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Abstract

Let Φ be a root system and let Φ(Zp) be the standard Chevalley Zp-Lie algebra associated to Φ. For
any integer t � 1, let G be the uniform pro-p group corresponding to the powerful Lie algebra ptΦ(Zp)

and suppose that p � 5. Then the Iwasawa algebra ΩG has no non-trivial two-sided reflexive ideals. This
was previously proved by the authors for the root system A1.
© 2008 Elsevier Inc. All rights reserved.
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0. Introduction

0.1. Prime ideals in Iwasawa algebras

One of the main projects in the study of non-commutative Iwasawa algebras aims to under-
stand the structure of two-sided ideals in Iwasawa algebras ΛG and ΩG for compact p-adic
analytic groups G. A list of open questions in this project was posted in a survey paper by the
first author and Brown [AB]. Motivated by its connection to the Iwasawa theory of elliptic curves
in arithmetic geometry it is particularly interesting to understand the prime ideals of ΛG when G
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is an open subgroup of GL2(Zp). A reduction [A] shows that this amounts to understanding the
prime ideals of ΩG when G is an open subgroup of SL2(Zp). In a recent paper we introduced
some machinery which allowed us to determine every prime ideal of ΩG for any open torsionfree
subgroup G of SL2(Zp), see [AWZ, Theorem C]. In this paper the theory developed in [AWZ]
will be used to prove that under mild conditions on p, there are no non-zero reflexive ideals in
ΩG when G is a uniform pro-p group of Chevalley type. It follows from this that every two-sided
reflexive ideal of ΛG×Zp

is principal and centrally generated—see [A, Theorem 4.7].

0.2. Definitions

Throughout let p be a fixed prime number. Let Zp be the ring of p-adic integers and let Fp be
the field Z/(p). Let G be a compact p-adic analytic group. The Iwasawa algebra of G over Zp

(or the completed group algebra of G over Zp) is defined to be

ΛG := lim←− Zp[G/N],

where the inverse limit is taken over the open normal subgroups N of G [L, p. 443], [DDMS,
p. 155]. In this paper we use R[G] for the group ring of G over a ring R. For any field K

of characteristic p, the Iwasawa algebra of G over K (or the completed group algebra of G

over K) is defined to be

K�G� := lim←− K[G/N],

where the inverse limit is taken over the open normal subgroups N of G. If K = Fp , we write
ΩG for K�G�.

Let A be any algebra and I be a left ideal of A. We call I is reflexive if the canonical map

I → HomA

(
HomA(I,A),A

)
is an isomorphism. A reflexive right ideal is defined similarly. We will call a two-sided ideal I of
A reflexive if it is reflexive as a right and as a left ideal.

0.3. Main results

Let Φ be a root system, so that the Dynkin diagram of any indecomposable component of Φ

belongs to {
An(n � 1),Bn(n � 2),Cn(n � 3),Dn(n � 4),E6,E7,E8,F4,G2

}
.

Let Φ(Zp) denote the Zp-Lie algebra constructed by using a Chevalley basis associated to Φ .
For any integer t � 1 (or t � 2 if p = 2), the Zp-Lie algebra ptΦ(Zp) is powerful. By [DDMS,
Theorem 9.10] there is an isomorphism between the category of uniform pro-p groups and the
category of powerful Lie algebras. The uniform pro-p group corresponding to ptΦ(Zp) is called
of type Φ , or in general of Chevalley type without mentioning Φ . In this case the Iwasawa algebra
ΩG is called of type Φ (or of Chevalley type in general).

We say that p is a nice prime for Φ if p � 5 and if p � n + 1 when Φ has an indecomposable
component of type An. Here is our main theorem.
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Theorem A. Let Φ be a root system and let G be a uniform pro-p group of type Φ . If p is a nice
prime for Φ , then the Frobenius pair (ΩG,ΩGp) satisfies the derivation hypothesis.

The undefined technical terms in Theorem A will be explained in Section 2. The following
corollary was proved in [AWZ], assuming Theorem A. This paper fills in the missing step.

Corollary. (See [AWZ, Theorems A and B].) Let G be a torsionfree compact p-adic analytic
group whose Qp-Lie algebra L(G) is split semisimple over Qp . Suppose that p is a nice prime
for the root system Φ of L(G). Then ΩG has no non-trivial two-sided reflexive ideals. In partic-
ular, every non-zero normal element of ΩG is a unit.

It was asked in [AB, Question J] whether an Iwasawa algebra ΩG of Chevalley type has any
non-zero, non-maximal prime ideals. Theorem A says that it has no prime ideals of so-called
homological height one and hence provides evidence for a negative answer. Combining this with
a result of the first author gives a complete answer to [AB, Question J] in the case when Φ = A1.

We conjecture that the hypothesis of p being nice is superfluous. When Φ = A1 we gave a
separate proof for p = 2 in [AWZ, Section 8] (see also Section 4), which shows the difficulty of
dealing with non-nice primes.

0.4. An outline of the paper

In Section 1 we will give a treatment of some elementary material (linear algebra, derivations,
Lie algebras) that will form an essential part of the proof of our main result. The reader may
wish to skip this material on his first reading and return to it later as needed. Section 2 contains
the definitions of some key terms such as derivation hypothesis and Frobenius pair. The proof of
Theorem A is given in Section 3. Section 4 contains some remarks about the case when Φ = An

and p is not a nice prime.

1. Preparatory results

1.1. A Vandermonde-type determinant

Let {w1, . . . ,wm} be a basis for an m-dimensional Fp-vector space W . Consider the symmet-
ric algebra

B := Sym(W) ∼= Fp[w1, . . . ,wm].

We are interested in the following matrix of Vandermonde type:

M(w1, . . . ,wm;d1, . . . , dm) :=

⎛
⎜⎜⎜⎜⎝

w
pd1

1 w
pd1

2 · · · w
pd1
m

w
pd2

1 w
pd2

2 · · · w
pd2
m

...
... · · · ...

pdm pdm pdm

⎞
⎟⎟⎟⎟⎠
w1 w2 · · · wm
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where {d1, . . . , dm} is a sequence of non-negative integers. For simplicity we write

M(w1, . . . ,wm) :=

⎛
⎜⎜⎜⎝

w1 w2 · · · wm

w
p

1 w
p

2 · · · w
p
m

...
... · · · ...

w
pm−1

1 w
pm−1

2 · · · w
pm−1

m

⎞
⎟⎟⎟⎠ .

Let P(W) be the set of all one-dimensional subspaces of W . For each l ∈ P(W) we fix a
choice of generator wl ∈ l so that l = 〈wl〉. Define Δ(W) to be the product

∏
l∈P(W) wl .

Lemma.

(1) Let {d1, . . . , dm} be a sequence of non-negative integers. Then Δ(W) divides detM(w1, . . . ,

wm;d1, . . . , dm).
(2) There exists λ ∈ F×

p such that detM(w1, . . . ,wm) = λ · Δ(W).

Proof. (1) Let w be a non-zero element of W ; we will show that

detM ∈ wB,

where M = M(w1, . . . ,wm;d1, . . . , dm). Write w = a1w1 + · · · + amwm for some ai ∈ Fp ,
not all zero. Without loss of generality a1 = −1. Consider the canonical ring homomorphism
π : Sym(W) → Sym(W/〈w〉); this has kernel exactly wB . Let ui = π(wi); then

π(detM) = det

⎛
⎜⎜⎜⎜⎝

a2u
pd1

2 + · · · + amu
pd1
m u

pd1

2 · · · u
pd1
m

a2u
pd2

2 + · · · + amu
pd2
m u

pd2

2 · · · u
pd2
m

...
... · · · ...

a2u
pdm

2 + · · · + amu
pdm

m u
pdm

2 · · · u
pdm

m

⎞
⎟⎟⎟⎟⎠

which is zero because the first column is a linear combination of the others. Hence detM ∈ wB

as claimed.
Now if l 	= l′ are two distinct lines then wl and wl′ are coprime in B . Hence Δ(W) =∏

l∈P(W) wl divides detM .
It is well known that detM is non-zero if and only if {d1, . . . , dm} are distinct.
(2) Both expressions are polynomials of degree precisely

1 + p + p2 + · · · + pm−1 = ∣∣P(W)
∣∣ = pm − 1

p − 1

and the result follows. �
1.2. The adjugate matrix

Later on we will be interested in coming as close as possible to inverting the matrix
M(w1, . . . ,wm). Recall Cramer’s rule: this says that if A is any square m × m matrix then

adj(A) · A = A · adj(A) = det(A) · Im
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where Im is the identity matrix and adj(A) is the adjugate matrix, defined as follows:

adj(A)ij = (−1)i+j detCji

where Cij is the matrix A with the ith row and j th column removed.
We will use the following standard piece of notation. Given a list (x1, . . . , xn) consisting

of n elements, (x1, . . . , x̂j , . . . , xn) denotes the list consisting of n − 1 elements, where xj has
been omitted. Thus M(w1, . . . , ŵj , . . . ,wm) is equal to the (m − 1) × (m − 1)-matrix defined in
Section 1.1 with {d1, . . . , dm−1} = {0,1, . . . ,m − 2}. Lemma 1.1 implies the following

Proposition. Retain the notation of Section 1.1 and let A = M(w1, . . . ,wm). Then for any j =
1, . . . ,m, detM(w1, . . . , ŵj , . . . ,wm) divides each entry in the j th row of adj(A) in B .

Proof. We need to show that for all i = 1, . . . ,m,

detM(w1, . . . , ŵj , . . . ,wm) | detCij .

But Cij = M(w1, . . . , ŵj , . . . ,wm;0, . . . , î − 1, . . . ,m − 1). The assertion follows from Lem-
ma 1.1(1). �

For each j = 1, . . . ,m, let Wj be the subspace 〈w1, . . . , ŵj , . . . ,wm〉 of W . Define

Δj :=
∏

l∈P(W)\P(Wj )

wl ∈ B.

By Lemma 1.1(2), we see that for some λj ∈ F×
p ,

Δj = λj · detM(w1, . . . ,wm)

detM(w1, . . . , ŵj , . . . ,wm)
.

Corollary. Let D be the diagonal m × m matrix defined by Dij = δijΔj . Then there exists
U ∈ Mm(B) such that U · A = D.

Proof. Let E be the diagonal m × m matrix defined by

λjEij = δij detM(w1, . . . , ŵj , . . . ,wm).

By the proposition, there exists U ∈ Mm(B) such that E · U = adj(A). Hence U · A = E−1 ·
adj(A) · A = E−1 detA = D, as required. �
1.3. Derivations

Now let V be a finite-dimensional vector space over a field K (soon we will assume that
K = Fp). Consider the set D of all derivations of B := SymK(V ). Note that any f ∈ V ∗ :=
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HomK(V,K) in the dual space of V gives rise to a derivation, which we again denote by f ,
defined by the rule

f (v1 · · ·vk) =
k∑

j=1

v1 · · ·f (vj ) · · ·vk

for all v1, . . . , vk ∈ V . Next, D is naturally a left B-module, with the action given by

(b · d)(x) = bd(x)

for all b, x ∈ B and d ∈ D. This gives us a K-linear map ψ :B⊗V ∗ → D, defined by ψ(b⊗f ) =
b · f . The following lemma is well known.

Lemma. Let ψ be defined as above. Then ψ is a B-module isomorphism.

Now we assume that K = Fp . Then x �→ xpr
is an Fp-linear endomorphism of B . Hence it

extends to an Fp-linear endomorphism, denoted by (−)[pr ], of B ⊗ V ∗ that is determined by

(b ⊗ f )[pr ] = bpr ⊗ f.

Definition. For any d ∈ D and r � 0, let d [pr ] = ψ(ψ−1(d)[pr ]) be the corresponding derivation.

Thus d [pr ] is the derivation of B determined by the rule

d [pr ](v) = d(v)p
r

for all v ∈ V . We will henceforth identify B ⊗ V ∗ with D using ψ .

1.4. A certain module of derivations

The space End(V ) can be canonically identified with V ⊗ V ∗. Since V is contained in B , we
will identify End(V ) with V ⊗ V ∗ ⊆ D.

As in Section 1.1, for each l ∈ P(V ) choose some vl ∈ V such that l = 〈vl〉. If ϕ ∈ End(V )

then ϕ∗ ∈ End(V ∗) is the dual map to ϕ defined by

ϕ∗(g) = g ◦ ϕ

for all g ∈ V ∗.

Proposition. Let ϕ ∈ End(V ) and s � 0 be given. Consider the B-submodule

Es :=
∑
r�s

B · ϕ[pr ]

of D, and let g ∈ V ∗. Then ( ∏
v

ps

l

)
· ϕ∗(g) ∈ Es .
l∈P(ϕ(V ))\P(kerg)
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Proof. Let W = ϕ(V ) and write m = dimW and n = dimV . Consider the annihilator (kerϕ)⊥
of kerϕ in V ∗. This clearly contains ϕ∗(V ∗) and is hence equal to it because both spaces have
dimension m.

There is nothing to prove if ϕ∗(g) = 0. Otherwise let {f1, . . . , fm} be a basis for (kerϕ)⊥ such
that fm = ϕ∗(g), and extend it to a basis {f1, . . . , fn} for V ∗. Let {v1, . . . , vn} be the dual basis
for V , so that

fi(vj ) = δij for all i, j.

Then {vm+1, . . . , vn} is a basis for kerϕ and {w1, . . . ,wm} is a basis for W = ϕ(V ), where wi :=
ϕ(vi) for i = 1, . . . ,m.

Inside D we have ϕ = ∑m
i=1 wi · fi by construction, so

ϕ[pr ] =
m∑

i=1

w
pr

i · fi (1.4.1)

for all r � 0.
Consider the vector space W [ps ] = 〈wps

1 , . . . ,w
ps

m 〉 and let A = M(w
ps

1 , . . . ,w
ps

m ) be the ma-
trix appearing in Section 1.1. Now D is a left B-module, so

Dm :=
⎛
⎝D

...

D

⎞
⎠

is a left Mm(B)-module. Let e ∈ Dm be the column vector whose r th entry is the derivation
ϕ[pr+s−1], and let f ∈ Dm be the column vector whose r th entry is the derivation fr , for each
r = 1, . . . ,m. Then we can rewrite Eqs. (1.4.1) for r = s, s + 1, . . . , s + m − 1 as

A · f = e ∈ Em
s

inside Dm. By Corollary 1.2 we can find U ∈ Mm(B) such that U · A = D is a diagonal matrix
whose j th entry is

Δj =
∏

l∈P(W)\P(Wj )

v
ps

l .

Here Wj = 〈w1, . . . , ŵj , . . . ,wm〉, for all j = 1, . . . ,m. Hence

D · f = U · A · f = U · e ∈ Em
s ,

so in particular Dm · ϕ∗(g) = Dm · fm ∈ Es . Now g(wi) = (g ◦ ϕ)(vi) = fm(vi) = δmi for all
i = 1, . . . ,m, so

Wm = W ∩ kerg.

The result follows. �
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1.5. g-modules

Let g be a finite-dimensional Lie algebra a base field k. By a g-module we mean a left U(g)-
module V , where U(g) is the universal enveloping algebra of g. To give V the structure of a
g-module is the same thing as to give a Lie algebra homomorphism

ρ :g → gl(V )

where gl(V ) = End(V ) is the Lie algebra of all linear endomorphisms of V under the commuta-
tor bracket.

If V is a g-module then so is the dual space V ∗, by the rule

(x · f )(v) = −f (x · v)

for all x ∈ g, f ∈ V ∗ and v ∈ V . Note that ρ :g → gl(V ) and ρ∗ :g → gl(V ∗) are the correspond-
ing representations then

ρ∗(x) = −ρ(x)∗

for all x ∈ g. Here as in Section 1.4, ρ(x)∗ denotes the dual map to ρ(x) :V → V .

1.6. Invariant bilinear forms

Let V be a g-module. Recall that a g-invariant form on V is a bilinear form

( , ) :V × V → k

such that (x · v,w) = −(v, x · w) for all x ∈ g and v,w ∈ V . Such a form determines a homo-
morphism of g-modules β :V → V ∗ via the rule β(v)(w) = (v,w), and conversely, a g-module
homomorphism V → V ∗ defines a g-invariant form on V . Note that the form ( , ) is non-
degenerate if and only if the associated homomorphism β is an isomorphism.

1.7. The adjoint representation

Now consider V = g as a g-module via x ·y = [x, y] for all x, y ∈ g. The following elementary
result will be very useful later on.

Lemma. Suppose that g has a g-invariant bilinear form ( , ), and let β be the associated homo-
morphism. Then for all x, y ∈ g,

(a) x · β(y) = y · β(−x), and
(b) [x,g] ⊆ kerβ(x).

Proof. (a) x · β(y) = β([x, y]) = β([y,−x]) = y · β(−x).
(b) β(x)([x,g]) = (x, [x,g]) = ([−x, x],g) = 0. �
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1.8. The Killing form

Recall that the Killing form on g is defined by the rule

K(x, y) = tr
(
ad(x) ad(y)

)
for all x, y ∈ g. This is always an example of a g-invariant bilinear form on g. If chark = 0 then
Cartan’s Criterion states that g is semisimple if and only if the Killing form is non-degenerate.
However in positive characteristic it may happen that g is simple but its Killing form is zero. This
can happen even when g is of “classical type”, meaning that it is a Chevalley Lie algebra over k.
There is a way around this problem—see the proof of Theorem 3.4.

2. Frobenius pairs and the derivation hypothesis

In this section we review a minimal amount of material from [AWZ] that is most relevant
for this paper. In particular we will recall the derivation hypothesis which plays a key role in
[AWZ]. Together with the main theorem of this paper, the theory in [AWZ] leads to a proof of
the structure theorem for reflexive ideals in a class of Iwasawa algebras.

2.1. Frobenius pairs

We go back to an arbitrary base field K of characteristic p. Let B be a commutative K-
algebra; for example B could be the polynomial algebra

B = grK�G� = Sym(V ⊗ K)

for some finite-dimensional Fp-vector space V . The Frobenius map x �→ xp is a ring endomor-
phism of B and gives an isomorphism of B onto its image

B[p] := {
bp: b ∈ B

}
in B provided that B is reduced. Any derivation d : B → B is B[p]-linear because

d
(
apb

) = apd(b) + pap−1d(a)b = apd(b)

for all a, b ∈ B .
Let t be a positive integer. Whenever {y1, . . . , yt } is a t-tuple of elements of B and α =

(α1, . . . , αt ) is a t-tuple of non-negative integers, we define

yα = y
α1
1 · · ·yαt

t .

Let [p − 1] denote the set {0,1, . . . , p − 1} and let [p − 1]t be the product of t copies of [p − 1].

Definition. (See [AWZ, Definition 2.2].) Let A be a complete filtered K-algebra and let A1 be a
subalgebra of A. We always view A1 as a filtered subalgebra of A, equipped with the subspace
filtration FnA1 := FnA ∩ A1. We say that (A,A1) is a Frobenius pair if the following axioms
are satisfied:
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(i) A1 is closed in A,
(ii) grA is a commutative noetherian domain, and we write B = grA,

(iii) the image B1 of grA1 in B satisfies B[p] ⊆ B1, and
(iv) there exist homogeneous elements y1, . . . , yt ∈ B such that

B =
⊕

α∈[p−1]t
B1yα.

2.2. Derivations on B

Let B1 ⊆ B be commutative rings of characteristic p, such that B[p] ⊆ B1 and

B =
⊕

α∈[p−1]t
B1yα

for some elements y1, . . . , yt of B .
Fix j = 1, . . . , t and let εj denote the t-tuple of integers having a 1 in the j th position and

zeros elsewhere. We define a B1-linear map ∂j :B → B by setting

∂j

( ∑
α∈[p−1]t

uαyα

)
:=

∑
α∈[p−1]t

αj >0

αjuαyα−εj .

Let D := DerB1(B) denote the set of all B1-linear derivations of B . An ideal I of B is called
D-stable if D · I ⊆ I .

Proposition. (See [AWZ, Proposition 2.4].)

(a) The map ∂j is a B1-linear derivation of B for each j .
(b) D = ⊕t

j=1 B∂j .
(c) For any x ∈ B , D(x) = 0 if and only if x ∈ B1.
(d) An ideal I ⊆ B is D-stable if and only if it is controlled by B1:

I = (I ∩ B1)B.

If K = Fp and B = Sym(V ) then D = D. Part (a) of the above is similar to Lemma 1.3.

2.3. Inducing derivations on grA

Let A be a filtered ring with associated graded ring B and let a ∈ A. Suppose that there is an
integer n � 0 such that

[a,FkA] ⊆ Fk−nA
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for all k ∈ Z. This induces linear maps

{a,−}n:
FkA

Fk−1A
→ Fk−nA

Fk−n−1A
,

b + Fk−1A �→ [a, b] + Fk−n−1A

for each k ∈ Z which piece together to give a graded derivation

{a,−}n :B → B.

Definition. (See [AWZ, Definition 3.2].) A source of derivations for a Frobenius pair (A,A1)

is a subset a = {a0, a1, a2, . . .} of A such that there exist functions θ, θ1 : a → N satisfying the
following conditions:

(i) [ar ,FkA] ⊆ Fk−θ(ar )A for all r � 0 and all k ∈ Z,
(ii) [ar ,FkA1] ⊆ Fk−θ1(ar )A for all r � 0 and all k ∈ Z,

(iii) θ1(ar ) − θ(ar) → ∞ as r → ∞.

Let S(A,A1) denote the set of all sources of derivations for (A,A1).

2.4. The derivation hypothesis

Let a be a source of derivations for a Frobenius pair (A,A1) and I be a graded ideal of B . We
say that the homogeneous element Y of B lies in the a-closure of I if {ar, Y }θ(ar ) lies in I for all
r � 0.

Each source of derivations a gives rise to a sequence of derivations {ar ,−}θ(ar ) of B , and
some or all of these could well be zero. To ensure that we get an interesting supply of derivations
of B , we now introduce a condition which holds for Iwasawa algebras of only rather special
uniform pro-p groups.

Recall that D denotes the set of all B1-linear derivations of B and S(A,A1) denotes the set
of all sources of derivations for (A,A1). The derivation hypothesis is really concerned with the
action of the derivations induced by S(A,A1) on the graded ring B .

Definition. (See [AWZ, Definition 3.5].) Let (A,A1) be a Frobenius pair. We say that (A,A1)

satisfies the derivation hypothesis if for all homogeneous X,Y ∈ B such that Y lies in the a-
closure of XB for all a ∈ S(A,A1), we must have D(Y ) ⊆ XB .

Using this hypothesis, it is possible to prove the following control theorem for reflexive ideals:

Theorem. (See [AWZ, Theorem 5.3].) Let (A,A1) be a Frobenius pair satisfying the derivation
hypothesis, such that B and B1 are UFDs. Let I be a reflexive two-sided ideal of A. Then I ∩A1
is a reflexive two-sided ideal of A1 and I is controlled by A1:

I = (I ∩ A1) · A.

This is the main technical result of [AWZ], which eventually implies Corollary 0.3.
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3. Proof of the main result

3.1. Normalizers of powerful Lie algebras

Recall from [DDMS, §9.4] that a Zp-Lie algebra L is said to be powerful if L is free of finite
rank as a module over Zp and [L,L] ⊆ pεL, where

ε :=
{

2 if p = 2,

1 otherwise.

Let L be a powerful Zp-Lie algebra and let N = {x ∈ QpL: [x,L] ⊆ L} be the normalizer of L

inside QpL—this is a Zp-subalgebra of QpL that contains L as an ideal. Note that N is just the
inverse image of EndZp

(L) under the homomorphism

ad : QpL → EndQp
(QpL),

so N contains the center Z(QpL) of QpL and N/Z(QpL) is a finitely generated Zp-module.
Hence

g := N/pN

is a finite-dimensional Fp-Lie algebra. Define

V := L/pL.

Then V is naturally a g-module via the rule

(x + pN) · (y + pL) = [x, y] + pL

for all x ∈ N and y ∈ L. Let ρ :g → End(V ) be the associated homomorphism.

Lemma. Let x ∈ N\pN and k � ε be such that u = pkx ∈ L. Then

(a) [u,L] ⊆ pkL,
(b) [u,L] � pk+1L, and
(c) [u,pL] ⊆ pk+1L.

Proof. The first and the last assertions are clear. If [u,L] ⊆ pk+1L then [x,L] ⊆ pL and so
p−1x ∈ N . But this forces x ∈ pN , which we have assumed not to be the case. �
3.2. Derivations for Iwasawa algebras

By [DDMS, Theorem 9.10] there is a natural assignment

G �→ log(G), L �→ exp(L)

which determines an equivalence between the category of uniform pro-p groups and the category
of powerful Zp-Lie algebras.
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Now let G = exp(L) be the uniform pro-p group corresponding to our powerful Lie al-
gebra L, and let K denote an arbitrary field of characteristic p. By [AWZ, Proposition 6.6],
(K�G�,K�Gp�) is a Frobenius pair, and by [AWZ, Lemma 6.2(d) and Proposition 6.4], there is
a canonical isomorphism

Sym(V ⊗ K)
∼=−→ grK�G�.

Recall that ρ is the map g → End(V ) ⊆ End(V ⊗ K) defined in Section 3.1.

Proposition. Let x ∈ N \ pN and let k � 1 be such that pkx ∈ L. Let a = exp(pkx) ∈ G. Then

{a,−}pk−1 = ρ(x + pN)[pk]

as derivations of Sym(V ⊗ K).

Proof. This is a rephrasing of [AWZ, Theorem 6.8], using Lemma 3.1. �
3.3. Verifying the derivation hypothesis

We start with a powerful Zp-Lie algebra L and define g and V as in Section 3.1. Let G =
exp(L). We say L satisfies hypothesis (L∗) if the following hold:

(L0) there exists a g-module isomorphism ζ :g → V ,
(L1)

∑
β g · β(g) = g∗ where the sum runs over all possible g-module homomorphisms

β :g → g∗.

Since g · β(g) = β([g,g]), condition (L1) is equivalent to
∑

β β([g,g]) = g∗. Clearly, the
following two conditions imply (L1):

• g admits a non-degenerate g-invariant bilinear form ( , ), and
• g is perfect: [g,g] = g.

Theorem. Let L be a powerful Lie algebra satisfying hypothesis (L∗) and let G = exp(L). Then
the Frobenius pair (K�G�,K�Gp�) satisfies the derivation hypothesis.

Proof. Let X,Y be homogeneous elements of B = grK�G� such that Y lies in the a-closure
of XB for all a ∈ S(K�G�,K�Gp�). Let x ∈ g be a non-zero element, and suppose that x =
x′ + pN for some x′ ∈ N \ pN . Let k � ε be such that pkx′ ∈ L. Then

(
exp

(
pkx′), exp

(
pk+1x′), exp

(
pk+2x′), . . .)

is a source of derivations for (K�G�,K�Gp�), by [AWZ, Corollary 6.7]. Hence there exists a
large integer sx � k, such that

{
exp

(
prx′), Y}

r ∈ XB

p −1
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for all r � sx . Hence by Proposition 3.2 we see that

ρ(x)[pr ](Y ) ∈ XB

for all r � sx . Since g is finite, if we set s := max{sx : x ∈ g \ 0} then

ρ(x)[pr ](Y ) ∈ XB

for all r � s and all x ∈ g.
Let us identify Sym(g ⊗ K) with Sym(V ⊗ K) using the isomorphism ζ in (L0). Then

ad(x)[pr ](Y ) ∈ XB

for all r � s and all x ∈ g.
Let ( , ) be any g-invariant bilinear form on g, and let β : g → g∗ be the associated homomor-

phism.
Fix x, y ∈ g, let ϕ := ad(x) ∈ End(g) and let g = β(y) ∈ g∗. Then ϕ∗(g) = −x · g by the

remarks made in Section 1.5, and ϕ(g) = [x,g]. Using Proposition 1.4 we can deduce that

( ∏
l∈P([x,g])\P(kerβ(y))

v
ps

l

)(
x · β(y)

)
(Y ) ∈ XB.

Swapping x and y, we obtain

( ∏
l∈P([y,g])\P(kerβ(x))

v
ps

l

)(
y · β(x)

)
(Y ) ∈ XB.

Now x · β(y) = −y · β(x) by Lemma 1.7(a), and

(
P
([x,g]) − P

(
kerβ(y)

)) ∩ (
P
([y,g]) − P

(
kerβ(x)

)) = ∅

by Lemma 1.7(b). Hence the two products occurring above are coprime, which allows us to
deduce that

(
x · β(y)

)
(Y ) ∈ XB

for all x, y ∈ g. Since g∗ generates D as a B-module, it will be now enough to show that
{x · β(y): x, y ∈ g} spans g∗. But this is (L1). �
3.4. Chevalley Lie algebras over Zp

Let Φ be an indecomposable root system, let C := Φ(Zp) be the Lie algebra over Zp con-
structed from a Chevalley basis [CSM, p. 37], let t � ε and consider the powerful Lie algebra
L = ptC. Let g = N/pN be the finite-dimensional Fp-Lie algebra constructed from L in Sec-
tion 3.1.

Recall that p is a nice prime for Φ if p � 5 and if p � n + 1 when Φ is the root system An.
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Theorem. Retain the notation as above and suppose that p is a nice prime for Φ . Then

(a) Φ(Fp) is a non-abelian simple Fp-Lie algebra,
(b) N = C and g = Φ(Fp),
(c) L satisfies (L∗).

Proof. (a) By construction, Φ(Fp) is never abelian. Under our assumptions on p, Φ(Fp) is
simple [S, p. 181].

(b) Clearly C ⊆ N . Let x ∈ N\C, for a contradiction. Then we can find k > 0 such that
pkx ∈ C \ pC. But now

[
pkx,C

] ⊆ pkC ⊆ pC

so pkx + pC is a non-zero central element of C/pC = Φ(Fp). This is a contradiction, because
Φ(Fp) is non-abelian simple by part (a). Hence N = C and g = Φ(Fp).

(c) Let ζ :g → V be defined by the obvious rule

ζ(x + pN) = ptx + pL.

This is clearly a g-module isomorphism.
Consider the normalized Killing form on g, defined by

(x + pN,y + pN) = tr(ad(x) ad(y))

2h

for all x, y ∈ N = Φ(Zp), where h is the Coxeter number for Φ . This form is clearly g-invariant.
By [GN, Proposition 4] this form is non-zero and hence the radical r := {x ∈ g: (x,g) = 0} of
the form is a proper subspace of g. But r is an ideal of g and g is simple, so r = 0 and hence the
form is non-degenerate.

Finally, g is perfect because [g,g] is an ideal of g, which must be the whole of g since g is
non-abelian simple by part (a). The assertion follows from the comments made before Theo-
rem 3.3. �
3.5. Proof of Theorem A

Lemma. Let L = L1 ⊕ L2 where both L1 and L2 are powerful Zp-Lie algebras. If Li satisfies
condition (L∗) for i = 1,2, then so does L.

Proof. Let N,g and V be defined as in Section 3.1 for the Lie algebra L (and similar terms for
L1 and L2). It is clear that N = N1 ⊕ N2; consequently, g = g1 ⊕ g2 and V = V1 ⊕ V2. The
assertion now follows from the definition of (L∗). �
Proof of Theorem A. Applying the lemma and Theorem 3.4, we see that ptΦ(Zp) satis-
fies (L∗). The result now follows from Theorem 3.3. �
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4. Remarks on non-nice primes

4.1. Suppose Φ = An and p divides n + 1, and let G be a uniform group of type Φ . Let
h1, . . . , hn be the co-roots occurring in a Chevalley basis for the Zp-Lie algebra Φ(Zp) ∼=
sln+1(Zp), and let

z :=
n∑

i=1

ihi ∈ Φ(Zp).

Then g := Φ(Fp) has a one-dimensional center generated by the image z of z in g, and this fact
causes the derivation hypothesis to fail for (K�G�,K�Gp�).

However, a version of Corollary 0.3 still holds.

Theorem. Let G be a uniform pro-p group of type An. Then ΩG has no non-trivial two-sided
reflexive ideals.

The proof is similar to the one given in [AWZ, Section 8] and needs the following lemma.

Lemma. Let L = ptΦ(Zp) for some t � 1, let L1 = pL + ptZpz and let L2 = pL. Write G =
exp(L), G1 = exp(L1) and G2 = exp(L2). Then

(a) The Frobenius pair (K�G�,K�G1�) satisfies the derivation hypothesis.
(b) The Frobenius pair (K�G1�,K�G2�) satisfies the derivation hypothesis.

Sketch of the proof. (a) Let f := Φ(Fp)/〈z〉. This is a simple Lie algebra [S, p. 181] and there is
an f-invariant non-degenerate bilinear form on f [J, 6.4(b)]. It induces a g-invariant bilinear form
( , ) on g. Let β :g → g∗ be the g-module homomorphism associated to ( , ). Then the image of
β is equal to f∗, the annihilator of 〈z〉 in g∗.

The proof of Theorem 3.3 implies that if Y lies in the a-closure of XB for all sources of
derivations a of (K�G�,K�G1�), then (B ⊗g ·β(g))(Y ) ∈ XB . By the last paragraph, g ·β(g) =
f∗. The assertion is proved by noting that D := DerB1(B) is isomorphic to B ⊗ f∗.

(b) This is an easier case than (a). Since DerB2(B1) is isomorphic to B1 ⊗ Kz∗ ∼= B1, we can
apply the argument in the second half of the proof of [AWZ, Proposition 8.1], after making the
appropriate changes. Therefore (K�G1�,K�G2�) satisfies the derivation hypothesis. �

Using these techniques, we have verified that Corollary 0.3 holds for all (p,Φ), except for
{p = 2,Φ ∈ {Bn,Cn,Dn,F4,E7}} and {p = 3,Φ ∈ {G2,E6}}. We believe that it holds in these
exceptional cases as well.
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