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1. INTRODUCTION
Let
1-N-5H5650-1 (1.1)

be a group extension and 4 a (left) G-module. We note, for clarity, that the
extension (1.1) and the module 4 will always be fixed unless the contrary is
admitted explicitly. We consider the Lyndon—Hochschild—Serre (LHS)
spectral sequence

(EP9, dP9), with E?9=H?(Q, HY(N,A))

{7; 16, p. 351]. The purpose of this paper is to examine the differentials
BEEY S EY, dy:EY S ER, @ EY o EY

(we shall usually drop the superscripts and write d, instead of d?'?) and the
transgression 7: E3-* — E3'® (“—" denotes an additive relation). We shall
give explicit descriptions (see Section 2 below) in terms of group extensions,
crossed 2-fold extensions (see below) and certain automorphisms groups.
Our descriptions also turn out to be natural in a strong sense. We note that
similar automorphism groups were studied in [20].

The results of this paper were announced in [11]. The differentials we
describe in this paper yield, together with the differential d,:
HYQ, H'(N, A)) - H*(Q, A"), all the information about H*(G, A) that can
be obtained from the spectral sequence. This has been pushed further in [13],
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where we have constructed a certain extension Xpext(G, N;A) of E}' by
E$'* which fits into a natural exact sequence

H¥Q, AY) > HX(G, A) - Xpext(G, N; A) -2 H*(Q, 4") —» H*(G, 4)

such that 4 lifts the differential d5'* (this was announced in |12]). We also
note that in [13] a conceptual description of d,: ES"' —» E3'* was obtained.

In another paper [14] we shall extend our methods to obtain conceptual
descriptions of all differentials

0,q. 70,9 2,g-1 l,q. l.q 3,g-1
dy9 EyT > EyY and dyEyt o By g> 1

The paper is organised in the following manner: In Section 2 we present
our results (Theorems 1, 2 and 3). Section 3 deals with some differentials in
the LHS spectral sequence. In Sections 4-6 we prove our theorems. Section
7 offers an example.

Central roles will be played by the concept of a crossed module and that
of a crossed 2-fold extension, the definitions of which we reproduce here for
completeness: A crossed module (C, I, &) (Whitehead |23, p. 453]) consists
of groups C and I, an action of I" on the left of C, written (y,¢c)—'c, yE€ T,
¢ € C, and a homomorphism d: C— I" of I'-groups, where I" acts on itself by
conjugation. The map ¢ must satisfy the rule

beb~ ' =¥, b,ceC.

A crossed 2-fold extension (|9] or [10, Sect. 3]) is an exact sequence of
groups

e:0-4-C-5HTr-0-1,

where (C,T,0) is a crossed module. The group 4 is then central in C,
whence it is Abelian; furthermore, the I-action on C induces a Q-action on
A. For Q and 4 fixed, the classes of crossed 2-fold extensions under the
similarity relation generated by morphisms (1, -, -, 1): &> > é of crossed 2-
fold extensions constitute an Abelian group naturally isomorphic to the
cohomology group H*(Q, A); this is a special case of the main Theorem in
Section 7 of [10] (see also [9]). We note that such an interpretation of group
cohomology was found independently by several other people; see Mac Lane
[15]. Here we would like to point out, however, that the interpretation of the
third cohomology group in terms of crossed 2-fold extensions, although not
explicitly recognised, is hidden in an old paper of Mac Lane and Whitehead
[17].
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2. RESULTS

2.1.  Automorphisms and Group Extensions

Let I" be a group and 4 a (left) I~module. Let y,: I'> Aut(l") X Aut(4) be
the obvious map given by x,(y) = (i,, /), y € I', where i, is the corresponding
inner automorphism and /, the action /(a)="a of y on A4; here Aut(l)
denotes the group of automorphisms of I, and Aut(4) that of A as Abelian
group. Denote by Aut(l', 4) the subgroup of Aut(I") X Aut(4) that consists
of pairs (¢, 6) of automorphisms ¢ of I and ¢ of A such that

o(’a) = *Po(a), yETI, a€A.
We call Aut(l', A) the group of automorphisms of the pair (I, A).

PROPOSITION 2.1. The group Aut(l,A) is the normaliser in Aut(I') X
Aut(4) of xo(I).

Let Out(l,4)=Aut(l’,4)/xo(I") and call it the group of outer
automorphisms of the pair (I, A). We shall now describe an obvious action
of Out(I', A) on the cohomology H*(I', A) (this may be folklore).

Recall that any group homomorphism f: 7" — I' induces a unique map
S H*(I,A)—> H*(I",A’); here A’ is the I"-module which has the same
underlying Abelian group as 4 but operators from I" via f. Now, if
(p,0) € Aut(I', A), let f=¢~', and consider (¢~ ')*: H*(I,4)> H*(I, 4").
Since

o(°Pa)="(o@), yEI a€d,
o induces o4: H*(I', A') - H*(I', A). Let
Ao,y =0x(p™ V1 H¥(I, A) > H¥(I, 4).

We note that it is convenient to invert the automorphism ¢ for the formal
reason that cohomology is contravariant in the group variable.

ProOPOSITION 2.2. The rule (p,0)+>a, induces an action of
Out(l, A) on (the left of ) H*(I', A).

In our situation, we have the group extension (1.1) and the G-module 4.
Let '=N, and let N act on 4 in the obvious way. Then (1.1) furnishes an
action x: G- Aut(N,A4) of G on the pair (N,A) given by x(g)=(,.L).
g € G, where i, is the conjugation nt—gng~', n€N, and [, the action
I(a)="*a of g on A. For later reference, denote by Aut;(N, 4) the image of
z- Since y extends the above homomorphism y,: N - Aut(N, 4), it induces an
outer action w: Q - Out(N, 4) of Q on the pair (N, A).
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PropoSITION 2.3. This outer action, combined with the action of
Out(N,A4) on H*(N,A) given above, yields the standard action of Q on
H*(N,A).

Consider an extension
e0-4-F5N-1 2.1

with Abelian kernel A, where we assume that conjugation in F induces that
action of N on A which is obtained by restricting the operators from G to N.
Let Aut?(E) denote the group of automorphisms of £ which map 4 to itself.
Each a € Aut?(E) induces an automorphism /, of 4 (as Abelian group) and
an automorphism i, of N such that (i ,/,) is a member of Aut(N,4). The
rule a (i,,1,) is in fact a homomorphism Aut*(E)- Aut(N,4). If
Auti(E) denotes the pre-image (in Aut?(E)) of Auty,(V,A4) (= Aut(N, 4)),
we have a homomorphism

h=h,: Auti(E) - Autg(N, 4)

which is determined by e. The kernel of h, is isomorphic to the group
Der(N, A) of derivations (=crossed homomorphisms) of N in 4 5, p. 12; 6,
p. 45]. We fix an embedding of Der(N, 4) in Aut$(E) as follows: If d: N -+ 4
is a derivation (i.e., d(nm)=d(n) + "d(m), m, n € N) define a,: E— E by
a,(x) =d(n(x)) - x, x € E. We now embed Der(N, 4) in Auti(E) by the rule
d— a,.

PROPOSITION 2.4. The map h, is surjective if and only if the class [e] €
H*(N, A) is a member of H*(N, A)°.

Proof. By virtue of Proposition 2.3, [e] € H*(N, 4)? if and only if for
each g € G the map (1), (i;')*: H'(N,A) > H*(N, A) is the identity. This
implies the claim.

2.2. The Differential d,: H(Q, H*(N, A))—» H*(Q, H'(N, 4))

Let e be a group extension (2.1). Assume now that e represents a member
of H*(N,A)2. In Section 2.1 we associated to e the extension

0- Der(N,A4) - Auti(E) - Autg(N, 4) - 1. (2.2)
If we replace Autg(E) by the fibre product

Autg(E) X G,

AutG(N,4)

denoted henceforth by Aut,(e), we obtain the extension

0- Der(N, 4) - Autg(e) = G — 1. 2.3)
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There is an obvious map of (2.1) into (2.3):

0— A — E S5 N—1

EoE

0— Der(N,4)— Autzle) — G— 1;

here { sends a€ A to the inner derivation (n—a—"a,n€ N), B(x)=
iy, m(x)), x € E, and { is the inclusion. Inspection proves the following.

PROPOSITION 2.5. The obvious action of Autg(e) on E turns
(E, Autg(e), B) into a crossed module.

A consequence of this is that f(E) is normal in Autg(e). We denote the
cokernel of § by Out,(e), since there is an obvious map #: Out,(e) > Out(E),
where Out(E) denotes the group of outer automorphisms of E. If we pass in
(2.4) to cokernels, we obtain the extension

€:0- H'(N,4) - Outge)» @~ 1. (2.5)

It is straightforward to check that the class (€] € H*(Q, H'(N, 4)) depends
only on |e] € HX(N, A)? = H(Q, H*(N, A)).

THEOREM 1. The rule e— €& describes the differential
d,: ES* - E3L.

A proof will be given in Section 4 below. We shall also show that our
description is natural in a very strong sense; see Propositions 4.5 and 4.6
below.

For later reference, we note that the above construction also associates
with e the crossed 2-fold extension

0- A" > E 25 Autg(e) - Outg(e) - 1. (2.6)

Remark 1. In a picturesque way one could say that the image d,|e]
extends the well known interpretation of H'(N,4) as the group of
automorphisms of E leaving 4 and N = E/A elementwise fixed, modulo the
inner automorphisms induced by elements of 4; see e.g., |5, p. 12] or |6, p.
46].

Remark 2. Theorem 1 generalises Theorem 0.2 of [22]; see also p. 265
of [21]. Extensions (1), (6) and (7) in Section O of [22] correspond to our
extensions (1.1), (2.1) and (2.5), respectively. Sah assumes extension (1.1) to



SPECTRAL SEQUENCE DIFFERENTIALS 301

be split with N Abelian (i.e., N a Q-module) and the N-action on 4 to be
trivial. We managed to get rid of all these hypotheses.

Since E9'? is the kernel of d,, we have the following.

COROLLARY 1. The subgroup ES* of transgressive elements consists of
those classes of extensions e for which & splits.

This suggests that d,|e] should be the obstruction to lifting the outer
action w: Q — Out(N,4) to somewhat of an outer action on E. In fact, if
Out?(E) denotes the cokernel of the obvious map E — Aut?(E) which sends a
member of E to the corresponding inner automorphism, the map Aut*(E) -
Aut(N, A) in Section 2.1 induces a homomorphism Out?(E) - Out(N, 4) the
kernel of which is (isomorphic to) H'(N, 4).

COROLLARY 2. The class d,[e] € H{(Q, H'(N, A)) is the obstruction to
lifting the outer action w: Q - Out(N, A) of Q on (N, 4) to Out*(E).

Proof. The map #:Outg(e) > Out(E) maps Outg(e) into Out’(E)c
Out(E) and induces a commutative diagram

-0— H'(N,A) — Outg(e) — g —1

H l I

0— H'(N, A) — Out*(E) — Out(N, 4)

with exact rows, whose right-hand square is a pullback diagram. The claim
follows. Q.E.D.

We take the opportunity to correct a slight error in [22]: It is fairly clear
from our construction of (2.5) that, in the special case considered by Sah,
the middle group of (7) in Section 0 of [22] should be a fibre product

AL D X I

Autr(K,M)

here Aut.(K, M) is the image of the obvious map I'— Aut(K) X Aut(M).
Sah’s description is correct only if this map is injective, i.e., if the action of I
on (K, M) is faithful. We also note that, in view of the above, on p. 21 of
[22] the group M in line 18 from below should perhaps be replaced by E(f).

Remark 3. In very special cases the differential d, can be described as
the cup product with certain characteristic classes [1-3]. We tried to obtain
such a description in our situation but could not manage to do so.
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2.3. The Differential dy: H'(Q, H'(N, 4)) » H*(Q, H'(N, 4))

Let ¢, denote the split extension

602424 IN->N-> 1

Since [e,] € H*(N, A)?, the construction in Section 2.2 above associates the
extension

&,:0- H'(N,4)- Outgle,) > Q— 1 2.7

with e,. The obvious action of G on A ] N induces a canonical section s,:
G — Autg(e,) which, in turn, induces a canonical section y,: @ - Outg(e,).
Hence we my identify Autg(e,) and Outg(e,) with Der(N,4)1G and
H'(N,A) ] Q, respectively, in a canonical way. Further, the crossed 2-fold
extension (2.6) now reads

0 A¥ A4 I N2 Autg(e,) > Outyle,) - 1. (2.8)

Consider a derivation J:Q— H'(N,A) representing a class [d] €
HY(Q, H'(N, 4)). Setting w4(q) =3(q) wo(q), ¢ € Q, we obtain a further
section y,: Q- Outgle,) in (2.7). Here we identify H'(N,A4) with its
isomorphic image in Outg(e,). Pulling back (2.8) along w; yields the crossed
2-fold extension

504" 4 IN-H B Q- 1. (2.9)
Here B? is the fibre product

B®=Autge,) X @

Outgley)

it will be convenient to take as B’ the pre-image in Autg(e,) of w,(Q) <
Out(e,). Further, the mapd: 4 [N~ B? is induced by 8, and B?® acts on
A ] N in the obvious way. As pointed out in the Introduction, & represents a
class [8] € H*(Q, A"). It is straightforward to check that this class depends
only on [6] € H'(Q, H'(N, A)).

THEOREM 2. The rule 81— & describes the differential
d,: Ey' - EYC

A proof will be given in Section 5 below. Again we shall show that our
description is natural in a very strong sense; see Proposition 5.4 and 5.5.
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2.4. The Transgression t: ES'* — E3° and the Differential d,: ES* - E3°

Let e be a group extension (2.1) whose class is a transgressive element of
H*(N, A)%; by Corollary 1, the extension & associated with e in Section 2.2
splits. Let y: Q — Out(e) be a section. Pulling back (2.6) along v yields the
crossed 2-fold extension

€:0-4">E-5B* 501 (2.10)
Here B* is the fibre product
BY=Autze) X 0

Out(e)

the map &: E — B* is induced by f, and B* acts on E in the obvious way. As
we have already explained, é, represents a class [€,] € H*(Q, A"); this class
depends on [e| and y.

THEOREM 3. (a) The pairs ([e), [é,]), where & splits and where v is a
section of €, constitute an additive relation. This additive relation is the
transgression 1: ES* — E3°.

(b) Combining this relation with the projection E3°— E3° yields a
homomorphism ES* — E3'° which is the corresponding differential d,.

This will be proved in Section 6 below. Again the descriptions are natural,
in a suitable sense. This is, however, best understood in terms of crossed
pairs; see Section 2 of [13].

Remark 4. 1In the special case that N acts trivially on 4, a similar result
as Theorem 3(a) was obtained by Ratcliffe [18].

3. ON DIFFERENTIALS IN THE LHS SPECTRAL SEQUENCE

Let (B«( ),0) denote the Bar resolution. The LHS spectral sequence
(E?9,d,), associated with the group extension (1.1) and the G-module 4, is
obtained by suitably filtering the bicomplex

K?% = Homg(B,(Q), Homy(B,(G), 4))
with differentials
@BYNB") = (—1)P e+ f(@b)b"), b EB,,,, b"E€B,
@BV = () fENOb"), b EB,, b E€B,.,

(see [16, p. 351], where this spectral sequence is called the Lyndon spectral
sequence). For later use, we denote the cokernel of 0: B,,,—» B, by C, and
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the kernel of 9: B,—» B,_, by J,; the corresponding canonical maps will be
denoted by pr: B,—» C, and k:J,- B, (we set B_, = 7).

We shall utilize a variant of the description of £5'? and d, introduced on
pp. 341, 342 of Mac Lane’s book |16] in case of homology:

Define L9 < K% and M5? < L5 by
L5 = {a"% §"a” =0 and §'a”? = —6"a?* "¢~ ' for some a”* "7},
M5 = {6671 4 "B 6"hP T = 0.
Then E29=L59/M%9, and the differential
d,: E?9— EPT2a—]
is induced by the additive relation

{(ap-q’ 5Iap+l,q—1) er,q@Kp+Z,q—l;
8a™ +6"a"* 1 =0,8"a" =0}  (3.1)

Now a”%: B,(Q) » Homy(B,(G), 4) is Q-linear, and the condition 6”a”*? =0
means that the image of a?? is contained in
Hom,(J,_,(G),A) (c Homy(B,(G),A) via pr:B,(G)- C(G)=J,_,(G)).
Hence a”? € L5? if and only if there is a commutative square

Bp+l(Q) — Bp(Q)
(=t igpeta l l (3.2)

Hom,(B,_,(G),4) — Homy(J, ,(G), 4).

The cokernel of the second row of (3.2) is (naturally isomorphic to) the
cohomology group H%N, 4). Hence any a”? € L5'% induces a Q-linear map

a=a”"C,Q)> H'N,A).
Conversely, any such a gives rise to a commutative diagram

00— Jp1(Q) — Bp+l(Q)
0 — Homy(C, _,(G), 4) = Hom(B, _,(G), 4)

bpr

—- B,(Q) — G(@) —0

l f‘ (3.3)

—~ Homy(J, _ (G), A) —— HYN,4)— 0
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with exact rows such that the combined map B,(Q) - Homy(J, _,(G),4)—
Hom,(B,(G),A) is a member of L)% We shall refer to (3.3) as a lifting of
a; it is uniquely determined by a up to chain homotopy. Hence the class [0}
in the cokernel of

Homg(B,, (Q), Hom,(C,_,(G).4))
- Homy(J,, (@), Hom(C,_(G), 4)),

which is the cohomology group H”**(Q, Hom,(C,_,(G), 4)), depends only
on a. Furthermore, 0] depends only on the cohomology class

la] € H(Q, H'(N, 4))
that is represented by @, and the rule [a¢]— [o] describes a homomorphism
H"(Q, H'(N, 4))» H"**(Q, Homy(C,_ (G), 4))-
We denote this homomorphism by y.
Remark 3.1. The map y coincides with the map
Extf(Z, HY(N, A)) - Ext5**(Z, Homy(C, _,(G), 4))

given by Yoneda splicing with the second row of (3.3) ( we shall, however,
not use this fact).

If r denotes the natural projection
HomN(Cq— I(G)’ A) - H" I(Na A )a
we have the following.

ProrosiTiON 3.1.  The differential
dy: H(Q, H'(N, 4)) » H”**(Q, H*"'(N, 4))
is given by (—1)7 ry y (where
ry: H?*3(Q, Homy(C,_,(G), 4)) » H”**(Q, H*"'(N, 4))

is the induced map). In other words: If the Q-linear map a: C,(Q)~ HY(N, A)
represents |a| € H?(Q, HY(N, A)), construct a lifting (3.3); then(—1)? times
the composite map ro represents d,|a] € H?**(Q, H"'(N, 4)).

Proof. A pair (a”9% 6a”* %" ") belongs to the additive relation (3.1) if
and only if it fits into a diagram (3.2). The assertion follows since
d'a?* 171 B, (@) Homy(B, ,(G),A) (or the induced map J,, ,(Q)—
Hom,(C, (G), A)) represents the d,-image of the class represented by a”*?.

Q.E.D.
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Remark 3.2. The preceding proposition recovers the following cocycle
description of d,: Let the p-cochain f:Q”— Homy(B,G),A) represent
[f] € H?(Q, H'(N, A)); this means that /' maps Qf to Homy(J,_,(G),4)
(c Homy(B,(G),A4) via pr: B,(G)—J,_,(G)) in such a way that rf: Q" —
H(N,A) is a p-cocycle. It follows that for each [0, |-+ |g,,,] € Q"' there
exists A -top.1 € Homy(B,_(G), 4) such that

{aql- -
p

h[a.|---|a,,+,]3=01(f[02‘ |Up+1])+ Z (”l)if["l |-+ 10641 ] |Up+1]

i=1

+ (=) oy |- 1oy,

where 0: B,(G)— B,_,(G) is the corresponding map. Define g:Q”**—
Homy(B,_,(G), 4) by

p+1t
gloll"' |op+2] =01h[uz|--~|ap+zl+ Z (_l)lhloll"'|Ui‘7i+l|"'l¢7p+21
i=1

+ (_1)p+2h[01|' cclopial”

Then (—1)? g represents d,[f]. We note that a similar description of d,:
H*(Q, HY(N, A)) > HQ, H*~ (N, A)) can be found on p. 21 of [22] (it is
clear that (5) must read “g(0,7) =ch, — h_ . + h.”).

There is an even more direct description of
d,: H?(Q, H*(N, 4)) - H?**(Q, H'(N, A)).
Let
I1-N° > F-G- 1 (3.4)

be the free standard presentation; here F is free on a set {x,; g € G*}, where
G* =G — {1}. Let N2 c F denote the pre-image of N c G.

LEmMA 3.1. The cokernel of &*: Hom,(ZG,A)— Homy(B,(G),A) is
(naturally isomorphic to) the group H'(N?, A), and passing to cokernels in
the second row of (3.3) yields, in case g = 2, an exact sequence of N-modules

0— H'(N,4) "5 5'(N2, 4) 5 Homy(J,(G), 4) — H*(N, A) — 0.(3.5)

Here 4 is the obvious map that sends the class of ¢: B,(G)— 4 to its
restriction ¢|J,(G).
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Proof. The projection F—G induces natural isomorphisms Homy(ZG, 4)
— Hom,(ZF, A) and Homy(B,(G), A) - Homy(IF, A) (here “II"”’ denotes
the augmentation ideal of a group I'). Q.E.D.

Remark 3.3. The commutator factor group (N®)"* is (naturally
isomorphic to) J,(G), and the exact sequence (3.5) is the exact sequence
(10.6) in [16, p. 354] associated with the group extension 1-N®- N?-
N — 1 and the N-module 4.

The following is immediate from the above:

ADDENDUM TO ProPOSITION 3.1. If the Q-linear map a: C,(Q)—
HX(N, A) represents [a] € H?(Q, H*(N, A)), construct a lifting

0— Jp+1(Q) - Bp+1(Q) - BpiQ) E— CpiQ) —0
0 —s H'(N, 4) -5 H'(N?, 4) —2— Hom,(J,(G), 4) —— H*(N,4) — 0.
(3.6)
Then o represents d,|a] € H?**(Q, H'(N, A4)).
Remark 3.4. Proposition 3.1 may be paraphrased by saying that d2* is

the map Ext5(Z, H*(N, A)) - Ext§**(Z, H'(N, A)) given by Yoneda splicing
with (3.5).

We shall also need a description of the differentials
dy: EP9— ER* a2
We shall proceed as follows (cf. [16, p. 342, Ex. 2]): Define

L5 = {a”7€ K" Cc(a??)}.

Here Cc(a”?) shall mean: a”? maps B,(Q) into Homy(J,_,(G),4)
(c Homy(B,(G), A) as above), and there is a commutative diagram

B,,(@ >  B,,(Q@ B,(Q)
lap+2.q—2 1(_ 1)P+igp+la-1 lam (3.7

Homy(B,_,(G), A) —Z— Homy(B,_,(G), 4)——>Homy(J,_,(G), 4),
where g?+19-1 g KpH1a-1 gP+2a-2 ¢ gp+2.4-2 We also define

ME = {56719+ §"b79 1, Ch(b”~ %)),



308 JOHANNES HUEBSCHMANN

Here Ch(b”~'%) shall mean: There is a commutative diagram:

Bp—l(Q) I Bp—Z(Q)

lbwl,q lbp 2,9 +1

Homy(B (G), A) —— Hom,(/,(G), 4),

where p? =291 e KP~29+1 Now EP9=L29/M?*“, and the differential d,:
E?9 E?*392 is induced by the additive relation

{(a?9,d'aP* 21" € KP9 @ KP 3172 Ce(a? )}, (3-8)

as a closer examination of the arguments in the proof of Proposition 6.1 on
p. 341 of [16] shows. Hence

PROPOSITION 3.2. The differential dy: EZ** - E2**7"? may be described
as follows: Represent a class in ES? by a Q-linear map a: C,(Q) - HY(N, A),
and lift a to

B, Q) — B, (@)
Homy(B,_,(G), 4) —%— Hom,(B,_,(G), 4)
J‘al"q ln (3'9)
— Homy(J, _(G), 4) —— HYN, 4) — 0.

Then a”**7? induces a map o:J, ,(Q)— Hom,(C,_,(G),4), and
(—1)**9*! times the composite map ro:J,, ,(Q)— H* (N, A) represents the
dy-image of [a].

ADDENDUM. The transgression t: Ey* — E3° may be described as
follows: Let a: 7 — H*(N, A) represent a transgressive class; this is the case
if and only if a admits a lifting (3.9). Let 0:J,(Q)~ Hom,(Z,A) be the
induced map as above. Then ([a], —|g]) is a member of the transgression t,
and any member of © may be obtained in this way.

4, THE PrRoOF OF THEOREM 1

Let
e:0-A4A-E->N-1
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be a group extension (2.1) that represents a member of H(N, A)?. Let

c:0->4-C-IG-0

rpresent the corresponding class [c] € Ext,(IG,4) = H*(N,4) (cf.
Proposition 4.1 below). The extension ¢ determines a group extension

6:0-H'(N,A)»E—~Q~1

that represents d, [e] € H(Q, H'(N, A)) (Corollary 4.1 below). Theorem 1 is
then proved by showing that é is equivalent to the extension & (2.5); see
Proposition 4.4 below.

4.1. Ext,(IG,A) and Opext(N, A4)

The purpose of this subsection is to develop a conceptual description of
the standard map Opext(N, 4) - Ext,(IG, 4) that identifies the two models
Opext(N, A) (operator extensions of 4 by N) and Ext,(IG,4) (N-module
extension of A4 by IG) of the abstract group H*(N, A).

Let

1N S FoG-1 4.1)

be the free standard presentation such that F is free on a set {x,; g € G*},
where G* = G — {1}. Let N2 c F denote the pre-image of N — G. We identify
the commutator factor group (N°)'*=NS/[N®,N®] with J,(G)=
ker(B,(G) - B,(G)) by the standard rule n pr(n — 1), n € N where pr:
IF—> B|(G) denotes the projection (x,— 1)—[g] (we could also take
nt—pr(l —n)). Let M=N?/[N° N®. Now, if e represents [e]€E
Opext(N, A), we may lift the identity map of N to

0—J(G)—mM—>N—1

Lok 7

ee0— A —E-—>N—1,

such that u is N-linear. In order to map [e] to an element of Ext,(IG, 4), let
C, denote the pushout of

J1(G)— B,(G)

1“

A

481/72/23
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in the category of N-modules. It yields a commutative diagram of N-modules

0—J(G)—B,(G)—IG—0

SN

ci0— 4 — C, —IG-—0.

PROPOSITION 4.1. The rule e c, induces the standard isomorphism
Opext(N, A) — Ext,(IG,A); this isomorphism is canonical up to a sign
depending on how (N°)*® and J,(G) are identified.

Proof. Straightforward and left to the reader.

We shall always identify (N°)*® and J,(G) by nto pr(n—1), n € N°.
Then the isomorphism in Proposition 4.1 is canonical.
4.2. A Semidirect Fibre Product

Let K be a group and B a K-module. We shall need a conceptual
description of the standard map

Ext,(IK, B) - Opext(K, B)

that identifies the two models Ext,(IK, B) (K-module extensions of B by IK)
and Opext(K, B) (operator extensions of B by K) of the abstract group
H*(K, B):

Let C and D be K-modules, let A: C - D be a map of K-modules, and let
d: K - D be a derivation. We call the subgroup of the semidirect product
C 1K consisting of the elements (x,k)€ C 1K such that A(x)=d(k) a
semidirect fibre product and denote it by

ClK

D
Next, let
0-B-LC5 D0

be an extension of K-modules. The above construction provides us with the
uniquely determined group extension

0-B-LCl1K- LK1,

D

here j(b) = (i(b), 1) and g(x, k) = k, where bE B, (x,k)EC |, K.
We may, in particular, apply this construction to an extension

c:0-B->C->IK-0
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in connection with the standard derivation d: K- IK, d(k)=k— 1, k€ K.
This yields the group extension (cf. Section 3 of [4])

e:0-B->C | K-K-1
K

PROPOSITION 4.2. The rule c\— e, describes the standard isomorphism
Ext,(IK, B) - Opext(K, B); this isomorphism is canonical up to sign.

The proof is easy and is left to the reader. We note, however, that we
could construct C {,, K with respect to the derivation d(k) = 1 — k also. This
explains the ambiguity of sign.

Remark. The inverse to the map Opext(N,A4)— Ext,(IG,4) in
Proposition 4.1 is given by sending

0-4-C-1IG-0
to
0-A-C ] NoN-1,

IG
where d(n) =n — 1 € IG, n € N (cf. Section 4.1).

4.3. The Proof of Theorem 1

Let the group extension e represent [e] € HX(N, 4)%. Lift the identity map
of N to a diagram (4.2) and construct a diagram (4.3). This yields an
extension ¢ = c, of N-modules that represents the corresponding class [c] €
Ext,(IG, A)? (Proposition 4.1). Let a: Z > Ext,(IG,4) send 1 to [c]. It is
clear that the projection r: Hom,(J,(G), 4) - Exty(IG, A) maps u (occurring
in (4.2) and (4.3)) to a(1).

By the Addendum to Proposition 3.1 we have to consider the lifting
problem

0— JI(IQ) - BI(Q) —_ ZIQ - VA —0
ia ial iao Ja

0— H'(N, 4) 225 H'(N?, 4) —— Hom,(J,(G), A)—— Exty(IG,4)—> 0,
(4.4)

where % is the map used in Lemma 3.1. A lifting a,: ZQ - Hom(J,(G), 4)
is a given by ay(1) = 4. Now, for g € G, a(p(g)) =lul; ", where p: G- Q
is the projection in (1.1); note that for n € N we have l,ul; ' =u since u is
N-linear. There is no need to construct a,; we shall instead construct directly
a group extension representing d,[a].
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Let T = ker(r: Homy(J,(G), A) - Exty(IG, A)). Clearly, a, induces a Q-
map IQ - T, and we may take the fibre product H'(N?, 4) X; IQ (note that,
by exactness, # maps H'(N?, 4) onto T).

PROPOSITION 4.3. The fibre product H'(N% A) X IQ fits into an
extension

0- H'(N,A)-» H'(NLA) X 1Q-1Q-0 (4.5)

of Q-modules that represents

d,|a] € Ext(IQ, H'(N, 4)) = H¥(Q, H'(N, 4)).

Progf. We may complete the construction of (4.4) by setting a,[g] = [¢].
where ([¢], g~1) € H'(N?,4) X, IQ, ¢: B (G)— A denoting an N-map that
represents [p] € H'(N2, A) (see proof of Lemma 3.1). The assertion is now a
consequence of the Addendum to Proposition 3.1. Q.E.D.

CoROLLARY 4.1. The group extension
é&:0-H'(N,A)-» H'(N%,4) 1 0-0~1 (4.6)
T

represents  d,|a] € Opext(Q, H'(N, A)) = HYQ, H'(N, A)).  Here
H'(N?, A) |, Q is the semidirect fibre product with respect to the derivation
d: Q- T, d(q)=ayq—1) (=lul; ' —u, where p(g)=gq,8 € G, q € Q), and
the map h: H'(N?, A) — T, introduced in Section 3.

Proof. Apply Proposition 4.2 to extension (4.5) and observe that
(H'(V, A)X; 1Q) 1,0 Q= H'(N®, 4) 17 Q- QE.D.

In the group extension (4.6) the group H'(N,A) is the cokernel of k*:
Hom,(ZG, A)—» Hom,(IG,A) and H'(N% A4) is the cokernel of &*:
Hom,(ZG, A) - Hom(B (G), A) (cf. Lemma 3.1). It is known that the map

v: Homy(IG, A) = Der(N, 4), v(@))(n)=9(n—1),
¢ € Hom,(IG, 4), nEN,
induces an isomorphism
v coker(k*) — coker(4 — Der(N, 4));
similarly, the map

p: Hom,(B,(G), A) - Der(N?%, A),
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given by (p(w))(n) = (wpr)(n — 1), w € Hom,(B (G), 4), n € N°, where pr:
IF - B \(G) is the projection x, — 1 — [ g], induces an isomorphism

p,: coker(9*) - coker(4 — Der(N%, 4)).

Corresponding to A: coker(0*) - T,
h': coker(4 — Der(N%, 4))-» T
= ker(r: Homy(J,(G), 4) » H*(N, 4))

is defined by h’|d]| = ¢:J,(G) - A such that gpr(n — 1) =d(n), where pr is
as above.

LEMMA 4.1. The diagram

coker(k*) = H'(N, 4) —"s H'(N?, A) = coker(5*)

lv# lp#

coker(4 — Der(N, A)) —— coker(4 - Der(N%, 4))

is commutative, where the second row is induced by the projection.
Furthermore, h=h'p,,.

Proof. The first statement is clear. In order to verify the second, let x =
pr(n — 1) € J,(G), n € N®. For v € Hom,(B(G), A) we have

(R'pJw])(pr(n— 1)) = (ow)(n) = w(pr(n — 1)).

Hence #'p |y ] = v|J,(G) = h|w], as h was introduced in Lemma 3.1.
Q.E.D.

In view of Lemma 4.1, we shall now take coker(4d —» Der(N,4)) as
H'(N, 4) and coker(4 - Der(N?, 4)) as H'(N% A), and we shall no longer
distinguish between h and h'. It will be convenient to describe
h: H'(N2,4) > T by the rule

(h[d)) pr = d|N°, d € Der(N?, 4), 4.7)

where pr: N¢ - (N9)*° is the projection; here (N)** is identified with J,(G)
as in Section 4.1, above.
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PROPOSITION 4.4. There is a morphism of extensions

0— Der(N,4)—  Autgle) —G—1

T e

é:0— H'N,A) — H'(H%,4) ] Q— Q—1

such that the combined map E — ® Aut (e) » H'(N?, 4) 1, Q is zero.

Clearly, this establishes Theorem 1, since (4.8) induces an equivalence of
extensions (2.5)— é.

Proof of Proposition 4.4, From (4.2) we may construct

1— N NN ]

N

e0— 4 — E-SHSN-—1,

where x = upr and 8 = vpr; here “pr” denotes the corresponding projections.
Let a € Autg(e), and let g =g, € G be the image in G. Define d: N? - 4
by

d,(n) = a(f(x; 'nx,)) 6(n~"), neEN?, x,EF;

this yields a derivation from N¢ into A, where N2 acts upon A via the
projection N¢ - N,

LEMMA 4.2. The rule a+— d_, induces a derivation Autg(e) » H'(N?,A),
where Autg(e) acts on H'(N?, A) via the obvious projection Autg(e)— Q.

Proof. Let a, f € Autgle), and let x=x, EF, y=x, EF, where g,
g3 € G are the corresponding images. Using addmve notatlon in H'(N%, 4),
we have to show that

[das) = [d,] + %(d;] € H'(N®, 4),

where g, € @ is the image of a. Now
d,s(n) = (@fO(y~'x " 'nxy)) 6(n~"), n€ N9,
= (afO(y~'x " 'nxy))(@f(x~'n~'x)) + (a6(x'nx)) 6(n~")
= fo(dy(x " 'nx)) + dy(n),

whence the assertion. Q.E.D.
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We can now complete the proof of Proposition 4.4: The rule a
(ld,],q.) describes a homomorphism Autg(e)— H'(N%,4)1Q, where
g, € Q denotes the image in Q. Moreover, for n € N we have

d,(n) = ax(x; 'nx,) — x(n), g=¢,€G,

= (ngl'x_gl —x)(n),

do|N® = (lulg " —u) pr,
where pr: N¢ - (N9)*? is the projection. By rule (4.7) it follows that
hld,]) = lLuly ' —u=d(pg) = d(q,),

whence (|d, ], g,) € H'(N?, 4) ], Q. Thus we have a map
Autz(e) > H' (N4, A) 1 Q.
T

For an element a = q, € Autg(e) such that a(x)=d(nx) - x, x € E, where
d: N— 4 is a derivation (cf. Section 2.1), we have, for n € N?,

do(n) = (@B(n)) O(n~")
= (dpr)(n),

where pr: N9 N is the projection; note in particular that g, =1 € G. It
follows that Autg(e) —» H'(N?, 4) 1, Q induces a diagram (4.8). To see that
the combined map E —* Autg(e)> H'(N%,4) 1, Q is zero, let a=pB(y),
y € E. Now, for n € N?, we have

d,(n)=yB(x 'nx)y '0(n""), X=x,, g=g,EN,
=y8(x"") 0(n)(»6(x~ "))~  O(n™")
=a—"a, where a=yf(x"")EA.

Hence d, is an inner derivation, and we are done. Q.E.D.

Remark. The reader might perhaps believe that in our proof of Theorem
1 there is an argument missing which should establish the independence of
the choices of the maps 4 and v in (4.2). There is, however, no need to give
such an argument: Diagram (4.8) reverses the choices of # and v in the sense
that (4.2) and (4.8) together show that the whole proof is independent of u
and v.



316 JOHANNES HUEBSCHMANN

4.4. Naturalness of the Description

Our description of d,: EY'*—» E>'! is natural in a strong sense; what this
means will be expressed below in Propositions 4.5 and 4.6 for the module
variable and the group extension variable, respectively.

Let 7: 4 - A’ be a homomorphism of G-modules. If e is a group extension
(2.1) let

e:0-4"2E 5N 1

be the induced extension, representing 7. [e] € H*(N, A'); cf., e.g., Section 2.2
of [13]. If [e] € HX(N, A)? then [re] € H*(N,4’)°.

ProposITION 4.5. For any extension e of A by N that represents a
member of H*(N, A), the G-map t induces, in a canonical way, a morphism

(t4r @, 1): € (z€)
of extensions.

Progf. The map w,: Outg(e) » Outg(ze) given in Proposition 2.1 of [13]
yields the desired morphism of extensions.

Next, let there be given two group extensions, (1.1) and (1.1), and let
@:G - G be a homomorphism that maps N’ into N. Then @ induces a
morphism of extensions and, by abuse of notation, we simply write @:
(1.1) - (1.1).

Now, if e is a group extension (2.1), let

ed: 004 E®°> N > 1

be the induced extension representing @*[e] € HX(N', A); cf., e.g., Section
2.2 of [13]. If e represents a member of H*(N,A)? writing Outg.(e) =
Outg(e)X, @', let

éD:0-> H'(N,A)- Outg.(e)> Q' — 1

be the induced extension, representing @*([&] € H(Q', H'(N, A)) (here and
below the notation “-*” is abused); notice that e® represents a member of
H*(N',4)?  in this case.

PROPOSITION 4.6. For any extension e of A by N that represents a
member of H*(N,A)°, the morphism @ induces, in a canonical way,
morphisms

(1, 0% @)@ > é
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and .
(D%, w?, 1): €D - (eD)

of extensions.
Proof. The maps &®: Out,.(e) - Outi(e) and w®: Outg.(e) > Out; (e®)

in Propositions 2.3 and 2.4 of [13], respectively, yield the desired morphisms
of extensions.

Notice that Propositions 4.5 and 4.6 imply the (well known) fact that the
differential d,: EY'* > E2'! is natural in both variables.

5. THE PROOF OF THEOREM 2

Let 5: Q— H'(N, A) be a derivation. Let @ = a; be the corresponding Q-
map IQ - H'(N,4) (a(g — 1) =4(q), g € Q). In view of Proposition 3.1, the
image d,(|a]) € H*(Q,A") is obtained as follows: Let (Bx(Q),d) be the
(normalised) Bar resolution in inhomogeneous form [16, p. 114]. Construct
a lifting of a:

0— Jz(lQ) — BzIQ) — B(@ — 10 —0
0 — Hom,(Z,A) — Hom,(ZG, A) - Hom,(IG,4)— H'(N,4) — 0.

(5.1)

Then —o represents the image d,|a] € H*(Q, 4").

In order to prove Theorem 2, let (C, F, 9) be the free crossed module on
the standard presentation (X;R) of Q [10, Sect. 4]; here X = {u,; q € 0*}
and R = {(r,s) = u,u,u,;';r,s € Q*}. Now choose a lifting A: F— G of the
obvious projection m: F— Q such that m=pld, where p:G—- Q is the
projection in (1.1). Further, let

exp):02J-CoF-50-1

be the corresponding crossed 2-fold extension [10, Sects. 3, 4]. It is known
[10, Sects. 2, 4, 9] that J is a Q-module (the action is induced by the F-
action on C) generated by the elements

u(r, s, t) = (s, )(r, st)(rs, )~ (r,s) "' € C,
and that the rule

u(ry s, t) = (rlsle] + [r[st] — [rs|t] — [r]s]) € J(Q)
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describes an isomorphism J— J,(Q). In view of the main Theorem in [10,
Sect. 7], Theorem 2 is implied by the following.

PROPOSITION 5.1.  The above map A: F — G and diagram (5.1) determine
a lifting
exy)0—mJ — C — F—0—1

bk =

6:0— A" —S4IN—B*—>Q0—1
of the identity map of Q in a canonical way.

5.1. The Group B®

We wish to describe the group B’ (introduced in Section 2.3) as the
semidirect fibre product Der(N, 4) {1y, G (see Section 4.1) with respect to
the derivation dp: G- H'(N,A) and the natural projection Der(N,Ad)—
H'(N, A); here G acts on H'(N, A) via the projection p: G— @ in (1.1). The
requisite action of G on Der(N, 4) is gven by the rule d+— [, di; '; here
d € Der(N,4), g € G, and i,: N— N denotes conjugation n+— gng~'. Note
that this action coincides with that induced from extension (2.3).

LEMMA 5.1. The projection Der(N,4)— H'(N,A) is a G-map.

Proof. Consider the commutative triangle
Hom,(IG, A)
lﬂ \HI(N,A),
Der(N, A)

where (p(h))(n)=h(n — 1), h € Hom,(IG,A), n€EN. Let g€ G and n € N.
For any A € Hom,/(IG, A), the computation

h(g ' (n—1)— (g 'ng—1))="h(g 'ng(g™' = 1)— (g7 ' = 1))
=5 p(g=t — 1) —th(g 7 — 1)
= "D(R(g T 1)
shows that for g € G fixed the two derivations N - 4, given by
ni— (g~ (n— 1)) (= p(hl; Ym),  REN,

and
n—th(g 'ng—1), neN,
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differ by an inner derivation only and thus determine the same class in
H'(N,A). The statement of the lemma follows, since the Q-action on
H'(N, A) is induced by the rule

(h: 1G> A) — (Ihl; ' IG - A),
i.e., by the Q-action on Hom,(IG, A). Q.E.D.

It follows that the construction of the semidirect fibre product
Der(N, 4) 1;;1n.4) G makes sense. We can now identify this group with B®as
follows: As already explained in Section 2.3, the group Autg(e;) splits
canonically into Der(N, 4) ] G; in fact, a canonical section G — Autg(e,) is
induced by the (obvious) action of G on A4 ] N. The action of Der(N,4) 1 G
on A ] N is given explicitly by the rule

@8g,n)=(*a +d(gng'),gng""). (5.3)

Furthermore, the group Out,(e,) speits canonically into H'(V,4)1Q, and
we have a commutative diagram

Der(N,A) | G-——Der(N,4)1G

H\N,4)

;! l

0 —— H'(MNA)1Q;

here n4(d,g) =g, € Q (the image of g in Q), and the other maps are the
obvious ones.

PROPOSITION 5.2. If we identify Autg(e,) with Der(N,A)1 G as above,
then B® is the subgroup Der(N, A) 11wy G-

The projection B®—Q is now the map m,, the homomorphism
8:4 ] N— B® is given by &(a,n)=(—d’,n), a€ A, nE€N, and B’ acts on
A 1N by rule (5.3); here d': N— A is the inner derivation d,(n)="a —a,
ne€N.

5.2. The Construction of the Lifting (5.2)
For convenience, we shall replace & by the crossed 2-fold extension

05454 N Der(N,4) ] G-Q-1, (5.4)

HY(N,A)

where &'(a, n) = (d’, n), and where Der(N, 4) J;1v.4) G acts on 4 ] N by the
rule

@8 (g, n) = (*a — d(gng~"),gng™").
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LEMMA 5.2. The map p:AJN—-A IN, ¢(a,n)=(—a,n), induces a
morphism (=1, ¢, 1, 1): (5.4) = § of crossed 2-fold extensions.

Proof. Straightforward.

Instead of directly constructing (5.2), we shall construct a morphism
(0,81, B¢, 1): ex.z,— (5.4) of crossed 2-fold extensions.

We maintain the notation at the beginning of this section; further, if u, is a
free generator of F, g € Q*, we shall write 1, = A(u,).

Now define f,: F - B® = Der(N, 4) 1,1v.4) G by the rule

ﬂo(“q) = (duolq]’ ’Iq)’ q € Q*;

here d

wolq) denotes the derivation N — 4 given by

i (Uelg ) Xn — 1), nEN.

LEMMA 5.3. The map B, is well defined, i.e.,
[dygiar] = Op(4,) € H'(N, 4), g€ Q™.

Proof. Clearly dp(A,)=0d(g)=a(g— 1), where a=asIQ—H'(N,A).
The assertion follows, since u, lifts o in (5.1). Q.E.D.

Next we introduce a function
QX Q*>4 (Q*=Q—{1})
by

p(r 8) =, [r|s](1) + uo(r[s )R, — 1) — pors)(4,AA " = 1),
r,s € Q%

LEMMA 5.4. Let r,s € Q%; then
ﬁo(urusur_sl) = (d;(r.s)’ A’r'ls'l;;l)

(where, for a€ A, d. denotes the inner derivation N—A given by
di(n)="a — a).

Since C is the free crossed F-module with basis {(r,s);7,s € Q*} (cf.
Section 4 of [10]), we may define f,: C—>A4 I N by

B,(r, s) = (y(r, s) A, A, 45", r, s € O*.
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Proof of Lemma 5.4

IJging additive notation in DeriN 4\ the firct com
using additive notation in Leryy, 4 ), the nrst con

is the derivation

d(r,s) = duo[r] + Ar(duo[sl) - Ao(duo[rSJ): N A,

where 1, =A,A,4;". Now, for n € N, we have

du(,m(") = polr](n —1);
(rldigr)) (1) = (o [s] (A7 'nd, — 1))
= "(uo[s])(A,(A; 'nd, = 1))
=u,(r[s(n — 1) 4,)
=uo(r[sDn — 1) + uo(r[s)((n — 1)@, — 1))
= uo(rls](n — 1) + "~ Vlug(r[s])@, — 1));
(o rs))() = o rs](n — 1) + "~ Pluo[rs](A, A A7 = 1)),

Hence

A5 (n) = (o[r] + uo(rls]) — uolrs])(n — 1)
+ P ue(r[sD@, — 1) — pelrs](A, 445" = 1))
= (uo[r|s(n— 1) + "~ P(-)
=" [rls)(1) + (1)) = dyy ().

5.3.  The Completion of the Proof

The group J = ker(9: C - F) is (as a Q-module) generated by the elements
(cf. [10, Sect. 9])

u(r, s, 1y ="(s, t)(r, st)(rs, t)~ " (r,5)7, r, s, t € Q%

The proof of Theorem 2 is now completed by the following. ‘

PROPOSITION 5.3. The restriction of f, to J is the map o; in that
connection u(r, s, t) is to be identified with (r[s|t] + [r|st] — [rs|t] — |r|s]) €
J,(Q), as already indicated, and A" is to be identified with Hom,(Z, A) in
the standard way.

Proof (it is fuzzy but straightforward). The value

a(r[s|t] + [r|st] — [rs}e] — [r|s])
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is given by the N-map
E=py(r[sle] + [r|st] = [rse] — [rls]): 2G—» 4

which, by construction, is trivial on /G (and hence induces an N —
map Z —» A). Thus we have to verify that

Bi(u(r,s,1))=(E(1), 1) €A IN.

To this end, we calculate in 4 ] N the product of the following four terms (i),
(ii), (iii) and (iv) (in 4 we use additive notation):

(i) Bi(“(s, 1) = PU(y(s, 1), A A, Ay ")

(i) Bi(r,st) = (p(r, ), A, A A50)s
(i) B, ((rs, )"y = (=Piyp(rs, 1), A,), where A, = 4,4, 'A%
(iv)  B,((r, )™ Y = (—*¥(r, 5), 4,), where 1, = 4,4, '4, .

Now
B.(“(s, 1)) = DA (p(s, £), A A ALY, whered =d, ),
= (*y(s, 1) —o[rl(@ — 1),a),  wherea=41,A4,45'A7".

The second component of the product obviously gives 1 € N.
Hence in A we have to work out the sum

=)+ (ii") + (iii’") + (iv'),
where
(i) (s, 0 —uolrl@—1)
(i) “p(r, s1);
(iii') —"y(rs,t),  where
3 - ('1 A’ A ’1st 1)' )(A’r'lst’lrst )(Arsl)‘ l'lrs])’
= —by(rs, t), where b = 4,4,4..";

@iv') —y(r,s).

By routine calculations, we get

(@) wy(rlsle])@AL) + uo(rslED@As — 1) = wo(rlst])@A(c — 1))
— olr](@ — 1), where ¢ = 4,44,
(ii") plrist](@) +ue(r[st](a@, — 1)) — solrst](a(d — 1)),
where d = 4,443
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(iii")  —u[rs|e}(B) — uo(rs[t])(BA,s — 1)) + #olrst](ble — 1)),
where e = 4,,4,4,/

rst>

(iv") = ris](1) — uo(r[sDA, — 1) + pors](d — 1).

The sum of terms with uy(rs[t]) is

:uo(rs[t])(’lr('ls - 1) - b('lrs - l))
= po(rs[t(® — 4,)
= uo(rsfe])b — 1) — po(rs[t]@A, — 1).

Likewise, we compute the sum of terms with g (r{st]):

po(r[sta(d, — 1) = A(c — 1))
= to(r[st])#, — a)
= to(r{st])A, — 1) — uo(r[st])a — 1).

Finally, the sum of terms with gy|rst] is

Ho[rst](be—1) —a(d@— 1))
= po[rst](a —b)
= polrst](@a — 1) — uolrst](b — 1).

If we now sum up suitably, we obtain

Z=u(r(s|eD@A,) — @o(r(s]) + uo(rs[t]) — uo(r[st]))A, — 1)

+u[r)st)(@) = (uolr] + uo(r(st]) — uolrst])@ — 1)
— t[rs|e](b) + (uolrs] + uo(rs{e]) — uolrst]) (6 — 1)
—uy[ris](1)

=u(rs|eD@,) + (sl - 4,)
+uyr]st](@) + pyfr|st)(1 —a)
—uy[rs|e](d) — uy[rs|e](1 — b)
— iy [r|s](1)

= (uy(r[s]e]) + my[r|st] — py[rs|t] —u,[r|s])(1)

=¢&(1).

323

Q.E.D.
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5.4. Naturalness of the Description

Our description of d,: Ey'' - E3'° is again natural in a strong sense; what

this means will be expressed below in Propositions 5.4 and 5.5 for the
module variabie and the group extension variable, respectively.

Let 1:4-A4" be a homomorphism of G-modules and denote
T4 H'(N,A)> H'(N,A') the induced map. If 8:Q - H'(N,A) is a
derivation it is clear that the combined map 1,0: Q— H'(N,4') is a
derivation representing the image 7, [d] € H'(Q, H'(N, A’)) (where we abuse
the notation “-,”).

PROPOSITION 5.4. For any derivation &:Q— H'(N,A) the G-map t
induces, in a canonical way, a morphism

(Tl Aoy ves 1) 8 (9

of crossed 2-fold extensions.

Proof. Let A:AJN—->A"]IN be the obvious map. Further, by
Proposition 5.2, B® = Der(V, 4) {14y G and B™® =Der(N, 4') 1yun.a G
now let v, be the obvious map.

Remark. There is a different way of obtaining the above morphism
(z|, ., v,, 1) of crossed 2-fold extensions. In fact, if w_: Outg(e,) = Outg(ze,)
is the map in Proposition 4.5 then v, ;= w, y,. Hence, if u,:Autg(e,)—
Autg(te,) is the map given in Proposition 2.1 of [13] then u, induces the
desired map v_. It is also worth noting that the map

w,: H'(N, 4) ] Q = Out(e,) - Out,(re,) = H'(N,4') 1 Q

“__"

is the obvious one, where means the obvious isomorphisms explained in

Section 5.1.

Next, let there be given a morphism @: (1.1)Y - (1.1) of extensions
(notation as in Section 4.4). Denote ®*: H'(N,4) - H'(N', A) the induced
map (the notation “-*” will be abused at several places below). If
6: Q— H'(N, A) is a derivation, it is clear that the combined map

§ = P*5P: 0" - H'(N', A)
is a derivation representing ®*[8] € H'(Q', H'(N', 4)); let B® denote the

semidirect fibre product Der(N, 4) 1,1v..0 G' With respect to the derivation
G' -G - Q-® H'(N, A), and let B® act on 4 1N’ by the rule (5.3), where
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the notation is to be suitably modified. Together with the obvious map
d:A ] N’ - B? this yields the crossed 2-fold extension

85:05A4" AN LB 50 1
which clearly represents @*[5] € H*(Q', 4V).

PROPOSITION 5.5. For any derivation 8: Q — H'(N, A) the morphism @
induces, in a canonical way, morphisms

(1,-,-,9):86-4

and

(@*,1,-,1):6-4"
of crossed 2-fold extensions.

Proof. By Proposition 5.2, we may identify B® with Der(V, 4) 1 1v.5) G
and B®' with Der(N', A) 1:n'.4) G'- Hence @ induces morphisms of crossed
2-fold extensions as desired.

Remark. There is also a different way of obtaining the morphisms of
crossed 2-fold extensions in Proposition 5.5. In fact, let w®:
Outg (e} = Outg.(e,P) be the map in Proposition 4.6, and let wi: Q' —
Outg (e,) be the obvious map which is induced by w,. Then

w5 = w5 Q' - Outg (e, P),

whence B° may be identified with the fibre product Autg.(e,)Xout e @'
where Autg.(e;) = Autg(e;) X G'. Further, the maps 4°: Aut;.(e,) > Autg(e,)
and 4®: Autg.(e,) - Autg.(e, @) in Propositions 2.3 and 2.4 of [13], respec-
tively, induce the desired maps B® - B® and B® -» B®". It is also worth noting
that the map

w®: H'(N,4) 1 G’ = Outg.(e,) - Outg (e, @) = H'(N', A) | G’

is the obvious one, where “="" means the obvious isomorphisms; see Section
5.1 above.

Notice that Propositions 5.4 and 5.5 imply the (well known) fact that the
differential d,: E}'' —» E3*° is natural in both variables.
6. THE PROOF OF THEOREM 3

We shall show that the pairs given in Theorem 3 constitute the
corresponding transgression. All the rest is straightforward.

481/72/2-4
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Let e be a group extension (2.1) that represents a member of H2(N, 4)°.
We choose a lifting (4.2) of 1, and construct a diagram (4.3). We then
represent [e] by a:Z - Exty(IG, 4)? (a(1) = [c,], c, as in Section 4.1), and
construct a lifting «, in

zQ — z

lao k

Hom(J,(G), A) —— Ext(IG, 4)

by setting a,(1)=u (cf. Section 4.3). This induces a map n:IQ—~T
(=kerr). Let

&:0-> H'(N,4A)- Out(e)—» Q- 1

be the extension (2.5) associated with e in Section 2.2. By Proposition 4.4 we
may identify Outg(e) with H'(N%,4) 1, Q, where h: H'(N%, A) > T is the
obvious map given by rule (4.7) above and where the requisite derivation
d: Q- Tis given by d(g)=ay,(g— 1), g€ Q.

PROPOSITION 6.1. Let a, as above be fixed. The class [e] € H*(N,A)? is
transgressive if and only if there is a Q-map y:1Q - H'(N?, A) such that
n=hy. In this case, there is a canonical bijection between Q-maps y with
n = hy and sections y: Q - Out,(e) = H'(N?, 4) 1, Q.

Proof. By Corollary 1 in Section 2.2, |e] is transgressive if and only if
there is a section y:(Q— Outzle)=H' (W% 4) 1, Q. Any such section
determines a derivation : Q - H'(N?%, 4), hence a Q-map as desired, and
vice versa. Q.E.D.

Now let |e] € H*(N,A)? be transgressive, and let y: @ — Outg(e) be a
section. In view of the above,  determines a map y: IQ » H'(N?, 4) such
that # = hy. It follows that a lifts to

0— JziQ) — BzIQ) — BIEQ)
0— Hom(Z,A)— Hom\(ZG,A) — Hom,\(B,(G), 4)
— 70 — z —0
lﬂo k (6.1)
— Hom(/,(G), A) — Ext(IG,A)— 0.

By the Addendum to Proposition 3.2, the pair (@, —o) represents the element
(e, —|o]) of the transgression. Conversely, if (¢, —0) represents an element of
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the transgression, there is a diagram (6.1) (again by the Addendum to
Proposition 3.2). Hence

PROPOSITION 6.2. Any element of the transgression t: E3* — E3° may
be obtained as follows: Let [e] € H*(N,A)? be transgressive. Represent [e]
by a:Z - Exty(IG,A) and lift a to a, as above. Then using a,, identify
Out(e) and H'(N% A) | Q as above. Let y: Q- Outg(e) be a section. It
induces a derivation 8: Q - H'(N?, A), hence a Q-map yx:1Q - H'(N?, A)
such that n = hy as above. Finally, construct a lifting

0— @ — By(Q) —  BiO) — g —0

EoE e

0 — Hom,(Z, A) — Hom(ZG, A) — Homy(B,(G), 4) — H'(N%,4) — 0.
(6.2)
Then (|e], —|o]) is an element of the transgression.

In view of the main Theorem in [10, Sect. 7], the crucial step in the proof
of Theorem 3 is now provided by the following.

PROPOSITION 6.3. Let ez, be the crossed 2-fold extension, associated
in Section 5 to the standard presentation (X; R) of Q. Let [e] € H*(N, A)? be
transgressive. Represent |e] by a: Z - Exty(IG, A) and lift a to a, as above.
Let y: Q- Outg(e) be a section, and construct a diagram (6.1) (or (6.2)).
Then (6.1) gives rise to a morphism of crossed 2-fold extensions

0—J —bC—oDF-—-0—1

bk

€,,0— A" —E—B*—Q— L

€x;Rr)"

Proof. The exact sequence

0 - Hom,(Z, A) » Hom,(ZG, A) » Hom(B (G),A)» H'(N?,4) - 0

is naturally isomorphic to

0 — Hom,o(Z, A) - Homyo(ZF, A) - Homyo(IF, A)— H'(N%,4) - 0,
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where F is free on G*; F was denoted F in Section 4. Hence, from (6.2) we
obtain

0— Jz(lQ) — BzIQ) —  B(Q) — 10 —0
0 — Homye(Z, A) —Homyo(ZF, A)— Homo(IF, A)— H'(N?, 4) —0,
(6.4)

where y is obtained from a, and  as in Proposition 6.1. We can now apply
Proposition 5.1, where the role of the extension (1.1) is played by

1—*NQ—>F—+Q—» 1,
that of e, (the split extension of 4 by N) by
0-A4-5A4IN?>N%> |,

that of the map A by a suitable lifting A: F—» F of the obvious projection
F-Q, and that of 6 by 6=0,Q-H'(N%A4), d(@)=x(@—1), g€ Q.
Moreover, by Proposition 5.2 we may identify B® with the semidirect fibre
product Der(N2, A) J1ne.4, F; here the requisite derivation d: F - H'(N9, 4)
is the combined map &pr, where pr: F — Q denotes the projection. We obtain
a commutative diagram

exg):0—J — C —_— F —sQ—1

b SR

50 —A"— 41N? — Der(N%, 4) | F—Q— 1.
HY(NC,4) '

The proof is now completed by the following.

PROPOSITION 6.4. There is a morphism (1,6,,0,,1): 85— é, of crossed
2-fold extensions.

For the proof we need the following.

LEMMA 6.1. There is a natural action of the group Der(N%, 4) Lo 1) F
on the middle group E of the extension e, such that (t,u)€
Der(N?, 4) {y1ve. A,F_ induces left translation with g, on A and conjugation
with g, on N, where g, € G is the image of u € F.



SPECTRAL SEQUENCE DIFFERENTIALS 329

ADDENDUM. This action induces a commutative diagram

Der(N%,4) 1 F— Autgle)

HY(NC,A4)

l [ (6.6)
Q —2Outgle)=H'(N%A4)10;

here m, sends (t, u) to the image q, € Q of u € F.

Proof. Consider the commutative diagram (4.9)

N L NN 1

Forod

e0— A HE— N—1

already used in the proof of Proposition 4.4, where k = npr, and where pr:
N¢ - (N9 =J(G) (identified in Section 4.1) is the canonical projection,
such that ao(1) = € Homy(J,(G), 4) (where a,: ZQ —» Hom(J,(G), 4) lifts
a: Z - Ext,(IG, A) as above).

LEMMA 6.2. The rule (a,n)+ af(n), a€A, n€N°, describes a
projection n,: A | N% - E such that n, is the coequaliser of

Ne L34 NO.

Proof. By inspection.

The proof of Lemma 6.1 is now completed as follows: Let (r,u)€
Der(N?, 4) 1wo.ay F. Write g=g, € G and g =g, € Q for the images in G
and Q of u, respectively. Define maps a,: N9~ E, a,: A — E by setting

a,(n) = t(unu=") Ounu="), ne Ne,
a,(a)="2a, acA.

Since (7, u) € Der(N?, A) {ve.4) F> we have [t] =d(u) € H'(N?, 4), hence
h(t] = hd(u) = ay(q, — 1), i.e.,

t|N® = (Lul; ' —u) pr

=lxi;' —K;
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here h: H'(N?,A)— T is the map given by rule (4.7). Consequently, if
n € N° we have

a,(n)=rt(unu"") + k(unu ") (using additive notation in 4)
=¢k(n) — k(unu™") + k(unu™")
= a,(x(n)).
Thus we obtain a map 4 | N¢ - E given by
(a, n) — a,(a) a,(n), a€A, neN°,

which coequalises j and k. Hence (r,u) induces a unique map a: E— E.
Clearly, a induces left translation with g, on 4 and conjugation with g, on N
whence ¢ is an automorphism of E. Moreover, the rule “**'x = a(x), x € E,
describes an action of Der(N?, 4) {1 vo.4) F 0N E.

Proof of Addendum. 1If a is obtained as above, ie., ©*“x = a(x), x € E,
let (a,g,) be the corresponding member of Aut;(e), where g, =g,. It is
clear that we have a homomorphism Der(N?, 4) 1,1(v0.4) F = Autgle), and,
by abuse of language, we denote (a,g,) by a also. In Proposition 4.4 we
constructed a map Autg(e)— H'(N%, 4)1,Q given by ar— ([d,].9.)
a € Autg(e). Now, if a is the image of some (z, u) € Der(N% A) {nwe ) Fs
we have

d,(n) = a(f(x; 'nx,)) 8(n~"), nEN?, g=g,EQG,

= a,(x; 'nx,) O(n"")

= t(ux; 'nx,u™ ") Oux; 'nx,u”') B(n~ ),
where ux, ' € N°. Hence

d,(n)=rt(ux; ')+ 1(n) — *P(r(ux; ")) + " " (k(ux; ') € 4

since N¢ acts trivially on 4. We obtain

d,(n) =t(n) + "7 ((ux; ") + k(ux; "))
Consequently, |d,]| = [t] € H'(N? 4), and the Addendum is proved.

Proof of Proposition 6.4. Since B is the fibre product Autg(e) Xoutye) €
with respect to y:Q — Outg(e), diagram (6.6) induces a unique map
6,: Der(N2, 4) 1,1 vo.0y F = BY. Let 6, =m,:4 N2> E. Then (1,86,,6,,1)
is the desired morphism of crossed 2-fold extensions. Q.E.D.
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7. AN EXAMPLE

We offer an example where we determine, by our methods, the differentials
d)* and d)''; we believe that our example is the simplest possible for
producing a non-trivial d3'? and d}".

Consider the group extension

12Z22X2)2-57/4x2/2-12/21,

where i is the obvious inclusion (hence N=2/2X Z/2, G=7/4 X Z/2,
0=12/2). Let A=1)2.

() dy HNZ/2 X 2)2, 2)2)"* — H¥Z/2, H'Z/2 X ]2, Z/2)). Now
HYZ/2x17/2,7/2)"*=H¥Z/2 X Z/2,7/2)=(Z/2)’, and there are three
groups giving rise to non-trivial extensions of Z/2 by Z/2 X Z/2: the group
7/4 X 2/2 = {a,b;a*,b% [a, b]), the dihedral group D, = {a, b; a*, b (ab)*)
and the quaternion group Qu ={a,b;a’=>b>=(ab)’). We write
Z/2XZ/2=(u,v5u’,v% [u,v]) and fix a Z/2-basis {e,e,,e;} of
HXZ/2 X 12, 1)2):

e 057)2-7/4X2/2257/2x1/2-1,
ey 02Z/27/4X7/2-227/2Xx2/21,
e 07/2- Qu DI2x1/2-1;

here ¢,(@)=u, ¢,(b)=v, ¢,(a)=0, 9,(b)=u, ¢s(a)=u, ¢;(b)=0. By
abuse of notation, we do not distinguish between an extension and its class in
H*(Z/2 X Z/2,7/2). Now the extension e, + e, has a Z/4 X Z/2 as middle
group, and the extensions e, + e;, €, + €, and e, + ¢, + €; have the dihedral
group as middle group.

We claim: d,(e,) = 0 = d,(e,); d,(e;) # 0.

Every automorphism of E=7/4 X Z/2={a,b;a*,b* [a,b]) fixes a’.
Since (a®)=A4, Aut*(E) is the full automorphism group of E. But
Autg(N,A) is trivial, whence Auti(E)=Hom(N,A). Hence Autg(e,)=
Hom(N,4) X Z/4 X Z/2. Moreover, f: E - Autg(e,) sends a to a*’€ Z/4 <
Autg(e,) and b to b € Z/2 < Autg(e,). It follows that the extension

€;: 0- Hom(V,4)—- Outgzle) > Z/2> 1

splits. For symmetry reasons, &, also splits.
On the other hand, by the same argument as above, Autg(e;)=
Hom(N, 4) X Z/4 X Z/2, but Outg(e,) is now the cokernel of

B: QuoZ/2XZ/2XZ/4X1Z)2

={u,v,a, b;u?, v% a*, b’ [u, v] etc.),
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where Qu = (x,y;x* =y’ = (xp)?) and B(x)=va?, B(y)=ub (note that
Hom(N,4)=7Z/2 x Z/2 and recall how f# was defined in Section 2.2). Now
coker(f) = Z/4 X Z/2 and the extension

6 0 2/2XI)2~7/4X1)2~>7)2— 1

does not split.

(i) dy: H'(Z/2, H(Z/2 X 7/2,7/2))— H*(Z/2,7/2). As in Section 2.3,
let E = (Z/2)% let |e,,e,, e;} be the obvious Z/2-basis, and consider the split
extension

e;: 0 7/2(e;) = 2/2(e\) X Z/2(e;) X Z/2(e;) = 7/2(ey) X Z/2(e;) = 1.

Now H'(Z/2, H'(Z/2 X Z/2,7/2)) = Hom(Z/2, H(Z/2 X 72, Z/2)) and
we identify H'(Z/2 X Z/2,7/2) with Auti(E) as above. Writing Z/2 =
{x;x?), we choose a basis {n,8} for HXZ/2,H'(Z/2X Z/2,7/2))=
Z/2 X Z/2, by setting

"We,=¢, +e,, e,,e; fixedunder n(x),

e, =¢, +e,, e,,e, fixedunder O(x).

Now Autgle,) = (u,v,a,b;u’,v%,a*,b%, [u,v] etc.) = Z/2X2/2XZ/4X /2,
where “e, =e, +e,, "¢e;=e, + e, and all the rest remains fixed under the
corresponding elements of Aut,(e,). Maintaining the notation of Section 2.3,
the maps # and 6 determine crossed 2-fold extensions

§i 022/2-7/2X2/2XZ/]2->B"-7/2—-1
and

8: 057/2-57/2X7/2XZ/2-B°~>17/2-1;

the corresponding &'s are the obvious maps. Here B"=B°=17/4 X 7/2=
{a, by a*,b?, |a,b]|); B" acts on Z/2 X Z/2 X Z/2 by the rule

‘e=¢e te
and B® acts on Z/2 X Z/2 X Z/2 by
‘e;=e, +e;

with the convention that everything not written down remains fixed. Clearly,
7 is equivalent to

i 0 2/252)2X2)2~2/4—7)2- 1,
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where Z/2 X 7/2 has basis {e,,e,} and where the generator of Z/4 maps e,
to e, +e,. It follows from the Theorem in [10, Sect. 10] that [4]#
0 € H*(Z/2, Z/2), since there is no group H of order eight which maps onto
Z/4 and contains Z/2 X Z/2 as a normal subgroup in such a way that
conjugation in H induces the Z/4-action on Z/2 X Z/2. On the other hand, if
we associate with § a crossed 2-fold extension 4 in a similar way, it is easy
to see that [§] =0€ H*(Z/2,7)2).

It follows that d,[n| is the generator of H*(Z/2,Z/2)=Z/2, whence
E3°=0, and that 6 generates E;"' = 7/2.
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