3. L. S. CHARLAP AND A. T. VASQUEZ, Characteristic classes for modules over groups, I, Trans. Amer. Math. Soc. 137 (1969), 533-549.
- 4. R. H. CROWELL, Corresponding group and module sequences, Nagoya Math. J. 19 (1961), 27-40.
- S. EILENBERG, Topological methods in abstract algebra. Cohomology theory of groups, Bull. Amer. Math. Soc. 55 (1949), 3-37.
- 6. K. W. GRUENBERG, "Cohomological Topics in Group Theory," Lecture Notes in Mathematics No. 143, Springer-Verlag, Berlin/Heidelberg/New York, 1970.
- 7. G. P. HOCHSCHILD AND J. P. SERRE, Cohomology of group extensions, *Trans. Amer.* Math. Soc. 74 (1953), 110-134.
- D. F. HOLT, An interpretation of the cohomology groups Hⁿ(G, M), J. Algebra 60 (1979), 307-320.
- 9. J. HUEBSCHMANN, "Verschränkte *n*-fache Erweiterungen von Gruppen und Cohomologie," Diss. ETH Nr. 5999, Eidg. Technische Hochschule, Zürich, 1977.
- J. HUEBSCHMANN, Crossed n-fold extensions of groups and cohomology, Comm. Math. Helv. 55 (1980), 302-313.
- 11. J. HUEBSCHMANN, Sur les premières différentielles de la suite spectrale cohomologique d'une extension de groupes, C. R. Acad. Sci. Paris Ser. A 285 (1977), 929-931.
- J. HUEBSCHMANN, Extensions de groupes et paires croisées, C. R. Acad. Sci. Paris Ser. A 285 (1977), 993–995.
- J. HUEBSCHMANN, Group extensions, crossed pairs and an eight term exact sequence, J. Reine Angew. Math. 321 (1981), 150-172.

JOHANNES HUEBSCHMANN

- 14. J. HUEBSCHMANN, Automorphisms of crossed *n*-fold extensions and differentials in the Lyndon-Hochschild-Serre spectral sequence, in preparation.
- 15. S. MAC LANE, Historical note, J. Algebra 60 (1979), 319-320; Appendix to [8] above.
- 16. S. MAC LANE, "Homology," Grundlehren der Mathematischen Wissenschaften, No. 114, Springer-Verlag, Berlin/Heidelberg/New York, 1967.
- 17. S. MAC LANE AND J. H. C. WHITEHEAD, On the 3-type of a complex, Proc. Nat. Acad. Sci. USA 36 (1950), 41-48.
- 18. J. G. RATCLIFFE, On the second transgression of the Lyndon-Hochschild-Serre spectral sequence, J. Algebra 61 (1979), 593-598.
- 19. J. G. RATCLIFFE, Crossed extensions, Trans. Amer. Math. Soc. 257 (1980), 73-89.
- 20. C. H. SAH, Automorphisms of finite groups, J. Algebra 10 (1968), 47-68; addendum, J. Algebra 44 (1977), 573-575.
- 21. C. H. SAH, Cohomology of split group extensions, J. Algebra 29 (1974), 255-302.
- 22. C. H. SAH, Cohomology of split group extensions, II, J. Algebra 45 (1977), 17-68.
- 23. J. H. C. WHITEHEAD, Combinatorial homotopy, II, Bull. Amer. Math. Soc. 55 (1949), 453-496.