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This paper considers the definability of graph-properties by restricted second-order and 
first-order sentences. For example, it is shown that the class of Hamiltonian graphs cannot be 
defined by monadic second-order sentences (i.e.. if quantification over the subsets of vertices is 
allowed); any first-order sentence that defines Harniltonian graphs on n vertices must contain at 
least ½n quantifiers. The proofs use Frai'ss6--Ehrenfeucht games and ultraproducts. 

Introduction 

We consider problems of the following type: given a property P of finite graphs 

and a class C of logical formulas what can be said about the definability of P in 

C? As the difficulty of defining or expressing a property corresponds intuitively to 

some notion of complexity, in this way we get problems related to those of 
complexity theory. 

As basic examples for connections existing between definability classes and 

other classes of languages relevant in other fields of computer science, we mention 

the theorem of Fagin [5] characterizing languages in NP, and the theorem of 

Biichi [12] characterizing regular languages as a definability class. 
In Section 3 we consider cases when C is a class of second-order formulas. The 

motivation for this is twofold: firstly Fagin characterizes NP as a second-order 

definability class, secondly most important graph-properties are not first-order 
definable but their standard definition is a simple second-order definition using 

quantification over subsets of vertices or subsets of edges (e.g., connectedness, 

k-colorability, existence of perfect matching, etc.). We obtain the exact relation- 
ship between some of these natural subclasses of segond-order definable proper- 

ties. 
If C is the class of first-order sentences and P is not first-order definable one 

can do the following: let P,  be the class of graphs on n vertices belonging to P. 

Then of course P,  is finite and so there exists a first-order sentence q~,~ such that if 
G is a graph on n vertices then G ~ P, ¢~ G ~ q~,. In this way we obtain a sequence 

(q~l, q~2 . . . .  ) of first-order sentences defining P. The complexity of P can be 
measured by the complexity of the sequence (~01, ~02 . . . .  ) (with an appropriate 
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notion of complexity of sentences). This is the approach taken by Immerman [9]. 
Bounds for this measure were obtained independently in [16], these are described 
in Section 4. 

1. Somme definitions 

Graphs considered in this paper  are finite, undirected, without loops and 
multiple edges. The language of graphs contains one binary relation R(x, y) (and 
equality). Notions like a graph G being a model of a first-order sentence in the 
language of graphs are assumed to be known. 

A sentence is second-order if its variables are first-order variables or relations. 

~ n  1.1. A second-order sentence is monadic if its second-order variables 
are relations of arity 1 (i.e., correspond to subsets of vertices), dyadic if its 
second-order variables are relations of arity ~<2. 

Definition 1.2. A dyadic second-order  sentence is weakly dyadic if its second 
order  quantitiers over binary relations are of the form 

3R~(Vx, y(Rt(x,  y ) ~  R(x, y) )^ -  • .) 

VR~(Vx, y(Rl(x,  y) ~ R(x, y)) ---~ • • .) 

(i.e., correspond to subsets of edges). 

Definition 1.3. A second-order sentence is existential if it is of the form 

::IR1 • • • 3Rk~,  

where qb is a first-order sentence written in the language containing symbols for 
relations R1 . . . . .  Rk and R. 

A property P of graphs is second-order (resp. monadic, dyadic, weakly dyadic, 
existential weakly dyadic) definable if there exists a second-order (resp. monadic, 
dyadic, weakly dyadic, existential weakly dyadic) sentence qb such that G ~ iff 
G ~ P. A weakly dyadic property is also called subgraph-definable as in this case 
quantification is allowed over subgraphs of the graph given. 

Notation. We use the following notation: 
= class of dyadic properties, 

5e = class of subgraph-definable properties, 
:l~e = class of existential subgraph-definable properties, 

dg=  class of monadic properties. 

Definition 1.4. The  quantifier-rank Q R  of a formula is defined inductively as 



Definability of propert/es of finite graphs 293 

follows: the quantifier-rank of an atomic formula is 0, QR(q~ v ~b)= QR(q~ ^ ~ ) =  
max(QR(q~), QR(~b)), QR(--nq~) = QR(q~), QR(:lxq~) = QR(Vxq~) = QR(~0) + 1. The  
quantifier-number QN of a formula q~ is the number of quantifiers in q~. 

2. F)miu6-1Ehrenfeucht games 

In this section we define Fra'iss6--Ehrenfeucht games and state some of their 
basic properties. These games are useful in obtaining negative results for defina- 
bility and positive results for decidability as well (see e.g. Fagin [4], Fer ran te-  
Rackoff [6]). 

Ddln i f ion  2.1. Let  us consider two graphs G1 and G2, two players (I and II) and 
m, the number of moves. The  m-move first-order Fra'iss6--Ehrenfeucht game on 
G~ and G2 is the following (the term 'first-order' is explained by the Theorem 
below). In Move 1 player I selects one of the graphs and chooses a vertex vl of 
the graph selected, player II selects a vertex wl of the other  graph. In Move 2 
player I selects one  of the graphs again (independently of his previous selection) 
and chooses a vertex v2 of the graph selected, while player II selects a vertex w2 
of the other  graph. (A vertex already selected can be chosen again.) This is 
repeated m times, finally we have k ~< m points in each graph with a natural 
correspondence between the two sets (vi-'-~ wl). Player II wins if this correspon- 
dence is an isomorphism between the subgraphs spanned by the points selected in 
G1 and G2, otherwise player I is the winner. G1 and G2 are m-equivalent in the 
first-order game (G1 ~ , ,  G2) iff player II has a winning strategy. (It can be shown 
that this is an equivalence relation indeed.) 

Thus the role of player I in this game is to find differences between G1 and G2, 
while player II tries to utilize similarities. Equivalence can be considered as a 
measure of similarity (isomorphic graphs are obviously equivalent for every m). 

The fundamental properties of the first-order game are summarized in the 
following theorem due to Fra'iss6 and Ehrenfeucht.  

Theorem.  GI ~mO2 if and only if for every first-order sentence q~ of quantifier- 
rank <~ m the following holds 

G1 ~ ¢:) G2~q~. 

Thus G1 ~m G2 iff no first-order sentence of quantifier-rank ~< m can distinguish 
Gl  and G 2. 

We shall use the following special case: if GluinG2 and q~ is a first-order 
sentence in prenex form with m quantifiers then Gx ~ q~ ¢~ G2 I = ~ holds. (To prove 
this one has to check that a distinguishing formula determines a winning strategy 
for player I, contradicting G1 ~,,  G2.) 
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Now we define second-order variants of the game corresponding to the second- 
order  quantifiers introduced in Section 1. 

Defmition 2.2. The m-move monadic second-order game is defined similarly as 
the first-order game with the only difference that here  at each move player I has 
two possibilities: either to make a vertex-move (i.e., select a graph and choose a 
vertex of it as in the first-order case), or to make a set-move: select a graph and 
choose a subset of its vertices, i.e., to add a new relation Ri of arity one to the 
structure. In any case player II must answer with a same kind of choice in the 
other  graph. At  the end of the game we consider isomorphism of the substruc- 
tures spanned by the vertices chosen (edges and new relations) to decide the 
winner. The m-move dyadic second-order game is defined analogously only here 
players have graph-moves as well, i.e., in one  step new relations of arity 2 can 
also be chosen. In the second-order subgraph-game graph-moves are restricted to 
the choice of subgraphs of the graphs given. 

In the dyadic and subgraph-games we do not require the relations chosen to be 
symmetric. To  each variant of the game there belongs a corresponding variant of 
equivalence (we do not use different notation for the different variant~s as 
hopefully it will be clear from the context what kind of equivalence is in question). 

An important point for us is that the above theorem holds (with exactly the same 
proof) for the second-order  variants of the game as well using the corresponding 
versions of sentences and equivalence, e.g. for the monadic case we have the 
following 

Theorem: G1 ~,,  G2 in the monadic second-order game if and only if for every 
monadic second-order sentence of quantilier-rank <~ m the following holds 

An important corollary of these theorems is that for any of the above games the 
number of m-equivalence classes is finite for every m as the set of sentences of 
quantifier-rank~<m is finite (modulo logical equivalence). We shall return to this 
point in Section 5. 

3. Second-order delTmable graph-properties 

In the first part of this section we give several examples of natural graph- 
properties beloning to the definability classes defined in Section 1. 

Example 3.1. Let  C O N N = { G :  G is connected}. Then C O N N ~  holds. The 
defining sentence is the following: 

¢~ VRI[((Rx ~: •) ^ (R1 y~ 91)) ~ ::Ix, y (Rl(x) ^ ~ R I ( y )  ^ R(x, y))]. 
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The sentence states that for every nonempty proper  subset of the vertices there is 
an edge connecting this subset and it's complement.  This is clearly equivalent to 
connectivity. We note that Fagin [4] and Hajek  [8] showed that CONN ~ 3d{. 

Example  3.2. Let  M A T C H = { G :  G contains a perfect matching}. Then 
M A T C H ~  33" holds. This is obvious. 

Example  3.3. Let  H A M = { G :  G contains a Hamiltonian cycle}. Then H A M ~ 3 "  
holds. The  defining sentence is the following: 

qb ¢~ 3R1 (R1 is a connected subgraph with all degrees = 2). 

We remark that here due to the above definition of connectivity this does not 

show that H A M  is in 33" (and as we shall see in fact H A M ¢ 3 3 "  !). 

Example 3.4. Let  A U T = { G :  G has a proper  automorphism}. Then AUTe@ 
holds. The defining formula is the obvious transcription of the standard definition. 

A further example is contained in the following proposition. 

Proposit ion 3.1. Let  P L A = { G :  G is planar}. Then P L A  e./I~ holds. 

Proof .  To  show this we use Kuratowski's theorem. The  property of containing a 
topological Ks can be expressed as follows: there are 5 vertices vl . . . . .  v5 and 10 
subsets P1,2, PL3 . . . . .  P4.5 in G such that {vi, vi}c_Pi.i, otherwise the Pij are 
disjoint and connected for every 1<~ i, i ~< 5, i ~ j. A similar statement holds for 

/('3.3- [ ]  

If we add a further relation R '  of arity 1 to the language of graphs (i.e., we 
consider graphs with a given subset V' of the vertices as basic structure), then the 
class 

{(G, V'): V' is an independent subset of maximal cardinality} 

is evidently in @. However, using K~Snig's theorem it can be shown to be in 3" as 
well. 

It is evident that there are certain inclusions between the definability classes 

Jff, 33", 3' and @. These inclusions are summarized in Fig. 1. 

The question arising is whether any of these inclusions are proper? Theorem 

3.1 below answers this question. 

T h e o r e m  3.1. All inclusions of Fig. 1. are proper, i.e. 
(a) ~ff and 33" are incomparable, 
(b) ~t U 3 3 " ~  3", 
(c) 3"~@. 
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Fig. 1. 

Proot .  (a) Consider first the property MATCH.  We show that MATCH~Jff .  
Suppose that there is a monadic formula q~ defining MATCH.  We can assume for 
simplicity that • is in prenex form with n quantifiers. Now consider the monadic 
n-move Fra'iss6-Ehrenfeucht game, and let the number of equivalence classes be 
r. Taking the complete graphs K1, K2 . . . . .  Kr+l, we can find i , j  (1~<i, j < ~ r + l ,  
i :fi j) such that 

K, - ,Kj  

(where ~ means monadic equivalence). Let  

Gx = K~ U K~, G2= K~ U Kj 

0J means union of two disjoint copies without adding any new vertices). Then 
O l ~ , O 2  since player II can correspond the first K~ in Ox to K~ in G2, the second 
Ki in G1 to K i in 02,  and then win the game using the trivial strategy on the first 
pair and the (existing) winning strategy on the second pair. But then O l ~ , O 2 ,  
since complementing does not change the isomorphism of the graphs during 
the game. (Note: This does not hold for the weak dyadic game--as  it is shown 
by this example.) 

Now we have G1 = K~.~, G2 = Ki.i, i.e., both are complete bipartite graphs, and as 
i ~ j, Ol ~ MATCH,  G2 ~ MATCH.  But Ol  ~ qb O G2 ~ q~, contradiction. Hence 
M A T C H  e ::1,90- ~ff. 

To  show that J R -  ::1~ is nonempty, we consider the property CONN. Suppose 
CONN~::I,Y and q~ is an existential weak dyadic sentence defining CONN in 
prenex form 

::IR1 . . .  =IRKS" 

where R . . . . . . .  R~  are variables of arity 1, R. . . . . . .  R~, are variables of arity 2. 
Consider the sequence of graphs GI,  G~, G~ . . . . .  where G~ is a cycle of length i. 
Then G ~  holds for every i. Let  H~ be the structure obtained by adding 
relations R1 . . . . .  Rk so that HI  ~ ~ (such relations exist by the definition of q~). A 
simple computation shows that there exists a constant c (depending on k) such 
that if j = I.c log2 iJ, than there will be 4 disjoint isomorphic arcs of length j on G~ 
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Ai x 

j t , 

(a) (b) 

Fig. 2 

(i.e., isomorphic when we consider the restrictions of R1 . . . . .  Rk on them). 
Choose 2 non-neighbouring ones, let them be A~, B~ and the other two be ~ ,  D~ 
(see Fig. 2(a)). Now form graph G 2 as shown on Fig. 2(b): G 2 consists of two 
cycles, each of length ~ 2 j  by definition. Define relations R1 . . . . .  Rk on G~ as 
on G~ and denote the structure obtained this way by H 2. Now take the two 
ultraproducts (for definitions see Chang-Keisler [3]) 

Ye = .HI and 
i = l  i = 1  

Then using the properties of ultraproducts it can be shown that ~ is isomorphic 
to ~2. (A detailed proof is given in [14]). We have ~ 1 ~ ,  so ~ t~2~  also holds. 
On the other hand as G~ is disconnected, G2~@, hence G 2 ~ V R 1  • • • V R ~ - n ~ ,  so 
H ~ f f ' ,  and this gives ~2~-1~,  a contradiction. 

(b) We show HAM~-,,RU=I~o HAM~ is shown in Example 3.3. 
H A M ~ R  comes from the proof of the first part of (a) observing that K~.~ is 
Hamiltonian while Ki.i ( i # j )  is not. HAM~::IS" follows from the proof of the 
second part of (a) observing that G~ is Hamiltonian while G~ is not. 

(c) We show A U T ~  @-,5". A U T ~  ~ is evident (see Example 3.4). To prove 
A U T ~  5" consider the weakly dyadic Fra'iss6-Ehrenfeucht game, and suppose @ is 
a weakly dyadic sentence in prenex form with n quantifiers defining AUT. Let the 
number of equivalence classes in this kind of game of n + 1 moves be r. Let Pi be 
a path of length i and consider P1 . . . . .  P,+a- Then as in (a) we have some i, j (1 ~< i, 
/~ r + 1, i ~ / )  s.t. Pi ~,+lPi- Now form G,  and G 2 as in Fig. 3. Then G1 e AUT, 
G2~AUT,  so Gl~tib, G2~t~. 

Thus if we show that G~ ~nG2 we are ready. This follows by the same kind of 

\ 1 \ 1 
P. P. /P " p. y y, 

Fig. 3. 
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argument  as in (a) with the only technical modification, that player  I I  considers 
the two vertices of degree 3 to be selected in a fictive move 0. [ ]  

Remmrk. The second part  of (a) can be proved with the method of Fagin [4] as 
well. This proof  uses the proof  of Lovfisz [13] of the theorem of Fagin. 

4. The complexity of first-order definitions 

As indicated in the introduction we are going to define a complexity measure  
related to the difficulty of defining a proper ty  on its instances on n vertices. 

Defmliion 4.1. Let  P be  a class of graphs, let P ,  be  the class of graphs on n 
vertices belonging to P. For  n = 1, 2 . . . .  let % be first-order sentences s.t. if G is a 
graph on n vertices then G ~ P,, ¢# G b q~,. Suppose fur ther  that  ~0, has minimal 
Q N  among all sentences satisfying the same condition. Then QN(P) ,  the 

quantifier-number complexity of P is the sequence (QNx(P), QN2(P) . . . .  ) s.t. 

Q N , ( P )  = QN(tp,). 

The quantifier-rank complexity QR(P)  is defined analogously. 

Note  that ~0, with minimal Q N  (or QR)  always exists. We  give some lower 'and  

upper  bounds for the Q N  and Q R  complexity of some properties.  Fra'iss6- 
Ehrenfeucht  games give lower bounds for QR,  this translates trivially to lower 
bounds for QN. The  first example is the standard example of short defining 
formulas (see e.g. Fischer-Rabin  [7]). 

Example 4.1. QN, (CONN0 ~< 3 [log2(n - 1)] + 2. 

A graph G on n vertices is connected iff any two vertices can be connected by a 

path  of l e n g t h < ~ n - 1 .  Let  ~0k(x, y) be  a sentence that holds iff x and y can be 
connected by a path of l e n g t h ~ 2  k. Thus q~0(x, y )¢#  R(x, y) and 

~k+l(X, y) ¢~ 3z(q~k(x, z)  ^ ~0k (z, y)) ¢* 3 z  V u ,  v ( ( ( u  = x ^ v = z )  

v ( u  = z ^ v  = y))---, ~k(u, v)). 

In this sentence we use ~0k only once, so the result follows. 

Corollary 4.1. Q N . ( C O N N )  ~<-~[log2(n - 1)] +2 .  

Proof .  Let  ~07(x, y) mean that x and y can be connected by a path  of length ~<s t, 
then 

~0~+I(X , y )  ~ ] Z  1 . . . . .  Z s -  1 V U ,  1)[((U = X A 1) = Z1) V"  " ") ~ (~07(U , V)] .  

Thus to describe connectivity we need [ l o g s ( n - 1 ) ] ( s  + 1 ) + 2  quantifiers. The  
corollary follows with s = 4. IZI 
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The  following example is an application of the above 'abbreviation trick.' 

Theorem 4.1. Let B I P = { G :  G is bipartite}. Then holds 

QN,(BIP)  ~<4[I0g2 n] + 1. 

lhtm~|. A closed walk is a sequence (X1, ex, x2, e2 . . . . .  ek, xk+l) of vertices and 
edges s.t. e~ = (x~, x~+l) and xk+l = Xl, its length is k. Then a graph 13 on n vertices 
is not bipartite iff it contains a dosed  walk of length n -  1 if n is even and of 
length n if n is odd. This is true because the length of a walk can always be 
increased by 2 repeating an edge in two directions. In the other  direction, an odd 
dosed  walk must contain an odd cycle. 

Let  q~k(x, y) be a sentence that holds iff x and y can be connected be a walk of 
length k. Then 

q~k( x, Y) ~ I ~IZ(~k/2(X' Z)A~t)klE(Z' y)) if k is even,  

L ::lz, u(R(x, z)Aq~(k-1)/2(z, U)Aq~(k-1)/2(u, Y)) if k is odd. 

Thus q~n(x, y) can be written with 4[10g2 n] quantifiers as in Example 4.1 and as 
we have seen 

G~BIP  ¢:~ ~ Vx(-mCp"-l(x'x)) if n is even,  

t Vx(~q~,,(x, x)) if n is odd. [ ]  

A lower bound to QN(CONN) is given in the following theorem showing that 
the upper bound is optimal within a constant factor. The  theorem was proved by 
P6sa [14] with different methods and independently by Immerman [9]. 

Theorem 4.2. QR, (CONN)  >~ Llog2 nJ - 1 .  

Proof  (sketch). Let  G1 be a cycle of length n, 13  2 be two cycles of length /½nJ and 
[½n]. Then obviously 13a is connected, 132 is not, so we have to show 131-,~ 132 in 
the first-order game where m =/ log2 nJ - 2 .  The  winning strategy of player II can 
be given explicitly on an inductive way. Player II tries to maintain the following 
assumptions: 

(a) after s moves the vertices chosen on 131 are P1 . . . . .  Pk, Q1 . . . . .  Ql in 
circular order  (k + l = s), the corresponding points on the first cycle of 132 are 
P~ . . . . .  P/~ in the same circular order,  and Q~ . . . . .  Q~ on the second cycle of 132 
in the same circular order;  

(b) considering the arcs PiP~+I, P'iP'i+l, QiQi+l, Q~Q~+I 

PiP~+I ~, ,~P' iP ' i+1  i = 1 . . . . .  k - 1 

(~iC~i+ I --rrt, O~O~+l ] = 1 . . . . .  k - I 

where m, = [log2 nJ - s - 2 ;  
(c) the length of the arcs PkQ1, QPI,  P[~P~, Q ' Q I  is 1>[n/2SJ. 
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It can be shown that these assumptions can be maintained independently of the 
choice of player I. Thus the theorem follows. [ ]  

Corollary 4.2. QN, (CONN)  ~ > [log2 n] - 1 .  

It is easy to see that for any graph-property P QN(P)~< n holds because with n 
variables we can simply describe the adjacencies of every graph on vertices 
belonging to P (in general this will be a very long sentence). Thus the maximal 
lower bound that can be obtained for QN is linear. The  next theorem shows that 
such lower bounds hold for some natural properties. 

Theorem 4.3. QR,,(HAM) I> [½nJ. 

l[h~m|. Suppose first n even. Then let 

GI = / ( . / 2 . . / 2 ,  G2 = K,~2-I.,.2+I. 

Clearly G x ~ H A M .  On the other  hand G 2 ~ H A M  (a Hamilton cycle would 
alternate between the two colour-classes). Thus it is enough to show that " 

G1 ~rd2--1 G2 

holds. The winning strategy of player II is to correspond the first class of G1 to the 
½n-  1-class of G2, the second class of G1 to the ½n + 1-class of G2, and then to 
select corresponding vertices from the corresponding classes. As the spanned 
subgraphs will always be complete bipartite graphs of the same size he wins until 
the smallest class is not exhausted. This cannot happen in ½n-  1 moves. 

If n is odd, a small modification is needed. Construct Gx as follows: take 
K(n_l)12,(n_l)/2 and join a new vertex to all the other  ones. G 2 is obtained from 
K(,-a)/2.t,+a)/2 in the same way. Then G1 is Hamiltonian, G 2 is not (K(n_3)/2,(n+l)/2 
does not contain a Hamiltonian path), and 

G1 ~(n-3)/2 G2 

holds similarly as in the even case, only player II now lets the new vertices 
correspond. [ ]  

Coronary 4.3. Q R ,  (MATCH)>/n /2  i[ n is even .  

The same proof can be applied to this case as well. 

It can be remarked that while H A M  is computationally harder  than MATCH,  
this difference is not reflected in their QN. 
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5. Further remarks 

In this section we mention some related problems that may merit further 
investigation or  where partial results have been obtained. 

(1) The number of equivalence classes in the first-order Fra'issr--Ehrenfeucht 
game (or in other  games respectively) indicates the power of first-order formulas 
so it may be of some interest to give bounds for these numbers. It is noted in [17] 
that the function F(m) where F(m) is the number  of m-equivalence classes is not 
recursive (this follows from the undecidability of the theory of graphs). The upper 
bound that can be obtained following Ladner  is a non-elementary function of m 
(in the sense of Kalm~r). One can show a non-elementary lower bound as well. 
The  idea is that high-order formulas can count very large sets and this can be 
coded back to graphs that correspond to the iterated subsets construction. 

(2) Problems related to those investigated in this paper  emerged in the theory 
of relational data-bases (see e.g. Chandra-Hare l  [2], Vardi [18], Immerman [11]). 
An interesting definability tool used there is the operation of transitive closure 
and minimal fixpoint. I.e., one is allowed to take the transitive closure of a 
definable relation, and the minimal fixpoint of a monoton formula when inter- 
preted as a monoton operator  on k-ary relations (e.g. the standard definition of 
transitive closure). One can show that the class of bipartite graphs can be defined 
using transitive closure. 

(3) Consider graphs with four distinguished vertices at ,  bt, az, bz. Take the 
class of structures 

{(G, al ,  bt, a2, b2): there are disjoint paths from 
at  to bb and from a2 to bE}. 

What is the QR-complexity of this property? The results of Seymour [15] may be 
relevant. This question is related to the QR-complexity of planarity as well. 

(4) A variant of the problems in Section 4 is the following: let be given two 
graphs Gx and G2 on ~<n vertices. Find a first-order formula s.t. Gt~O and 
G2lk~0. What can be said about the QR-complexity of cO? It seems reasonable to 
assume that Gt  and G2 are connected, with all degrees ~<k. w h a t  is the maximum 
of the Q R  of the minimal ~0 for all such Gt,  G2? One should guess O(ck log2 n), 
but from Immerman [9] a lower bound of 2 ~°'/r°-~" follows. For  trees one can show 
O(log 2 n) and good bounds can be given in general for graphs with small 
separators but these are only sufficient conditions. 

(5) Immerman [10] shows interesting relations between QN-complexity and 
classical notions of complexity with an important assumption: one has a linear 
order on the vertices. This makes it possible to simulate general computational 
devices by formulas. Is there a structured model for computation on graphs (in the 
sense of Borodin [1]) that is related on a similar way to formulas without the 
linear order? 
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