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Abstract 

Shor, P.W. and C.J. Van Wyk, Detecting and decomposing self-overlapping curves, Computa- 

tional Geometry: Theory and Applications 2 (1992) 31-50. 

A curve is self-overlapping if it can be divided by nontrivial line segments into simple curves. 

We show how to test whether a given curve is self-overlapping, and also how to construct sets 

of line segments that demonstrate that the curve is self-overlapping. We also describe several 

interesting topological properties of self-overlapping curves. 

Keywords. Computational topology; constrained Delaunay triangulation; dynamic program- 

ming; immersions. 

1. Introduction 

All self-intersecting plane curves are nonsimple, but some are more nonsimple 

than others (cf. [ll]). We say that a curve is self -overlapping if it can be divided 

by nontrivial line segments into simple curves. There are several other ways to 

define self-overlapping curves; all these definitions agree on curves with only a 

finite number of intersection points. Before we define the notion more formally, 

we offer some examples and motivation for the study of self-overlapping curves. 

The curve in Fig. l(a) is self-overlapping: a single slice at the bottom divides it 

into two simple curves. A simple curve is also, trivially, self-overlapping. Neither 

of the curves in Figs. l(b) or l(c), however, is self-overlapping: to divide either 

into simple pieces we would have to slice it at a crossing point. 

Even when a self-overlapping curve is nonsimple, it has a natural ‘interior.’ Fig. 

l(a), for example, naturally defines an annular region of the plane as its ‘interior’: 

we can choose an orientation’on the curve so that if we trace the curve following 

the orientation, the interior always lies to our left. In contrast, neither of the 

Elsevier Science Publishers B.V 



32 P. W. Shor, C.J. Van Wyk 

(a) (b) 

(cl 
Fig. 1. The curve in (a) is a self-overlapping curve. Those in (b) and (c) are not 

curves in Figs. l(b) and l(c) has a natural interior: no matter what orientation we 

choose, at some point when we look to our left we shall be able to see infinity. 

Micha Sharir posed the problem of identifying self-overlapping curves at the 

Eighth Geometry Day at the Courant Institute; he had in mind an application in 

robotics. Chi-Yuan Lo of AT&T Bell Laboratories’ Integrated Circuit Design 

Aids Department suggests another application in the analysis of integrated- 

circuit layouts. If a layout contains a nonsimple but self-overlapping polygon, 

then it is probably correct; but if the layout includes a non-self-overlapping 

polygon, then the user should be advised of a likely error. His suggestion is 

motivated by the idea that self-overlapping curves have a natural interior, and is 

more conservative than some other recommendations for the treatment of 

nonsimple polygons in circuit layouts [lo]. 

The identification of self-overlapping curves is not a simple matter of appealing 

to the celebrated Whitney-Graustein theorem 1161, which characterizes curves 

that can be regularly deformed into a circle in terms of the net number of 

rotations a tangent vector makes as one traces the curve. It is necessary that a 

self-overlapping curve have unit tangent winding number, but Fig. l(c) shows that 

this is not sufficient. 
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Another illustration of the difficulty of identifying self-overlapping curves is 

provided by Milnor’s paisley curve, which is shown in Fig. 4. This curve can be 

realized as a self-overlapping region in two fundamentally different ways; that is, 

it can be divided into simple curves in two different ways, so that there is no way 

to map the pieces in the first decomposition onto the pieces in the second 

decomposition so that all paths in the first decomposition are mapped to paths in 

the second decomposition. 

In this paper we give an algorithm for recognizing if a curve is self-overlapping. 

Our algorithm is based on ‘triangulating’ a self-overlapping polygon, which we do 

by using dynamic programming. We then give an algorithm for counting the 

number of fundamentally different ways of realizing a self-overlapping curve as a 

decomposition of polygons. This algorithm is based on an extension to self- 

overlapping polygons of the concept of constrained Delaunay triangulations [S]. 

We show that each fundamentally different way of realizing a self-overlapping 

curve corresponds to a unique constrained Delaunay triangulation, and give a 

dynamic programming algorithm for counting these constrained Delaunay 

triangulations. 

Definition. A smooth curve C = g(S’) is normal if there is a finite number of 

self-intersections, each self-intersection x is a simple crossing point, and g-‘(x) 

consists of two points. [16] 

When C is normal, there is no ambiguity about where to proceed along C from 

each point of self-intersection: we can construct a function g : S1-+ C from C 

alone. Figs. 1, 3, and 4 depict normal curves, so we did not need to show g 

explicitly; Fig. 9, on the other hand, shows a curve that is not normal. 

After we presented an earlier version of this work [14], we learned of a large 

body of closely related work; we mention here only the work of Titus [15], Blank 

[2], and Marx [9]. If we consider only the simple case where the curves are 

normal, then there are several equivalent definitions of self-overlapping curves. If 

g : S’+ R2 defines a normal self-overlapping curve, then it can be extended to an 

immersion F: D2-+ IT*, although some immersions of D2 take the boundary to 

curves that are not normal. There is a converse to this statement; implicit in the 

work of Blank [2] and Marx [9] is the following: Let F: D2-+ R2 be an 

immersion; if C = F(S’) is normal, then C is self-overlapping. Also, if F : C- C is 

analytic on an open region D c C, and y : S’ + D is a homeomorphism, then F 0 y 
defines a self-overlapping curve; there are, however, self-overlapping curves that 

cannot be obtained this way. The case where the curves have an infinite number 

of crossing points, and thus are not normal, will be discussed later. 

Given a normal immersion g : S1 -+ IL!*, Blank and Marx show how to determine 

when a given g is self-overlapping (in their words, “when it has a light open 

extension to D2”) and how many incompatible decompositions (“pairwise 

inequivalent properly interior extensions”) it has. First they construct a word W 
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from C, then they apply transformations to the word to answer these questions. 

They do not mention any estimate of the time complexity of their transforma- 

tions, but a dynamic programming approach can perform the transformations in 

O(]W]“) time. On a normal curve with k self-intersections, ]Wj = O(k’), so 

Blank’s and Marx’s methods can run in 0(k6) time; we believe that one can 

define the words differently so that IWI = O(k), which would give an O(k”) time 

algorithm. We present an algorithm that runs in O(n” log n) time for a polygon 

with it vertices. By transforming a curve with k self-intersections to a polygon 

with O(k) vertices, we derive a O(k’log k)-time algorithm for curves with k 

intersections. To compare this with Blank’s and Marx’s methods, note that an 

n-gon can have k = Q(d), so Blank’s and Marx’s methods would run in time 

O(n’*) (using their definition of word) or O(n”) ( using our modification of their 

definition). Titus (151 also describes conditions to detect when a given normal 

curve is self-overlapping (“is an interior boundary”); the running time of an 

algorithm based on his conditions is exponential. 

2. Definitions 

For any two points a and b in the plane, ab is the line segment between them. 

Let S’ and D* denote the unit circle and the unit disk, respectively. For a set 

S c R* that is homeomorphic to the unit circle S’, 3 denotes the union of S and 

its interior. For a set S c R* that is homeomorphic to the unit disc D*, &S is the 

bundary of S and int S is the interior of S. The domain of a mapping f is denoted 

domf. 

Let g:S’+ lR* be a continuous map of the unit circle into the plane. Then 

C = g(S’) is a closed curve in the plane. To simplify the notation, we shall write f3 

instead of e’“. We use g to keep track of our place when we trace the curve C, 

since C may contain self-intersections. 

Definition. A point o ES’ is a self-intersection point if g-‘(g(a)) # u. A 

self -intersection is a maximal connected region of self-intersection points. 

(For the moment we allow g to trace a piece of curve C more than once, which 

means that some self-intersections may be of positive measure. This allows our 

definitions to apply to curves that are not normal, a case that arises frequently in 

practice.) 

We define what it means for curve C to be self-ouerlapping in terms of a 

construction that decomposes it into simple closed curves. A decomposition of C 

corresponds to a dissection of the unit circle by chords; indeed, we begin the 

construction with such a dissection. Then we make more choices and define more 

notation as the construction proceeds. At some points in the construction, we can 

tell that certain choices that are found to fail. It is possible, however, to finish 
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the construction before we can tell that it has not worked. Thus, even though our 

definition involves a construction, ultimately it is purely existential: a curve is 

self-overlapping if and only if there exists a construction that demonstrates that it 

is; the definition does not offer many clues about how to find such a 

construction. 

Let ((@i, qi) I l G i G m) be a sequence of non-empty open counterclockwise 

ranges of angles, and let 6; = nisi be the chord of the unit circle determined by & 

and qi. The construction can succeed only if no two chords in the set 

{Si ) 1 s i s m} intersect at a point in int D2. The sequence of angle ranges gives 

rise to two sequences of subregions of D*. Let a&” = S’; for 1 G i c m, let 

and 

ac = a&-, - (Gi, Vi)&_, U 4; 

finally, let ad, = ar,. (In this definition, the notation (4, w)~ means the open 

interval along ar going counterclockwise from $ and w.) These subregions are 

defined only if 6i c c_, for 1 G i sm. Thus, ai splits c_, into Ai_l and &. The 

non-intersection condition on the chords implies that c and Ai are homeomorphic 

to D* for all i. Fig. 2 shows a dissection of D2 by a brief sequence of angle ranges. 

The dissection of Dz by the sequence of subregions (Ai 1 0 s i G m) gives rise to 

a decomposition of C, which we describe by a sequence of mappings. Let g, = g; 

for lGi<m, let Xi=g(#i) and yi =g(vi), and let gi map aA,_l onto 

gi-l((+i, qi)l;-l) uxGi and ac onto gi_,((qi, #i)r;-,)Uxiy; such that if x E 

domgi-1, then g,(X) =g,_l(~). Thus, gi always maps pieces of S’ to pieces of C, 

and for 1 G j s i it maps the chord Sj to the jth diagonal xjyj. Fig. 2 illustrates the 

development of a short sequence of mappings. For 0 =G i < m, let Di = gi+,(aAi); 

let D,,, = gm(aAm). The ith diagonal chops the closed curve Di_, off of C during 

the construction. 

Definition. The above construction is valid if Di is simple for 0 s i c m. 

When a construction is valid, the restriction of g, to aAi is a homeomorphism 

for all i. Only a valid construction can demonstrate that a curve is self- 

overlapping, but validity is not a sufficient condition. For example, if any of the 

diagonals x,Y, is trivial (xi = y,), then the construction may be valid but still not 

succeed. 

Let F: D2+ R* be a continuous extenstion of g,: for x E domg,, F(x) = 

g,(x), and for 0 4 i =S m, F restricted to Ai is a homeomorphism between Ai and 

~iii. 

Let us pause for a moment to review where in this construction we have made 

choices. The map g : S’-, R2 was given. A decomposition of C is defined by a 

sequence of angle ranges ((pi, Wi) 1 1 G i 6 m), which defines a sequence of 
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Fig. 2. The left column shows the dissection of 0’ by the sequence ((4,) IJ,), (&, t&J), The right 

column shows the image of D* together with appropriate chords as the sequence of mappings g,,, g,, 

and g, is produced. The shaded regions indicate int DC, and int D,. 

chords, (a,), and two sequences of subregions, (6) and (A;), of 0’. We 

constructed a sequence of mappings that culminates in g,, which defined a 

sequence of diagonals (xjyi) and a sequence of closed curves (0;). We chose F as 

a continuous extension of g, to D2. By construction, the restriction of F to S’ 

agrees with g, and the restriction of F to S’ U { ai 1 1 s i s k} agrees with g,; thus, 

we can recover the complete status of the construction from the pair (0, F), 

where 0 = ((@iI I/J;) 1 1~ i s m). 

Definition. Let g : S’+ R2 be given. If there exist 0 and F such that (0, F) is a 

valid construction and for each point x E D2 there is a neighborhood of x in 

which F is injective, then g defines a self -overlapping curve, and the construction 

(0, F) demonstrates this fact. 

Once we have the dissection 0 and the function F, we can refer to the interior 

of C as the image of int D2 under F. Function F is, in fact, nearly an immersion 

of D2 [7]. 
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Fig. 3. The diagonal in (a) shows that the curve is self-overlapping. The diagonal in (b), however, 
does not yield a proper decomposition of the non-self-overlapping curve shown. 

Fig. 3(a) shows a self-overlapping curve and a diagonal that suggests how it can 

be decomposed. Fig. 3(b) shows a curve that is not self-overlapping, and 

illustrates why we require that F be locally injective. Although diagonal Z!i 

separates C into two simple closed curves, so that we can define a valid F, such 

an F will not be injective in any neighborhood of b: the interiors of the two closed 

curves overlap in any neighborhood of b. (Here is another observation that 

suggests that Fig. 3(b) does not contain a self-overlapping curve: in an attempt to 

define the natural interior, we could orient and trace the curve counterclockwise; 

when we look to our left at a, however, we shall see the exterior of C at 6.) 

3. Compatible decompositions 

For the self-overlapping curves in Figs. l(a), 2, and 3(a), all decompositions are 

essentially the same; informally, there is essentially only one way to chop the 

curves into simple pieces. Fig. 4 shows Mihror’s paisley curve [12], which 

illustrates that in general there can be different ways to chop a self-overlapping 

curve into simple pieces; the diagonals in decomposition I are s;-S and 6, while in 

decomposition II they are 3 and @. The possibility of essentially different 

decompositions motivates our definition of what it means for two decompositions 

to be compatible. 

Definition. Let (0, F) and (O’, F’) define two decompositions. The two decom- 

positions are compatible if whenever (Q’, ~JJ’) E O’, F-l@=)) includes a 

path that connects @’ to q’ and otherwise lies in int D2, in which case we say that 

@’ and ly’ are mutually visible under (0, F). 

We note without proof that compatibility between decompositions of g is an 

equivalence relation that depends only on 0 and O’, not on the choice of F and 

F’; thus we refer below to mutual visibility under 0 alone. We also note that the 

visibility relation is symmetric and depends only on 0. Fig. 5 shows the inverse 
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Fig. 4. This figure has two incompatible decompositions. 

image of % from decomposition II of Fig. 4 under the F of decomposition I; the 

dashed path at g ends at a preimage of d and vice versa; since neither path 

connects two points in S’, decompositions I and II are incompatible. 

4. An algorithm for polygons 

In this section we present an algorithm to discover whether a polygon is 

self-overlapping. This is a key step in the algorithm to solve the problem on 

general curves. 

C 

d b 
‘\ 

e f3 a 

f h 

9 

Fig. 5. The points in S’ that are preimages under g of the labelled points in Fig. 4 are labelled with 
the corresponding letters. 
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Definition. A curve C = g(S’) is a polygon if C consists of n line segments or 

sides. 

When C is a polygon, there is an increasing sequence of angles (ei ) 0 G i < n) 
such that g(0,) is an endpoint of one of the sides of C; the image of these angles 

under g is the set of vertices of C. When C is a polygon on n vertices and n <cc, 

each point of C can have only a finite number of preimages under g. Moreover, 

there can be only a finite number of self-intersections, and the image of each is 

either a point or a line segment. 

Definition. A decomposition construction (0, F) is a triangulation of polygon C 

if it demonstrates that C is self-overlapping, for (@, VII) E 0, @ = 0, and 3 = 8, for 

some j and k, and for (@is $Ji), (@,,, r&j) E 0, if j, the set {@i, vi, 4j, qj} contains 

at least three distinct values. 

If there is a triangulation of the polygon then it is certainly self-overlapping. 

Conversely, Theorem 1 below shows that if (0, F) demonstrates that polygon C 

is self-overlapping then there is a triangulation compatible with (0, F). This 

means that an algorithm to determine whether a polygon is self-overlapping can 

work by seeking a triangulation of the polygon. 

Lemma 1. Let (0, F) demonstrate that g defines a self -overlapping polygon P. 
Let 8 be such that Y = g(8) is a convex vertex of P. There exists an open 
neighborhood NO c S’ of 8 such that whenever @ and 11, lie on opposite sides of t3 
in N,, Q, and 3 are mutually visible under 0. 

Proof. Let N c D* be an open neighborhood of 8 on which F is injective. The 

neighborhood F(N) must include a non-empty triangle T two of whose sides 

coincide with sides of P that are incident to Y. Let Ne c S’ be an open 

neighborhood of 0 such that g(NH) c T. (See Fig. 6.) 

Let @, II, E Nt, be two points that lie on opposite sides of 8 in Ne. By 

construction, g( f$)g( v) 1’ ies in T. Since F is injective on N and T c N, 

F-‘(g(+)gW)) includes a path between $ and v that otherwise lies in the 

interior of N. Thus, 4 and IJJ are mutually visible under 0. q 

Lemma 2. Let (0, F) demonstrate that g defines a self-overlapping polygon P. 
There exist two points 01, O2 E S’ such that g( 0,) and g( 0,) are vertices of P and 0, 
and 8, are mutually visible under 0. 

Proof. Let 8 be such that Y = g(8) is one of the vertices of P with minimum 

y-coordinate. Since P is self-overlapping, the region F(D*) can be understood as 

the ‘inside’ of P. Since Y has minimum y-coordinate, all of the inside of P lies 

above Y, so Y is a convex vertex. Let r$ and r/~ be the preimages under g of the 
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g-’ ( u 1 

.‘(w) 

F,g 

(a) 

(b) 

Fig. 6. Fig. (a) depicts most of the notation in the proof of Lemma 1. Fig. (b) shows the images of the 

neighborhoods N and N,, under F and g, respectively, as well as triangle T. 

vertices that precede and follow Y on P. If $ and q are mutually visible under 0, 

then we are done. 

Otherwise, let NH = (@‘, q’) be a maximal open neighborhood of 0 such that 

$7 G’, 8, V’, and 11, appear in that cyclic order on S’, and for any 1; and 77 on 

opposite sides of 0 in NH, c and 77 are mutually visible under 0, as constructed in 

Fig. 7. This illustration for the proof of Theorem 1 uses a simple polygon. Thus, F and g arc 

homeomorphisms, and we need only draw the situation in the plane that contains P. The figure shows 

the image of one possible choice of maximal open neighborhood N,,. 
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the proof of Lemma 1 and illustrated in Fig. 7. Let 1 =g(@‘)g(q’). By 

construction, F-‘(l) includes no path that joins $’ to q’ and otherwise lies in 

int D2. By continuity, however, F-‘(l) includes a path II between $’ and I/I’ that 

lies in the inverse image under F of the triangle Ag(8)g($‘)g(+‘). Therefore, the 

path IZ intersects S’ in more than two points. Let x be a point on the boundary 

of the intersection of the interior of II with S’. Then F(X), like g(8), is a vertex 

of P, and 0 and x are mutually visible under 0. 0 

Theorem 1. Given a decomposition (0, F) that demonstrates that polygon P is 
self-overlapping, there exists a compatible triangulation of P. 

Proof. Use Lemma 2 to find points 8, and 13~ that are mutually visible under 0 

such that g(8,) and g(e2) are vertices of P. Then F-‘(g(B,)g(B,)) includes a path 

II that joins 8, to e2 and divides D2 into two simply connected regions 9, and 

Sz,. We can modify 0 so it demonstrates that F(C3Q,) and F(3Q2) are both 

self-overlapping polygons, as follows. We build the two sequences by 

considering in order the chords defined by 0. For each, if (@, r#) E Q has both 

endpoints in 352, or an,, assign it to the modified sequence for the appropriate 

region. Otherwise, the chord C#I~ intersects I7in a single point (since F($qj) and 

F(l7-I) are both line segments); assign $1~ fl !C2, to the modified sequence for n, 

and @I# fl Sz, to the modified sequence for n2. 

This proves that a self-overlapping polygon on n vertices can always be 

decomposed into two self-overlapping polygons, each of which has no more than 

n - 1 vertices. A simple induction suffices to complete the proof of the 

theorem. 0 

Next we use Theorem 1 to state an algorithm that tests whether a given 

polygon is self-overlapping. 

Algorithm 1. Let Y,), . . . , vn-, be the vertex sequence of polygon P. For 

convenience, assume that no three consecutive vertices form a straight angle. 

The algorithm uses dynamic programming to find a triangulation of P; it 

constructs a table QDX, where Q, is one if it is possible to triangulate the 

(i - i + 1)-gon whose vertices are Yi, . . . , vj, and zero otherwise. (All arithmetic 

on subscripts is carried out modulo n, so if i < i, the vertex sequence wraps 

around from Y~-~ to Y,,, and we treat i - i + 1 as J’ - i + n + 1.) For convenience 

we set Q;,,+, = 1. 

The first step of the dynamic program is to fill in the values Q;,,+*; if vi+, is a 

convex vertex, then Qi,i+2 = 1, but if Y,+] is a reflex vertex then Qr,i+2 = 0. The 

numbering of the vertices defines an orientation on the polygon, and all triangles 

for which Qi.i+2 = 1 will be oriented the same way; without loss of generality we 

assume that this orientation is counterclockwise as one travels from vi through 

2/i+2 to yi+1. 
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Fig. 8. General step of the dynamic program 

In general, the value of Q, is one if and only if there exists an index k such that 

Qik = Qkj = 1, Avivjvk is oriented counterclockwise, vi, vj, v~+, and v~_, appear 

in that order counterclockwise around vkr and the following four segments do not 

intersect the interior of AVivjvk: vjvi+,, vk-,vk, vkvk+,, and vj_,vi (see Fig. 8). A 

simple induction shows that when these conditions hold, vj, vj, and V~ form a 

triangle along whose sides we can glue triangulations of vi through V~ and vk 

through vj so that we can construct an F that is locally injective around vi, v,, and 

vk. 

Since we can compute each element Q, in O(n) time, Algorithm 1 runs in 

O(n’) time. The polygon is self-overlapping if and only if there is an index i such 

that Qi,i-l = 1. Therefore we can test in time cubic in the number of vertices 

whether a polygon is self-overlapping. 

To make it possible to reconstruct a triangulation of P from the dynamic 

program, Algorithm 1 can record at each location Q, that is set to one a value of 

k that permitted us to set Q, = 1. From these values it is possible to reconstruct a 

sequence 0 that demonstrates that P is self-overlapping. 

5. Generalization to curves 

In this section we show how to use Algorithm 1 to test whether a curve 

C = g(S’) is self-overlapping. We shall assume that the set of self-intersections is 

finite. 

Algorithm 2. First we construct a graph G whose embedding in the plane is the 

same as that of curve C. Let {pl} be the set of pieces of C that can be expressed 
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Fig. 9. The transformation of a curve to a planar graph. The ‘Gauss code’ is 

abcdefbcdghiiejabckhgkfj. Bullets mark vertices from W, while crosses mark vertices added to keep 
multiple edges and self-loops from collapsing. 

as g(_Z,) ng(&) for some self-intersections Xi and .&, and let W be the set of 

points that lie on the boundary of some pi. If pl is a point, it will give rise to a 

single vertex in W; if Pj is of positive measure, it will give rise to two vertices in 

W, one at each endpoint. The set @ = g-‘(W) is a set of points on S’. Construct 

@’ by adding to @ two distinct points that lie between each pair of neighboring 

points in @. Then V = g( @‘) is the vertex set of G. 

The edge set of G is defined by C. If vertices Y, and v2 belong to V, there is an 

edge between them if and only if they are connected by a piece of C that contains 

no other vertices in V. Thus, G is a planar graph (see Fig. 9). 

Use any of several algorithms ([5, 6, 131) to modify the embedding of G so 

that each edge is replaced by O(1) straight line segments. Let H be a cycle of G 

that corresponds to traversing g around S’. If there are no self-intersections of 

positive measure, then H is a Hamiltonian cycle of G; otherwise, it will traverse 

some edges more than once. In either case, H is a polygon, on which we can use 

Algorithm 1 to test whether it is self-overlapping. 

If curve C has k self-intersections, then graph G will have O(k*) vertices and 

edges, and Algorithm 1 will run in O(k6) time, since the time to construct the 

dynamic program dominates the time to construct the straight-line embedding of 

C. If all of the self-intersections of C are points, the bound on the running time 
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can be improved: G will have O(k) vertices and edges, so this algorithm will run 

in O(P) time. 

6. Counting incompatible decompositions 

Let P = g(S’) be a polygon with n vertices, and let (0, F) demonstrate that P 
is self-overlapping. If the sequence of angle pairs 0 defines a triangulation of P, 
then for 0 c i G II - 3, the image F(3Ai) is a triangle 7; whose vertices are vertices 

of P, and aA; contains three values al, PI, yi which are preimages of the vertices 

of ‘T;. 

Definition The triangulations defined by two sequences of angle ranges, 0 and 

O’, are combinatorially equivalent if they define the same set of chords in 0’. 
Combinatorially equivalent triangulations are produced by different orderings 

of the same set of diagonals. (Notice, however, that in general a sequence of 

angle ranges cannot be reordered arbitrarily, since each diagonal is required to 

cut off a simple curve.) 

It is straightforward to modify Algorithm 1 to count the number of com- 

binatorially equivalent ways there are to triangulate P. Instead of setting Q, to be 

zero or one, we store in Q, the number of combinatorially different trangulations 

of V;,..., vj. Since a convex n-gon has exponentially many compatible but 

combinatorially different triangulations, however, this count does not tell how 

many incompatible decompositions there are. Now we shall define a class of 

triangulations that have special properties that allow us to count the incompatible 

decompositions of a polygon. 

Definition. A triangulation (0, F) of P is a constrained Delaunay triangulation 
(CDT) with respect to a decomposition if for each 0 G i G n - 3, there is no value 

0 such that g(8) is a vertex of P, g(8) lies inside the circumcircle of 7;, and 8 is 

visible under 0 to all of CY~, pi, and y,. 

This definition is essentially the same as for simple polygons [8], except the 

notion of visibility is defined with respect to a decomposition. 

Definition. A triangulation (0, F) of P is locally optimal if the following is true 

for every two regions A, and Aj that share a chord on their boundaries: Without 

loss of generality, label the preimages of the vertices so that a; = a; and yj = y,; 

then pi does not lie inside the circumcircle of q and /3, does not lie inside the 

circumcircle of T,. 

Following [8], we note that if Ai and A, share a chord and do not have this 

property, then Apip,a; and Apipjyj do have this property. From the definiton and 
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this observation, it is clear that a locally optimal triangulation of a polygon P 
always exists, and that a constrained Delaunay triangulation is locally optimal. 

The next theorem shows that a locally optimal triangulation is a constrained 

Delaunay triangulation, which proves that constrained Delaunay triangulations 

exist, and also that we can compute them relatively easily. 

Theorem 2. Suppose that P = g(S’) h as no four cocircular vertices and 0 defines a 
locally optimal triangulation of P. Then 0 defines a CDT of P. 

Proof. The proof is a modification of the proof for simple polygons [8]. We 

proceed by contradiction. Let (Y, /3, y, and $ be such that g(G) lies inside the 

circumcircle of Ag(a)g(@g(y), @ is visible to CX, /3, and y, and the distance from 

g(G) to g(a)g(y) is the smallest over all pairs of triangles and visible vertices that 

lie in their circumcircles in the triangulation defined by 0. If the perpendicular 

projection of g(G) onto the line containing g( cu)g(y) does not hit g(cu)g(y), there 

might be a choice of triangles; in this case, choose the values of CY, /3, and y so 

that the perpendicular projection of C$ is closest to the segment g(cu)g(y). (See 

Fig. 10.) 

Since @ is visible to p, g(cu)g(y) must be a diagonal in the triangulation, not an 

edge of P. Thus it belongs to another triangle whose third vertex is g(6). Since 0 

defines a locally optimal triangulation, g(6) lies outside the circumcircle of 

Ag(a)g(@g(y). Moreover, since g(G) cannot lie inside Ag(a)g(y)g(b), one of 

the edges of Ag(a)g(r)g(~), say g(y)g(@, lies between g(G) and g(a)g(y). 
Since C./J is visible to /3, g(y)g(b) . is a so 1 a diagonal in the triangulation. If $ and 

6 were not mutually visible under 0, then there would be another triangle and 

visible point where the point was closer to the triangle than g(G) is to 

Ag(a)g(P)g(y); this would violate the choice of (Y, p, y, and $. Not only is C$ 

visible to 6: g(@) is also closer to g(y)g(b) than to g(cy)g(y). Finally, since g(6) 

lies outside the circumcircle of Ag(a)g(y)g(@), and g(a)g(y) is a chord of the 

circumcircle of Ag(a)g(y)g(6), g(e) must lie inside this circumcircle, which 

contradicts the initial choice of (Y, /3, y, and c$. This proves that no such CX, p, y, 

and + exist, so 0 defines a constrained Delaunay triangulation. 0 

Fig. 10. Illustration for the proof of Theorem 2 
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If no four of the vertices of a simple polygon are cocircular, then the 

constrained Delaunay triangulation is unique [8]. We shall prove a stronger 

result. 

Theorem 3. Suppose that P =g(S’) has no four cocircular vertices. Two 
decompositions 0 and 0’ of P have combinatorially equivalent constrained 
Delaunay triangulations if and only if they are compatible. 

Proof. The proof in one direction is easy. If the CDTs with respect to 0 and 0’ 

are combinatorially equivalent, then each diagonal in one decomposition is a 

diagonal in the other. Thus the two decompositions are compatible by definition, 

Suppose that the CDTs defined by 0 and 0’ are combinatorially different. We 

must show that the decompositions are incompatible. Let $ be such that 

g(#)g(q) is the first diagonal (beginning counterclockwise from an edge of P 
incident to g(G)) that radiates from g(G) and is not shared by the CDTs defined 

by 0 and 0’. Assume without loss of generality that g($)g(v) belongs to the 

CDT defined by 0. Let g(@)g(B,) be the diagonal that immediately precedes 

g($)g(v); this diagonal belongs to both CDTs. (If g($)g(q) is the first diagonal 

in 0 that follows an edge incident to g(4), then g(#)g( 6,) is a side of P.) Let 

g($)g(&) be the diagonal that immediately follows g($)g(v) in the CDT defined 

by 0. (See Fig. 11.) 

If $ and I# are not mutually visible under O’, then there is nothing to prove: 

since they are mutually visible under 0, the CDTs defined by 0 and 0’ are 

incompatible. So assume that @ and 11, are mutually visible under 0’. We seek 

the preimage q’ of the vertex of the triangle in the CDT defined by 0’ that has 

g($)g(O,) as an edge and that lies on the same side of that edge as g(q). Note 

that by the choice of $ and v, g(q’) 1 ies on the same side of g(@)g(q) as g(8,). 

First we exclude two possible locations of g(+‘). If g(q’) lay inside 

Ag(#)g(v)g( O,), then it would be visible under 0 from all three of $, q, and 13~ 

(since @, 02, and q are pairwise mutually visible under O), which would 

9 (9’) 
s@,) 

I 

,’ \\ 
I’ \ 

cl(#)) 
\ \ e \ \ 9 ($1 

\ \ \ \ \ \ \ 
cl@,) 

Fig. 11. The notation for the proof of Theorem 3. The solid triangles belong to the CDT defined by 
0. The dashed triangle shows where q’ might lie. 
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contradict the fact that 0 defines a CDT. If g(q’) lay outside the circle through 

g(#), g(q), and g(f3,), then the circumcircle of Ag($)g(~‘)g(8,) would contain 

g(q); since both @ and 111’ and @ and 8, are mutually visible under O’, and @ and 

v are mutually visible under 0’ by assumption, 111 would be visible under 0’ to 

all three of $, 1+9’ and ol, which would contradict the fact that 0’ defines a CDT. 

Now suppose that g(q’) lay inside the circle segment bounded away from g(q) 

by g(#)g( 0,). Then since 0 defines a CDT, 3’ must not be visible to all three of 

@, t+~, and 8i under 0. Since @ and v are mutually visible under 0’ by 

assumption, however, there must be an edge of P that intersects the circumcircle 

of &(@)g(lv)g(W in a chord that lies between g(@)g(&) and g(q’). Therefore, 

$J and 3’ are not mutually visible under 0, but are mutually visible under O’, so 

0 and 0’ define incompatible decompositions. 

If g(v’) lay inside the circle segment bounded away from g(e) by g(q)g(&), 

reasoning similar to that preceding shows that the decompositions defined by 0 

and 0’ are incompatible. 

This reasoning covers all possible locations for g(q’) except on the 

circumcircle of Ag(c$)g( q)g( 0,). Such a placement, however, would violate the 

assumption that no four vertices of P are cocircular. 0 

Theorem 3 implies that when P has no four cocircular vertices, we can count 

the number of incompatible decompositions it has by finding the number of 

combinatorially inequivalent constrained Delaunay triangulations. Algorithm 3 is 

a modification of Algorithm 1 that does this. It fills a table Qnxnx, by setting Qiik 

to be the number of combinatorially different locally optimal triangulations of the 

(j -i + 1)-gon whose vertices are vi, . . . , Yj that include AY~.v~v~. Obviously, 

Qijk = 0 when k does not follow i and precede j in cyclic order. 

Algorithm 3. The first step of the dynamic program sets Qi,i+2,i+l= 1 if and only 

if Vi+, is a convex vertex. The general step of the dynamic program sets Q;j~ to 

(Co Qika) X CC, Q/+> w h ere the summation indices a and b are such that Qiko > 0, 

Qkjb > 0, AViVjVk is oriented counterclockwise and obeys the local optimality 

property with respect to both triangles AViVavk and AV~VbVjvi, the vertices 

Vi, Vi, vk+* and v&i appear in that order counterclockwise around vk, and the 

following four segments do not intersect the interior of AViVjV~: ViV,+l, Vk_,Vk, 

vkvk+l 7 and v~-~v~. Thus, v;, vj, and l/k form a triangle along whose sides we can 

glue locally Optimal triangulations of Vi through vk and vk through vi to derive a 

locally optimal triangulation of vi through vj. 

Since the range of values of a and b that must be considered to compute Q;jk do 

not overlap, it is easy to compute Qijk in O(n) time, which leads to a running time 

of O(n4) for Algorithm 3. If instead of a simple three-dimensional table we 
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maintain a matrix QEX,, of sorted sequences, where Q, contains the partial sums 

of the values of Qijk, sorted by increasing angle at vk in AY~v~v~Y~, then we can 

reduce this running time to 0(n3 log n). 

If a polygon contains four cocircular vertices that are mutually visible under 

some decomposition, then it has combinatorially different Delaunay triangula- 

tions that are compatible. Since Algorithm 3 counts combinatorially different 

Delaunay triangulations, it will not count correctly the number of incompatible 

decompositions of the polygon. To prevent this, modify the dynamic program so 

that if ~j,, and Tjkz are to be set to the same value because Y,, vj, vk,, and vkZ are 

cocircular and mutually visible, then only Tji.,,min(k,,kz) is set to this value, while 

;rl,,.max{k,.kz) is set to zero. 

If we use Algorithm 3 instead of Algorithm 1 as a step in Algorithm 2, then we 

can count the number of incompatible decompositions of any curve. 

7. Infinite self-intersection 

Curves with an infinite number of self-intersections pose some interesting 

challenges. Some, like the one shown in Fig. 12, are self-overlapping according to 

the definition in Section 2, since they can be decomposed into a finite number of 

simple pieces. It is not clear, however, how to apply Algorithm 2 in any 

reasonable way. 

The curve shown in Fig. 13 can be decomposed into a infinite number of simple 

pieces, but not into any finite number. To account for this example by some sort 

of explicit construction, we might take m = 00 in our definition, and require that 

all Aj, including ‘A,,’ be simple. This change, however, causes us to lose the 

immersion property of Section 1. 

8. Open problems 

A variety of questions remain to be answered about self-overlapping curves. 

Let C be a self-overlapping plane curve and let R be an open region in R2 - C. 

Under any mapping F defined by a decomposition of C, every point in R has the 

Fig. 12. One piece of this self-overlapping curve is a portion of the curve y = x’sin l/x, and another 
piece is a portion of the x-axis. 
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Fig. 13. Should this curve be self-overlapping? 

same number of preimages under F (this follows from theorems about winding 

numbers [l]); thus we can speak of the numbers of layers that cover R, 
independent of the mapping F. We say that C is a k-layer curve if k is the 

maximum value such that no region in R2 - C is covered by more than k layers; 

for example, the curve in Fig. 4 is a three-layer curve. We know of no two-layer 

curve that has two incompatible decompositions, and conjecture that none exists. 

From a computational standpoint, an obvious question is whether one can test 

whether a curve is self-overlapping in sub-cubic time. Leo Guibas asked how one 

can find a decomposition that demonstrates that a curve is self-overlapping and 

uses a minimum number of cuts. 

In our earlier paper [14], we made some incorrect remarks and conjectures. We 

suggested that one way to think of self-overlapping curves is as the projection of 

the boundaries of stretched but untwisted disks in three dimensions. A generali- 

zation of Milnor’s paisley shows that this property is sufficient to guarantee that a 

curve is self-overlapping, but not necessary 

about the indivisibility of the number of 

prime larger than the number of layers. 
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