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Regular incidence-polytopes are combinatorial generalizations of regular 
polyhedra. Certain group-theoretical constructions lead to many new regular 
incidence-polytopes whose faces and vertex-figures are combinatorially isomorphic 
to classical Euclideanly regular polytopes or regular maps on the torus. ( 1985 
Academic Press. Inc 

1. INTRODUCTION 

Regular polytopes have been studied since antiquity, and with the 
passage of time there have been many changes in point of view about them. 
In the 20th century the most powerful contributions to a systematic 
investigation of regular configurations are due to Coxeter; for a detailed 
survey see, for example, Coxeter [3-61, Coxeter and Moser [9], and Fejes 
Toth [16]. In the past few years the notion of a regular polytope was 
extended in several directions. 

For instance, Grtinbaum’s new regular polyhedra provide a new class of 
metrically regular contigurations in the Euclidean space including also the 
classical regular polytopes (that is, the Platonic solids), the Kepler-Poinsot 
polyhedra, and the Petrie-Coxeter polyhedra (cf. Griinbaum [ 171). 
Recently, Dress has made considerable progress in the classification of 
these objects (cf. [lS]). 

The study of combinatorial properties of regular polytopes has also led 
to other fruitful directions of exploration. Danzer’s concept of a regular 
incidence-complex generalizes the notion of a regular polytope in a com- 
binatorial and group-theoretical sense (cf. [ 131). The concept is closely 
related to Griinbaum’s notion of a regular polystroma (cf. [ 18]), but is 
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more restrictive and rules out many disconnected structures. In particular. 
each d-dimensional regular incidence-complex is a regular (d-- 1 )- 
polystroma, but not vice versa. The concept includes all classical regular tl- 
polytopes and all regular complex polytopes as well as many geometries 
and well-known configurations (cf. Coxeter [6], Shephard [25] ). 

At the same time the concept allows interactions with the work of 
Buekenhout on finite simple groups (cf. [ 11) growing out of the work of 
Tits on buildings (cf. [27, 281). and also with the work of Dress on regular 
polytopes and equivariant tessellations (cf. [ 143). For further references see 
c131. 

One important problem in the theory of regular polytopes is the con- 
struction of d-dimensional polytopes with preassigned facets and vertex- 
figures. The present paper deals with the analogous problem for an 
interesting class of regular incidence-complexes, namely for incidence- 
polytopes of Euclidean or toroidal type (cf. Section 2). 

Given two regular incidence-polytopes YL and $ isomorphic to a 
classical regular polytope or a regular map on the torus, we ask whether :‘pI 
and PZ fit together as the facet (or face) and vertex-figure (or co-face) of a 
higher-dimensional regular incidence-polytope W, respectively. It turns out 
that the incidence-polytope (even a finite and non-degenerate one) exists 
for many choices of 9, and &. The construction is in group-theoretical 
terms, applying more general methods for constructing regular incidence- 
complexes to the special situation. These methods also allow one to attack 
several problems closely related to the above-mentioned problem, for 
instance, if the torus is replaced by other closed real ,-manifolds. 

Analogous problems for regular polystromas were considered by Griin- 
baum in [ 181. In particular, he lists many interesting examples. Among 
them is a 3-polystroma of type (4,4, 3 1, for which Coxeter and Shephard 
found very symmetric realizations in the Euclidean 4-space and 5-space 
(cf. [lo]). In [7, S] Coxeter describes interesting regular 3-polystromas of 
types {4,4,3}, (3,5,3}, and {S, 3,5) with few vertices. Further 
polystromas of type ( 3, 6, 3 } were discovered by Weiss (cf. [29]). All these 
polystromas are also 4-dimensional regular incidence-polytopes, and some 
of them appear also as the facet-type of a 5-dimensional regular incidence- 
polytope. 

2. REGULAR INCIDENCE-P• LYTOPES 

For a detailed introduction to the theory of regular incidence-polytopes, 
or more generally of regular incidence-complexes, the reader is referred to 
[ 131. Many examples of incidence-complexes can be found in Danzer 
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[ll, 121. Although many results of our paper can be extended to arbitrary 
incidence-complexes, we shall confine ourselves to the investigation of 
incidence-polytopes. 

First, we shall recall some basic definitions and elementary facts. 
An incidence-polytope 9 of dimension d (or briefly a d-incidence- 

polytope) is defined by the properties (11) to (14). 

(11) (9, 6 ) is a partially ordered set with elements F , and Fd such 
that FEN implies Fp, < F6 Fd. 

(12) Every totally ordered subset of 9 is contained in a totally 
ordered subset with exactly d + 2 elements, a so-called flag. 

The elements of 9 are called faces. For convenience, we shall not dis- 
tinguish a face F and the section-complex {G 1 G 6 F) of faces which are 
majorized by F. The section-complex {G 1 F 6 G3 of faces which are greater 
than or equal to F is called the co-face to F(with respect to 9’). 

With every face F we can associate a dimension dim(F), where 
dim(F) + 2 is the number of faces in a llag of the complex {G 1 G < F}. In 
particular, dim(F ,) = - 1 and dim(F,) = d. We call F a vertex, an edge, 
an i-face or a facet, iff dim( F) = 0, 1, i, or d - 1, respectively. The co-face to 
a vertex is also named a vertex-figure. 

(13) 9 is connected, which means: iffand g are two different flags of 
.? and h : =f ng, then there is a finite sequence of flags 
.f=.fi ,.fi ,..., f,, , , f, = g, all containing h, such that f, + , differs from f, in 
exactly one face (1 < m < n - I). 

The last defining property guarantees a certain homogeneity of 9. 

(14) For any two faces F and G with F< G and dim(F) + 1 = i = 
dim(G)- 1, there are exactly two i-faces H of 9’ with F6 Hd G 
(i = O,..., d- 1 ). 

In case the partial order induces a lattice we call 9 non-degenerate, 
otherwise degenerate. If nothing else is said, degeneracy is not excluded. 
One important property of non-degenerate incidence-polytopes is that all 
faces may be considered as subsets of the set of vertices of 9, or dually of 
facets of 9. 

If Y is a d-incidence-polytope and < is replaced by > while the set of 
faces is unchanged, we get the dual d-incidence-polytope P* of 9. We call 
9 self-dual, iff .c?? and S* are isomorphic. Obviously, the dual of a non- 
degenerate incidence-polytope is non-degenerate too. 

A regular incidence-polytope B is an incidence-polytope, for which the 
group A(B) of combinatorial automorphisms of 9 (that is, of incidence 
preserving permutations) is flag-transitive. Then, by (14), A(P) is even 
sharply flag-transitive (cf. [ 13)). 
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The flag-transitivity of A(Y) implies that A(d) is also transitive on the i- 
faces for each i. Later we shall also use the fact that, for a non-degenerate 
9, the group A(,?) can be regarded as a transitive permutation group on 
the set of i-faces of :Y for each i. 

If B is regular, then so is every face and co-face of 9. Furthermore, faces 
and co-faces of the same dimension are isomorphic incidence-polytopes, 
respectively. 

With every regular incidence-polytope 9 is associated a triangular 
scheme (k,,,)+ where k,,, denotes the number of flags in the section-com- 
plex (F, G ) : = { H 1 F < H < G 1 belonging to an i-face F and a j-face G 
incident with F (- 1 6 i<.j< d). In particular, k,,, = ki,,, i = 1 and 
ki- I,/+ 1 = 2 for all i. As A(9) is sharply flag-transitive, the number k,, coin- 
cides with the order of the group of (F, G). In particular. k ,,<I is the 
order of A(9). 

It is easy to see that the only isomorphism types of 2-incidence-polytopes 
are the (linite) p-gons {p) in the Euclidean plane and the (infinite) 
apeirogon { x }, and these are also regular. Their groups are the dihedral 
groups of order 2p and the infinite dihedral group, respectively. 

As all section-complexes of a (I-incidence-polytope ;?p are also incidence- 
polytopes, the number k, ,,,+ J of 9 has the form k, ,,, , 2 =2pj+, 
(i = 0 ,..., cl- 2) with p, + , 3 2 (possibly infinite). In order to avoid extremely 
degenerate situations we shall always assume that all p, are greater than or 
equal to 3. For instance, this is true for non-degenerate incidence- 
polytopes. In most of the cases we consider the p, take one of the values 3, 
4, 5, or 6. 

The family of all regular d-incidence-polytopes considered up to 
isomorphism, which share the numbers k,,; of the following triangular 
scheme is called the clan 

2 

i “. 
2 ‘.. 2 2 

k 1.2 k ‘I 3.d 
: 

k ” ,.., k <l-S 1.d 

of degree s. In particular, a clan of degree d (when the scheme becomes 
complete) is also named a cluster. A clan of degree s is said to be sym- 
metric, iff its sceme is symmetric with respect to its vertical axis. A regular 
incidence-polytope is called symmetric, iff the cluster it belongs to is sym- 
metric. Obviously, self-dual incidence-polytopes are symmetric, but not vice 
versa (cf. Section 8). 
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In the sequel, we shall say that an incidence-polytope 9 is of type 
(PI ,..., pd , }, if it is a member of the clan 

( 2 2 ..’ 2 2 

2p, ..’ ) 2Pd- I , 

of degree 2. 
The classical regular polytopes provide examples for regular incidence- 

poiytopes. By a theorem of McMullen (cf. 191) they are the only 
isomorphism types of convex polytopes which are regular incidence- 
polytopes. In particular, the d-polytope with the Schlafli-symbol 
{ p1 ,..., pd , } is actually of type {p, ,..., pd , }. We remark without proof 
that the cluster determines a classical regular polytope up to isomorphism 
within the class of non-degenerate regular incidence-polytopes. 

The classical regular polytopes are also the only finite universal 
incidence-polytopes in the sense of [22, Sects. 5, 61. Each regular incidence- 
polytope of type (pl ,.,., pdP I } can be derived from the respective universal 
one with Schllfli-symbol (p, ,..., pdP ,} by making suitable identifications. 
These universal incidence-polytopes were originally found by Tits (cf. [26]) 
and were rediscovered in [21]. The author is indebted to R. Scharlau for 
the reference to the paper of Tits and the information that these universal 
incidence-polytopes are non-degenerate as well as geometrically realizable 
by convex cones (cf. [20]); both problems remained open in [21, Chap. 41. 

In general a regular complex polytope does not lead to a regular 
incidence-polytope in our sense. In fact, the numbers ki I,,+7 are only 2 for 
all i, iff the polytope is real (cf. Coxeter [6]). 

The regular maps on surfaces give further examples of 3-incidence- 
polytopes; for an extensive account of regular maps see Coxeter and Moser 
[9]. However, only the reflexible regular maps are regular in our sense. 
For irreflexible regular maps the automorphism group is not flag-transitive, 
although it is transitive on the faces of each dimension, that is, on the ver- 
tices, edges, and 2-faces, respectively (cf. [9, p. 1021). 

In this paper we are concerned only with reflexible regular maps on the 
torus. There exist only the three infinite series of maps { 4,4 )h,c, (6, 3 }h.c, 
and { 3, 6 fh,c with c = 0 or b = c. The map {4,4},,. is self-dual, whereas 
(3, 6),, is the dual of (6, 3},,. For later use we have listed some proper- 
ties of these maps in Table I. The dual ( 3,6 > b,c of { 6, 3 } b,c is omitted, since 
the duality dictates the necessary changes. The information about the non- 
degeneracy is also included in the list. As an example, the map { 6, 3 > 2.2 
and its dual are shown in Fig. 1. They will play an important role in Sec- 
tions 5-8. 
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1 

b 

FIG. 1. The maps {6,3},,, and {3,6}:,? on the torus. 

As in the case of a regular polytope the cluster determines a reflexible 
regular map on the torus up to isomorphism; that is, a map is charac- 
terized by its invariants p1 and p2 and the order of its group. Note that this 
does not extend to arbitrary toroidal maps; for example, the reflexible 
regular map { 4,4} 5,0 and the irreflexible regular map {4,4},,, have the 
same group order 200 but are not isomorphic. Also, it is worth mentioning 
that on the surface of genus 14 there are two non-isomorphic reflexible 
regular maps (7, 3},, and (7, 3},,, which have not merely the same group 
order but the same group 

(cf. [9, p. 1391). 

G 3.7,12 N G3,‘*14 N PGL(2, 13) 

The following considerations show that the class of all finite reflexible 
regular maps on surfaces actually coincides with the class of all finite 
regular 3-incidence-polytopes. In fact, we can associate with every finite 
(regular) 3-incidence-polytope B a closed real 2-manifold M(9) by 
regarding certain points of the space as the vertices of P, joining vertices of 
an edge by a real line and stretching a topological disc in every 2-face. 
Hence, the study of regular 3-incidence-polytopes is equivalent to the study 
of reflexible regular maps. 

For convenience we shall call a iegular d-incidence-polytope 9 
Euclidean or toroidal (the latter only for d = 3), if it is combinatorially 
isomorphic to a classical Euclideanly regular convex polytope or a 
reflexible map on the torus, respectively. Since we are only working with 
combinatorial configurations and isomorphism types of such, we do not 
require that 9 be geometrically realized in any Euclidean space. In par- 
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titular, the automorphisms of ./p are only combinatorial automorphisms 
but not geometric symmetry operations. 

Our notation becomes particularly evident in case d= 3. In fact, the sur- 
face M(P) is the 2-sphere, iff either 9 is Euclidean or the dihedron { p, , 2 1 
or the hosohedron (2, p 2j (cf. Coxeter [5, p. 121). On the other hand 
exactly the toroidal 3-incidence-polytopes cover the case M(P) is the torus. 

With these preliminaries the general problem underlying this paper can 
roughly be expressed as follows. Find regular incidence-polytopes with 
preassigned Euclidean or toroidal faces and co-faces. In some instances, 
there are simple combinatorial reasons which rule out the possibility of 
fitting together both types. For example, if two d-incidence-polytopes 9, 
and 4 are predescribed for the type of the facets and vertex-figures, respec- 
tively, then of course, the facets of :$ have to be isomorphic to the vertex- 
figures of 9,. These considerations extend to the general situation where 
the types of the i-face and of the co-face to a j-face are preassigned. 

In accordance with Griinbaum’s notation in [ 181 we denote, for a given 
dimension d and two given incidence-polytopes 9, and .Yz of dimensions i 
and d-j- 1, respectively, the family of all d-incidence-polytopes with i- 
faces of type Pr and co-faces to j-faces of type :‘p2 by (9,) Yz). In most cases 
i and j will be d- 1 and 0, respectively. Since the dimension d will always 
be clear from the context, we shall not explicitly mark the symbol by an 
index d. For example, the 4-dimensional 24-cell { 3,4, 3 \ is a member of 
(j3,4), j4, 33) (2. Coxeter [5]). 

3. AUTOMORPHISM GROUP AND CONSTRUCTION METHODS 

The automorphism group of regular incidence-polytopes has been 
studied in [22,23]. For later use we shall recall the most important results. 

Let 9 be a regular d-incidence-polytope of type ( p, ,..., pd , } and define 
U := A(9). The automorphism group U is generated by involutions 
pO,-, Pd- , , where pi denotes the unique automorphism that keeps all but 
the i-face Fi of a certain flag f’: = (F._ , , F, ,..., Fdp , , F,} of 9’ fixed 
(0 < i < d - 1). These generators satisfy the relations 

p’= 1 (Odi<d-1) ) 

(PiPj)2 = I (O<i<j- 1 <d-2) ) 
(1) 

(Pipi+ I )“+I = l (O<i<d-2) (2) 

and in general some additional relations. 
For i=O ,..., d- 1 and Ic {0 ,.,., d- l} define U; :=(p, Ij<i), 

UT:= (pjlj3i), and U,:= (p,lj~Z). In addition, U,:= (1) and 
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u,: := u: := (1) if i < 0 and k > d- 1, respectively. These subgroups 
have the important property 

If 1, Jc (0 ,..., d- l}, then U,n U,= U,,,J~ (3) 

For i<j the automorphism group of the section-complex 
(F,, Fj) : = {F I F, d FS F,} of B belonging to the i-face F, and the j-face 
F, in f is just the subgroup Uii+ ,,,--jp,) of U; its order coincides with the 
number k,,. In particular, U;-, and UT+, are the groups of the i-face F, 
and its respective co-face, respectively. 

The generators pO,..., pd-. ,, or more exactly the groups U,, also allow 
one to characterize the combinatorial structure of 9. In fact, by the results 
of [22], we have 

cp(F,)6IC/(F,)~(-ldidjddr\IC,~‘cp~U, ,U,-i,), (4) 

where the case i = j describes equality of faces. Note that, by the transitivity 
properties of U = A(P), cp( FJ and II/ run over all i-faces and .j-faces of 
.P, if cp and II/ run over U, respectively. 

In the case of a Euclidean incidence-polytope 9, or more generally a 
universal incidence-polytope {pi ,..., pd _ , }, the relations (1) and (2) suffice 
for the definition of the group (cf. Coxeter [S], and [22]). Thus, the group 
is just the Coxeter-group with linear diagram 

.-. . . . . -. 
PI Pd-I . 

For toroidal 3-incidence-polytopes (that is, reflexible regular maps on 
the torus), one extra relation has to be added (cf. Coxeter and Moser [9, 
Sect. 81). It is given in Table I; the relation for { 3,6 ),,( is obtained from 
that of (6, 3},,. by replacing p0 by p2 and vice versa. 

The most important feature of properties (1) and (3) is that they charac- 
terize the groups of regular d-incidence-polytopes. In fact, if A is a group 
generated by involutory generators pO,..., pd , with properties (1) and (3) 
then A is the automorphism group of a regular d-incidence-polytope P(A) 
(X(A) in the notation of [22]) and po,..., pd.. , the respective generators of 
A (with respect to a suitable flag of 9(A)). In particular, (2) holds with 
certain numbers p, ,..., pd- i determining the type of P(A). It is worth men- 
tioning that property (4) originally served for the definition of the partial 
order in 9(A) (cf. [22]). 

Moreover, if the group A is just the group of a regular d-incidence- 
polytope 9 generated by the respective generators (that is, U= A), then 
9(A) is actually isomorphic to 8. Therefore we can conclude that the 
investigation of regular incidence-polytopes is completely equivalent to the 
investigation of groups of the above-mentioned type. 
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In the sequel we shall use the notation A; , A,+, and A, with respect to A 
analogously to CT,~ , Ui’ , and li, with respect to U. 

In view of the above-mentioned results our problem is transformed into 
an embedding problem for groups. That means, instead of fitting together 
the incidence-polytopes 9, and .+‘?? as facets and vertex-figures of a suitable 
higher-dimensional incidence-polytope, we can as well embed the 
automorphism groups A(P,) and A(Y2) into a suitable group A which gives 
rise to an incidence-polytope .?(A). 

For instance, if 9, and Pz are Euclidean or toroidal regular 3-incidence- 
polytopes, we have to search for a group A such that all properties are 
satisfied together with A2 = A(Y,) and A: = A($). As Euclidean and 
toroidal regular 3-incidence-polytopes are completely characterized by their 
group (and even by the group order) up to duality, these properties would 
imply that the facets and vertex-figures of Y(A) are isomorphic to .Y, and 
<“/“2, respectively. 

In a sense this problem has a “universal solution.” Indeed, if d is a 
regular 4-incidence-polytope with facets and vertex-figures of types Pi and 
$,, respectively, then the generators pO,..., p3 of A(P) have to satisfy certain 
relations dictated by the defining relations of the subgroups 
<P,,, pI, p2) =A(*) and (P,, P?. p3) =A(%) of A(g). BY applying the 
general construction of [22] to the group A abstractly delined by these 
relations, we get a 4-dimensional partially ordered set P(A) with properties 
(I1 ), (12), and (14) and a certain connectivity property, which admits A as 
a flag-transitive group. But in general it is by no means clear that P(A) is 
actually an incidence-polytope in our sense (that is, has property (I3)), and 
has facets and vertex-figures isomorphic to Pi and $, respectively; or in 
other words, that A satisfies property (3) together with A; = A(P,) and 
A: = A(P2). Even if both should hold true the finiteness of 9(A) (that is, of 
A) is still undecided. In any case we can conclude that every 4-incidence- 
polytope solving our problem is obtained from the “universal solution” by 
making suitable identifications. Of course, these ideas extend to dimensions 
greater than 4. 

For later reference we shall sum up the results in Theorem 1. As the 
starting point we take the facet type 9, and try to embed A(PI) into a 
suitable group A; then, the type of the vertex-figures is determined by A:. 

THEOREM 1. Let 9, he a regular d-incidence-polytope of type 
b,m~c,-,L) d an pO, . . . . pdm , the generators of U := A(PI) belonging to a 

flag f:= {F.,,F, ,..., F,}. Suppose that U is contained in a group A 
generated by p,,,..., pdP, and one additional involution pd such that pO,..., pd 
satisfy the relations ( 1) (with d replaced by d + 1) and 

A+ n U= I/‘+ (O<i<d). (3’) 



REGULAR INCIDENCE-POLYTOPES 315 

Then, the regular (d + I)-incidence-polytope 9’ : =.Y(A) has the following 
properties. 

(a) A is the automorphism group of 9 and pO,..., pd the respective 
generators. ,Y is finite, zff A is ,finite. 

(b) The facets of 9 are isomorphic to 9,. 

(c) The co-face to an i-face of 9 is isomorphic to the incidence- 
polytope 9(A:+ ,) derived from A:+, in the same way as 9 ,from A 
(i=O,..., d- 1). 

(d) !f pJ is the order qf pd , . Pd in A, then 9 is af type 
jPIY..>P& I?PrlJ. 

Moreover, $9, is non-degenerate while A satisfies the condition 

LetO~i~j~k~dandz~U~~,.IfF;,isthesupremumqf 
F, and z(Fi) in PI, then A,++, I-I TAT+, U c A:, , U. 

1 (5) 

then, 

(e) 9 is non-degenerate. 

Theorem 1 is a combined version of [23, Satz 1, 21 applied to the special 
situation. Note in particular, that (3’) is a simplification of (3). Whereas in 
many instances it is easy to verify property (3’) it is on the other hand 
extremely difficult to check (5). However, (5) cannot be weakened, since it 
exactly describes the non-degeneracy. 

4. PETRIE-POLYGONS 

In the classical theory of regular polytopes and of regular maps on sur- 
faces Petrie-polygons play an important role; see, for example, Coxeter 
[S], Coxeter and Moser [9]. In many instances, the length of the Petrie- 
polygon gives rise to a defining relation of the automorphism group. 

In this section we generalize the concept of Petrie-polygons to regular 
incidence-polytopes. We shall confine ourselves to non-degenerate regular 
incidence-polytopes, although the considerations extend to some classes of 
degenerate incidence-polytopes. So, throughout this section all incidence- 
polytopes are supposed to be non-degenerate. 

Following the inductive definition of Petrie-polygons in Coxeter [S, 
Sect. 12.41, we declare that the Petrie-polygon of a 2-incidence-polytope is 
that incidence-polytope itself (see Section 2). For d 2 3, a Petrie-polygon of 
a d-incidence-polytope 9 is a path within the l-skeleton of 9 (that is, a 
path with vertices and edges in 9) such that any d- 1 consecutive edges, 
but no d, belong to a Petrie-polygon of a (d - 1 )-face (facet) of .p. 



316 WON SCHUL.TE 

First, we remark that Petrie-polygons are completely determined by their 
vertices. In fact, the non-degeneracy of ,?p implies that any two vertices of .Y 
lie in at most one edge of b. Moreover, if two vertices F and G lie in an 
edge H, then H is also incident with each face of .‘P containing F and G. 
These considerations show that we could have said “d consecutive vertices” 
instead of “d - 1 consecutive edges” too. But in the case of a degenerate 
incidence-polytope these things can be quite different. 

The proof for the following results is the combinatorial analog of the 
proof for the corresponding results on Petrie-polygons of regular polytopes. 
In order to avoid needless duplication we shall restrict ourselves to a sum- 
mary of the main facts. 

Petrie-polygons do actually exist for every non-degenerate regular ci- 
incidence-polytope .jp and have at least d+ 1 vertices. By the regularity they 
are all alike; that is, any Petrie-polygon of d can be mapped onto any 
other Petrie-polygon by an automorphism of .jp. Therefore. we are justified 
in speaking of the Petrie-polygon of ;ip. 

Each path with d vertices belonging to a Petrie-polygon of a facet of d 
can be uniquely extended to a Petrie-polygon of 9. Hence, Petrie-polygons 
are uniquely determined by Li consecutive vertices. 

Let 71 = . . G 1 G,,G, . . G,, z G,, , be a Petrie-polygon of 9, where 
the Gj denote the consecutive vertices. For i = O,..., d- 1, the path 
G,,G, Gj belongs to a Petrie-polygon of a unique i-face F, of 9. Clearly, 
f’:=jF ,, F, ,..., Fd~ ,, F,} (with F ,, Fd as in (11)) is a flag of B which 
gives rise to a system of generators /lo,..., pdm , (cf. Section 3). By 0 we shall 
denote the automorphism po. 0, . I-‘~,~ , , and by h its order. Hence, 

(po.p,, “’ ‘P(, ,)/‘= 1. (6) 

Then, cr permutes the vertices of 7~. Actually, they are shifted forward, 
which means a(G,) = Gj+ i for each j. Defining h’ to be the number of ver- 
tices in ‘II, we observe that cr’ keeps all vertices of rc fixed, iff 1 is a multiple 
of h’. As automorphisms of non-degenerate incidence-polytopes are com- 
pletely determined by their effect on the vertices, this implies the equality 
h = h’. Therefore, the order of 0 is just the length of the Petrie-polygons in 
9. 

The relation (6) is of course well known for regular maps on surfaces 
and regular polytopes and honeycombs. Important classes of such con- 
figurations denoted by { p, q}r (with h = r) and (p, q, r,... >, (with h = t), 
respectively, have groups abstractly defined by the relations (l), (2), and 
(6) (cf. Coxeter [a], Coxeter and Moser [9]). 

In accordance with Coxeter [7] we shall also use the notation s{ p, q, r}, 
for a 4-incidence-polytope in the class ({p, q}s, {q, r},). Also, we write 
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(9,, 9”),, for the subclass of (pi, PI) consisting of those incidence- 
polytopes, for which the automorphism Q = po. p, . . . . . pd , has order h. 
So, in the case of a non-degenerate member 9 of (9, YZ)h the subscript h 
is just the length of the Petrie-polygon of 9. For instance, the arrangement 
5{ 3,5,3} 5 of 11 hemi-icosahedra described in Coxeter [S] and Griinbaum 
[lS] is a non-degenerate member of the class ((3, 5}5, {5,3},), (with a 
hexagonal Petrie-polygon). It is actually the universal incidence-polytope 
of this class, and its group is the simple group PSL(2, 11) rr G’,5,5 of order 
660. 

5. INCIDENCE-P• LYTOPES WITH A SYMMETRIC GROUP 

In this section we remind the reader of the construction in [23, Satz 33 
providing incidence-polytopes 9 with preassigned facet-type 9,. In par- 
ticular, we shall study some additional properties of 9 which were not 
pointed out there. For example, we shall see that the group of ,9’ is the 
symmetric group of degree “number of facets of 9, plus 1.” 

In order to construct B we shall suitably apply Theorem 1 to the given 
facet-type 9,. Here, our starting point will be the presentation of the group 
of 9’, on the set of facets of PI. 

We shall restrict our attention to finite and non-degenerate regular d- 
incidence-polytopes 9,. So, let 9, be such an incidence-polytope, 
f:= fFml,..., F,} a fixed flag of @, and U := A(pl) the automorphism 
group of @ with generators pO,..., pd-, determined by f (cf. Section 3). By 
L, we denote the set of all facets of 9, incident with F,, and by m, its car- 
dinality (i = - 1,O ,..., d - 1). For brevity we write L : = L , and m : =m , . 
so that L and m are the set respectively the number of all facets of PI. In 
addition we choose one element a not in 9, and define M : = L u {u} and 
M;:=L,u {u} (i’ -l,o )...) d - 1). Then, M and M, have cardinality m + 1 
and m,+ 1, respectively. 

Since we have assumed non-degeneracy for 9,, each automorphism of 9, 
is uniquely determined by its effect on the elements of L. So, we can regard 
U as a subgroup of the symmetric group S, fixing the element a of M. 
Now, we turn to the construction of the group A with the properties of 
Theorem 1. 

We define A to be the subgroup of S, generated by U and the trans- 
position pd :=(Fd- ,a) of S,. Since pO,..., y,--, keep the facet Fd , of 9, 
fixed, we immediately deduce the relations 

(PiPdY = 1 (i=O,..., d-2). 

As an example we consider the 3-cube (4, 3 } with facets l:..., 6 numbered 
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in such a way that (1, 2), (3, 4), and (5, 6) are pairs of opposite facets (cf. 
Fig. 2). Then, its group [4, 31 is generated by 

P”=(3 4L h=(l 4)(2 3), p2=(l 5)(2 6). (7) 

Renaming Fd-, by 5 and a by 7, our group A will be a subgroup of S, 
generated by pO, p, , p2 and 

vx=(5 7). (8) 

Here, easy calculations reveal a regular 4-incidence-polytope of type 
<{4,3), (3, 6)2,2)7 with grow ST, 35 vertices, and 105 facets (see also 
Section 7). However, this incidence-polytope degenerates, since there are 
pairs of vertices which are antipodal with respect to at least two cubes. But 
it can be shown that it has a heptagonal Petrie-polygon. 

For a general incidence-polytope 9, it has been proved in [23, Satz 31 
that A actually satisfies the condition (3’) of Theorem 1 and thus gives rise 
to the regular (d+ 1)-incidence-polytope 9’ := Y(A) with properties 
(a),..., (d) of Theorem 1. However, the non-degeneracy, that is, the property 
(5) of A, depends on the following condition (NA) on the group U of 4. 

L 

6 
t 

’ 2 
! / 

4- 

+ 

3 

1 

5 

FIG. 2. The 3-cube (with fundamental region and suitably numbered facets). 
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But this condition is rather weak and also satisfied in the most important 
cases. In fact, one can prove that for any dimension d there are only finitely 
many regular d-incidence-polytopes for which (NA) fails. 

For any two vertices G and H in 9,) the identity map is 
the only automorphism cp with the following property. 
Any facet of q not containing G or H is kept fixed by cp, VA) 
and any facet containing G but not H is mapped onto a 
facet which also contains G. 

In order to analyse the structure of P and its co-faces we proceed with 
the investigation of the group A and its subgroups A,‘+, : = (pi+, ,..., p,). 
By Theorem 1, the latter are just the automorphism groups of the co-faces 
to i-faces of 9. 

Here and also in Section 6, we shall make use of the following simple fact 
about permutation groups. Let Y, Z be finite sets with Y c Z and z be in Z 
but not in Y. If a subgroup B of the symmetric group S, on Z contains 
both a transposition p = (yz) with JJE Y and a subgroup B’ which acts 
transitively on the elements in Y while keeping z fixed, then, B contains 
also the subgroup SyUlz). In particular, if Z= Yu (z}, then B=S,. In 
fact, by the transitivity of B’ on Y, for each y’ in Y there is a permutation cp 
in B’ with q(y) = y’. Hence, (y’ z) = (pp(p - ’ is in B. But, the transpositions 
(y’ z) with 17’~ Y generate the group S,, izl, so that S,, (zI c B. 

Applying these considerations to the case Z= M, Y = L, z = a, 
B = A c S,, and B’ = U c S, we immediately get A = S, E S,, + , . In other 
words, the automorphism group of 9 is the symmetric group of degree 
“number of facets of PI plus 1,” We remark that for the d-simplex A 
becomes S,, 2 and 9 the (d+ 1)-simplex. 

Turning to the subgroups Alt, 1 we see that A: = (pd) has order 2 and 
that, in case 9, is not the d-simplex, Adt_ 1 = (PDF. , , pd) is the dihedral 
group D, ‘v S, x S2 of order 12. The latter reveals hexagonal co-faces to 
(d - 2)-faces of 9. 

Now, let 0 d i6 d- 3 and rp be in A,f, I. Then, cp can be written in the 
form cp = ‘p,pdq2pd’ . . pdqk with cp, ,..., (Pi E UT+, . Recalling that each 
automorphism in U,?+ i leaves the i-face F, off invariant and thus permutes 
the facets within L, as well within L\L,, we observe that cp can be split uni- 
quely into two permutations +I and $* in S,$ and S,,,,, = SL\,L,, respec- 
tively. Here, tiz is just the restriction of the automorphism ‘p, . cpz. . (Pi 
in UT,, to L\L,. 

Taking into account the transitivity of U,+, 1 on the facets in Li, a 
suitable application of the above-mentioned fact about permutation groups 
(Z=M, Y=L,,z=a,B=Ai+,,cS,,,,,B’=U,+,,cS,)showsthatS,,isa 
subgroup of A,++ I. Consequently, writing C for the group consisting of all 
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I A 

Incidence-Polytopes Obtatned h 

Dimension Type tiroup Group order Ii 

4 

4 

<{6, 3),,,, {3, 6)~ 
for h > 3 

((6, 3),,,> {3> 612.2) 
for c>2 

(h’ + 1 )! 

(h’+ l)!, 126’ 

(3? + I)! 

21, 1fh=3 
2h(2h+l), ifha 

2h(2h+ I) 

13, ifc-2 
171, ifc =3 

6c( 6~ + 1 ), if c b 4 

1 S,,:. , x 16, Jl,,, 1 (3?+1)!.36r’ 1 6C(6C, + I ) 

4 <is> 31, {3,6}1.2) 13! 

13!. 120 

4 <{5>3),> {3,6i2.2 SI 5040 6 -_ 

S,xA, 7!.60 30 

5 X13,4,3}> 13>6},,2) s z5 25! I56 

szs x [3,4, 31 25!, 1152 I56 

5 ((5, 3. 3}, 13, 6j2.2) 111 

s,z, 

s -------I-- 121! 930 

------ x IS, 3, 31 121!. 14400 930 

j3, 6j2.2) 21! 

21!.6!.2 

d+l (24) <j4,3”m2), {3,6},,,) S&i L I (2d+ l)! 2d+ 1 

s 2d- I x L4,3d-21 (2d+ 1)!.2”.d! 2d(2df 1) 

d+ 1 (34) <{3d-‘}, {3> 6)2.2) s d+LXSd+l (d+2)!.(d+ l)! (df 2hd+ 1) 

~ d+l (34) <{3”-‘}, {3,6}z.o) S d.ZXS2 (d+2)!.2 d+2, ifd+ 1 odd 
2df4, ifd+ 1 ever 

D In the sixth column the symbols f, e( .), *, or ? indicate the existence of a Petrie-polygon of lengt 
the existence of a Petrie-polygon whose length is the number in brackets (with ? if the length is unknoq 
the existence of hamiltonian Petrie-polygons, or that the existence of Petrie-polygons is unknown, res 
tively. In the last column we use the symbols + for non-degeneracy, - for degeneracy, or ? if this is 
known. 
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tructions of Sections 5, 6, and 8” 

Petrie-polygon 

+ 

+ 

+ 

Number of vertices 

(b’+ 1)!/144 

(b* + I)!. b*/12 

(3?+ 1)!/144 

Number of facets 

(b2 + 1)!,‘12b* 

(b* + 1 j! 

(3c2+ 1)!/36c2 

Non-degenerate/ 
degenerate 

+ 

+ 

+ 

+ (3cZ+ l)!'C2/4 (3?+ I)! + 

+ 13!/144 13!/120 + 

+ 13!.5/6 13! + 
- 

et?) 35 84 ? 

+ 2100 5040 + 

+ 25!/48.7! 25!/1152 + 

+ 25!/210 25! + 

+ 121!/2880 121!/14400 + 
.- _.... _..~......~ 

+ 121!.5 121! + 
? 1584 9!.2 ? 

+ 12!' 11/7! 12! + 

‘I 20!/16.6! 21!/2.6! 1 

+ 20!/8 21! + 

e(7) ifd=3, (2d+ l)!/(d+ l)!‘d! (2d+ 1)!,12d.d! .- 
? ifd>4 

+ (2d+1)!,2d/(d+1)! (2d+ l)! + 

f. * (d+ 2)(d+ 1) (d+ 2)! + 

+ ifd+ 1 odd, 
d+2) ifd+ 1 even, d+2 2df4 - 

* in both cases 

/ 

4 
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restrictions of automorphisms in ti;;, to L\ L,, we see that C is a subgroup 
ofAT+,. Hence, I,!J, can run over all of S,, while tiz can run over all of C. If 
all automorphisms in CT:+, are uniquely determined by their effect on 
L\L,, then C is actually isomorphic to U,?+ i, implying that AT+, 2: SM, x 
CNS,,+lX UT+,. For instance, this is true for all i, if the condition (NA) 
holds for 9,. However, a weaker condition would s&ice. 

Summing up all information we can easily calculate the cluster (k,,),, of 
9. While the numbers kiJ with i,,j < d are determined by L$, the remaining 
numbers ki,d+ I are given by 

if i=-1 

if i=O ,..., d-2 and 

‘%+++%+,xU:,,. 

For a d-incidence-polytope q of type (p, ,..., pd- i } our (d + 1 )-incidence- 
polytope 9 is of type {p, ,..., pd i, 6) with k,--,,,+ , = (pd , + 1 )! or 
(pd- I + l)! .2p,- i if d = 2 or > 3, respectively. 

Of particular importance is the case pd- r = 3. Then, the co-faces to 
(d- 3)-faces of 9 turn out to be of type { 3,6} with group A,+_ 2 21 S, x S3 
of order k,-. 3,d+, = 144. By the considerations of Section 2, this implies 
isomorphism with the toroidal regular map (3,6),,,. 

Applying our results to more specific classes of incidence-polytopes we 
get a number of interesting new regular configurations. Some of them are 
listed in Table II, together with information about their type, group, group 
order, number of vertices and facets, non-degeneracy or degeneracy, and 
length of Petrie-polygons. 

6. CONSTRUCTIONS OF NON-DEGENERATE INCIDENCE-P• LYTOPES 

The non-degeneracy of the incidence-polytopes in Section 5 depends on 
the condition (NA) which is satisfied in most cases but not in general. In 
this section we shall modify the construction so as to obtain non- 
degenerate incidence-polytopes 9 for any preassigned non-degenerate 
facet-type pi. However, this can be done only by enlarging the 
automorphism group and turning A from S, + , into S, + i x A(5Pl). The 
new construction has also interesting connections with that of Section 5. 

Again, let the finite and non-degenerate regular d-incidence-polytope pi 
be given and let U= A(9:). Assume that f, pi, Li, L, M,, M, mi, m, and a 
are defined as in Section 5. 
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We start from a new presentation of U as a permutation group on the 
facets Fin L and on the elements F of a certain set L’. We take care that U 
acts on the elements of L’ in the same way as on the facets in L. 

To be precise we consider a set L’ and a bijection @: L H L’. For F in L 
we define F by F : = Q(F) and, for i = - 1,O ,..., d - 1, L,! by L,f : = Qj(L;). 
Then, L’ = L’- 1. 

Each automorphism cp of Pi regarded as a permutation on L induces in a 
natural way a permutation on L’, namely by cp(F) : = (q(F)) for F in L’. 
In this way cp becomes a permutation on Lu L’ and, therefore, U a sub- 
group of SLvL,. 

Next, we adjoin the element a but do not add any element a’ 
corresponding to a. So, U is considered a subgroup of SMvL9 leaving a 
invariant. Again, we define the group A to be the subgroup of S,, L, 
generated by U and the transposition pd : = (Fdp l a) of SuL, L,. Note in 
particular that pd keeps all elements in L’ fixed. 

As an example we consider again the 3-cube. With the notation as in 
Section 5 our group A will become a subgroup of Sir,.. .,,, , _, 6, i N S,, 
generated by 

PO = (3 4N3 4’), p2= (1 5)(2 6)( 1’ 5”)(2’ 6’) 

p, = (1 4)(2 3)(1’ 4’)(2’ 3’), p3=(5 7). 

Here, it turns out that the group A is just S(1,,,,,7) x [4, 31 rr S, x [4,3] of 
order 48 .7! and belongs to a non-degenerate regular 4-incidence-polytope 
of type (14, 31, j3, %,,h, with 1680 vertices and 5040 facets. 

In the general situation any element cp in A, q = ‘p, pdcpZpd’ . .. pdtpk 
with cp 1 ,..., (Pi E U, can be split uniquely into two elements II/ and z of 5, 
and S,,, respectively. In this sense, A becomes a subgroup of S, x S,,. 
Since pd is the identity map when restricted to L’, the element z in S,, is 
actually the automorphism cpl. (p2. ... . (Pi of 9, expressed as a per- 
mutation on L’. As in Section 5 the transitivity of U on L implies that S, 
is a subgroup of A; here Z = Mu L’, Y = L, z = a, B = A, and B’ = U. So, $ 
and z can run over all of S, and U, respectively. Therefore, A N S,,,, x U = 
S m+l xA(4). 

For later use we remark also that for j< i the subgroup 
A:, I = (P,, l,...> pd) of A permutes the elements within Mi, M\M,= 
L\ L,, L; as well as within L’\ Li’, respectively (i = O,..., d - 1). This follows 
directly from the fact that the automorphisms in U:+ , fix thej-face F, in the 
flag f and thus permute the elements within L, as well as within Li. 

Since the generators po,..., pd- z fix both the facet Fd ~~, of %P, and the 
element a in M, we immediately deduce the relations 

(P, Pd12 = 1 (i=O,..., d-2). 
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By Theorem 1, the existence of a regular (d+ 1 )-incidence-polytope 
9 :=9(A) will be secure, if we can verify the assumption (3’), that is. 
A+ n U= U+ for i=O d. 

But this i6 now imm&ate. In fact, if the permutation cp in U= .4(.$) is 
also in A+, then it permutes the elements within Ll for j6 i - 1. On the 
other hand, if an automorphism of LF’~ permutes the elements within Lj and 
thus within L, forj 6 i- 1, then it leaves the,j-faces F, infinvariant. Hence, 
cp is in UT, the stabilizer of F, ,..., F, , . 

The proof of the non-degeneracy of P”, that is, of property (5) of 
Theorem 1, is almost the same as the proof for the incidence-polytopes 
considered in [23, Satz 31. In order to avoid needless duplication we shall 
not give it here. In fact, the only serious change concerns the conclusion 
“a =e” in the proof of [23, Satz 31, where the crucial condition (NA) 
enters. Now, this condition is no longer needed. Indeed, it turns out that 
the automorphism 0 = gp$ ‘z of 9, (notation as in [23, p.703) is the iden- 
tity when restricted to L’, implying that it is also the identity in S,,,, ,. So, 
one can complete the proof as in [23]. 

The structure of the co-face to an i-face of 9 is determined by its group 
AT+,. Here, we shall prove A,‘+, c S,,+ , x U,‘, 1 (i = 0 ,..., d- 2). In other 
words, for any given i-face of 9, the group of its co-face with respect to ;‘P 
is the direct product of S,, + , with the group of its co-face with respect to 
Y1. In particular, for i= d- 2, Ad-~, 2: S, x S2 2: D,, implying again 
hexagonal co-faces to (d - 2)-faces of 9. 

Now, let i be given and cp be in A,‘+,, q=~,p~(~~p~’ ... .pdqk with 
(p,,..., (Pi E UT+ 1. By the above remark, we can split cp uniquely into 
(P=IC/~$~Z with ,II/,ES,,, 1//2~S’M,,,M,=SL\L,,, and z6SL.,. With respect to 
the transitivity of U,+, I on Li arguments similar to those in Section 5 show 
that S,, is a subgroup of A,?+,; here Z=MuL’, Y=L;, z=a, B=A,?+,, 
and B’ : = U,++ , . Hence, II,, can run over all S,,,t.. Again, 5 is actually the 
automorphism cp 1 (p2 . . . (Pi of 9, expressed as a permutation on L’ and 
is therefore in U,?+, . The permutation cc/z is the restriction of the same 
automorphism to L\L,. Hence, the elements 1,4*2 form a subgroup C of 
A:,, isomorphic to U,++, . So, we can conclude A,++, N S,, x 
c2:s,,+,x UT+,, establishing the desired equality. 

We sum up the results in the following theorem. 

THEOREM 2. Let 9, be a finite and non-degenerate regular d-incidence- 
polytope with group U = A(Pl) = (par..., pd ,). Then, CYl can be realized as 
the facet of a finite and non-degenerate regular (d + 1 )-incidence-polytope 9 
with group S,, , x U. For i = O,..., d - 2, the group of the co-face to an i:fhce 
ofPisS,,+,xU;t+,, giving D, in case i = d - 2. The number of vertices and 
facets of 9’ is v. (m + l)!/(m, + 1 )! and (m + l)!, respectively, v denoting the 
number of vertices of 9,. 
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Again, Theorem 2 is of particular interest for d-incidence-polytopes LP, of 
tyPe {p1,...,pd-2, 3). Then, Ad+-2= (pde2, p&l, pd) turns out to be 
S, x S,, implying again isomorphism of the co-faces to (d- 3)-faces of B 
with the toroidal map (3, 6}2,2. For interesting applications of Theorem 2 
to special incidence-polytopes see Table II and Section 7. 

Concluding this section we note without proof some further properties of 
the incidence-polytopes constructed above. 

First, we remark that in a sense our construction commutes with the 
operation of passing from an incidence-polytope to a co-face. In other 
words, applying first Theorem 2 to 9, and then passing from the resulting 
incidence-polytope 9 to the co-face to an i-face F of 9 (with respect to 9) 
gives the same isomorphism type of an incidence-polytope as passing first 
from Y1 to the co-face to F (with respect to 4) and then applying 
Theorem 2 to it. This fact is plausible at least from the equality of the 
groups; in both cases the group is S,,+ 1 x UT+, 

Furthermore, comparing the construction of this section with that of the 
preceding section we observe that in most cases the co-faces of the resulting 
incidence-polytopes have isomorphic groups, namely S,,,‘+ , x UT+ I. It can 
be proved at least under the assumption (NA) for P1 (cf. Section 5) that the 
co-faces do not merely have the same group but are actually isomorphic. In 
this case the constructions of Sections 5 and 6 provide two different types 
9’ and 9’ of (d+ l)-incidence-polytopes, respectively, both with the same 
facets and the same vertex-figures. It deserves mentioning that .9 is a “con- 
traction” of P’, which means that 9 is obtained from .P’ by making 
suitable identifications. The normal subgroup of A (9’) N S,, + , x U respon- 
sible for this identification is just that subgroup of ‘4 determining the 
second factor U of the direct product. 

Finally, the construction of this section seems to be closely related to the 
construction of [24, Theorem 31. It is likely that both lead to the same 
incidence-polytopes. However, the new embedding of the group is elemen- 
tary while the other involves the heavy machinery of free products with 
amalgamation. 

We remark also that the construction of this section can be generalized 
to arbitrary regular incidence-complexes (see note added in. proof). But we 
do not use this here. 

7. EUCLIDEAN AND TOROIDAL FACES AND CO-FACES 

In this section we shall evaluate the constructions of the preceding sec- 
tions when applied to certain classes of regular incidence-polytopes. For 
the most part we shall consider incidence-polytopes whose faces and co- 
faces are Euclidean or toridal or at least related to one of these types. 
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Table II contains our most important examples, together with further 
information on the type, group, and number of faces. Non-degeneracy or 
degeneracy is also indicated, if it is known. The table also includes the 
values for the order h of the automorphism p,, . p I . . pd , . In the case 
of a non-degenerate incidence-polytope h is just the length of the Petrie- 
polygon (cf. Section 4). 

Starting with the 4-incidence-polytopes of type ((6, 3}6,c, { 3, 6},,,), not 
b = c= 2, we note that they provide a negative answer to Problem 1 in 
Danzer [ 111. They show that a symmetric clan of degree 2 can well con- 
tain an incidence-polytope with an asymmetric cluster. Of course, such an 
incidence-polytope cannot be self-dual. Although the clusters become sym- 
metric for b = c = 2, the incidence-polytopes do not become self-dual (for 
instance, the automorphisms pop, p3 and p,p2p0 have distinct orders). So, 
the symmetry of a cluster does not imply the self-duality of its members. 
This is also true in dimension 3. Here, we get an example of type { 6,6 3 
with group S7 from the construction of Section 5 applied to the 
hexagon { 6 } . 

Of particular interest are the infinite sequences of (d+ 1 )-incidence- 
polytopes of type ((4, 3dp2}, (3, 6},,,) and ( {3d-‘}, 13, 6},,), respec- 
tively (d+ 1 b 4). Here, the i-dimensional incidence-polytope of the latter 
type is just the vertex-figure of the (i + 1 )-dimensional incidence-polytope 
of the same type as well as of the two (i + 1)-dimensional incidence- 
polytopes of the former type (i 2 4). The existence of such sequences was 
conjectured in Griinbaum [lS]. Comparing the length of the Petrie- 
polygon with the number of vertices, we also see that the incidence- 
polytopes of type ( ( 3“ -I }, { 3, 6 ) 2.2 ) have hamiltonian Petrie-polygons. 
The 4-dimensional member of the sequence is probably the dual of Griin- 
baum’s #&(cf. [lS]). 

We shall study the 4-incidence-polytope of type ((4, 3}, { 3, 6)*.*) with 
group S7 in more detail (see also Section 5). It is degenerate, has 35 vertices 
and 105 facets, and has a heptagonal Petrie-polygon. For brevity, we shall 
denote it by %$. 

The search for a universal 4-incidence-polytope of We 
((4, 3}, (3, 6},,,) involves analysis of the “rotation” group (a, fi, v) 
defined by 

a4 = fi’= ?6= (@)‘= (g/jr)2 = (By)‘= (py -- ‘,!- ‘y2)2 = 1, (9) 

where c1 : = POP13 P := PIP23 and y := p2p3. Here, the “rotation” group 
(p, 7) of (3,6} 2,2 (of order 72) seems to have infinitely many cosets. But 
the number is reduced to 70 by means of the extra relation 

(cry)7 = 1 (that is, (P~P~P~P~)~ = 11, (10) 
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which then defines the group ST. The enumeration of cosets was carried 
out by H. S. M. Coxeter and A. Sinkov using an electronic computer. They 
kindly communicated the results to the author. 

The “rotation” group of our incidence-polytope (R4 actually coincides 
with the full group A($) = S,. With respect to the generators (7) and (8) 
of S, this gives a presentation of S, in terms of the generat.ors 

a=(1 3 2 4), /I=(1 5 4)(2 6 3) y=(l 5 7)(2 6) 

and the relations (9) and (10). 
Coxeter and Sinkov have also verified the existence of the “universal” 4- 

incidence-polytope in the class ( (4, 3 >, { 3, 6}2,2)7 with group S, x S, 
generated by the permutations 

~o=(3 410 9), p2=(l 5)(2 6x8 9~~ 

h=u 4x2 3)(8 91, /+=(5 7X8 9). 
Its “rotation” subgroup is again S, (with the same generators a, p, y as 
above), and it has twice the number of vertices and facets as wdx,. Our 
incidence-polytope Q$ is obtained from it as an “elliptic” contraction, that 
is, by deleting the transposition (8 9) in the generating permutations (see 
(7) and (8)). 

We remark that Coxeter and Sinkov have also found the universal 4- 
incidence-polytope in the class ( { 4, 3 }, ( 3, 6) 2,2 ) 8, which has 432 vertices 
and 1296 facets. 

The self-dual 24-cell { 3,4, 3) gives rise to two non-degenerate 5- 
incidence-polytopes of type (3,4, 3}, { 3, 6}2,2). When our constructions 
are applied to their duals, we also achieve regular 6-incidence-polytopes of 
type (6, 3,4, 3, 6). In this way the 5-incidence-polytope with group 
SZ5 x [3,4, 31 is realized as the vertex-figure and its dual as the facet of a 6- 
incidence-polytope of this type. On the other hand, there is also a 6- 
incidence-polytope of type {6, 3,4, 3,6) whose facets (with group 
S,, x [3,4, 31) are not the duals of the vertex-figures (with group Szs). 
However, the 4-faces are the duals of the co-faces to l-faces, the latter 
being isomorphic to our 4-incidence-polytope %$. 

Coxeter’s and Grtinbaum’s 5{ 3, 5, 3) 5 with group PSL(2, 11) (cf. 
[ 8, 181) can also serve as a section-complex of a non-degenerate regular 6- 
incidence-polytope. Here, we get the type (6, 3, 5, 3, 6). 

The author does not know whether the honeycombs 6(3, 6,3 }6 and 
8{ 3,6, 3}* discovered by Weiss (cf. [29]) are actually non-degenerate. If 
this is true, then our methods would also give regular 6-incidence- 
polytopes of type (6, 3,6, 3,6). 

Moreover, we remark that the infinite sequence of d-incidence-polytopes 
of type (3d- ‘, 6 > gives rise to an infinite sequence of ((I+ 1 )-incidence- 
polytopes of type (6, 3d-2, 6). 
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The regular 4-incidence-polytope Ps,0 was independently found by Criin- 
baum (cf. [18 J) and Coxeter and Shephard (cf. [lo]). It is a non- 
degenerate member of the class ( {4,4},,,, (4, 3 i. ) ,0 with group S, x S,, 
30 vertices, and 20 facets. It also gives rise to an “elliptic” contraction 
T&2 in the class ( (4, 4) ),0, (4.3 1 )s with group S, and half the number 
of vertices and facets. The incidence-polytope Y&,/2 appears also as an 
“elliptic” contraction of Coxeter’s :4,4, 3 ) 5, which IS the universal member 
in the class ( { 4, 4},,, , { 4, 3 ) j5 and has group Sb x S2 (cf. [ 71). However, 
{4,4, 3j and also its contraction P”,J2 are degenerate, so that our 
methods cannot be applied. But from Yj,,, we can deduce two 5-incidence- 
polytopes of type (Y,,,, { 3, 6 jz.? 11. 

As pointed out at the end of the last section our list will not give further 
isomorphism types of incidence-polytopes by passing from an incidence- 
polytope included in the table to any of its co-faces. For instance, the ver- 
tex-figure of the 5-incidence-polytopes of type ( { 5, 3, 3 j, (3, 6}?,*) is the 
4-incidence-polytope of type ( [ 3, 3 ), { 3, 6 1 2,2 ) with group S, x S,. 

Concluding this section we remark that our constructions lead also to a 
number of interesting incidence-polytopes, if they are applied to a wider 
class of structures. For instance, if a reflexible regular map of type [ p, q) 
on a surface is given, then we immediately get a 4-incidence-polytope of 
type {p, q, 6). If q = 3, then the vertex-figure will be the toroidal map 
{ 3,6 )*,?. For example, for the well-known map { 7, 3}x discovered by 
Klein (cf. Coxeter and Moser [9]) we achieve two members in 
a7331 , x, 13, 6j2 2) with groups Szs and Sz5 x PGL(2, 7), respectively. 

8. FURTHER CONSTRUCTIONS 

Here, we present some further constructions which do not lit into the 
general considerations of Sections 5 and 6. Again, we refer to Theorem 1. 

In [ 181 Griinbaum conjectured that every toroidal regular map (6, 3 Jh,(. 
is the facet of a 4-dimensional incidence-polytope in ( (6, 3}h,r, (3, 3 > ). 
Extending this problem to higher dimensions we may ask for incidence- 
polytopes in the class ((6, 3)h,r., (3 ,..., 3)) or dually ((3 ,..., 3}, (3, 6},,.). 
For the case b= c= 2 the existence of an infinite sequence was verified, 
even with the nice property that its i-dimensional member is the vertex- 
figure of the (i + 1 )-dimensional one. These results can now be generalized 
to the class ( (3J-m ‘}, (3, 6}2,0> of (d+ 1)-incidence-polytopes (d+ 1~4). 

We start from the d-simplex { 3” ’ } and consider its group U as a per- 
mutation group on the vertices 0, I,..., d such that the generator pi becomes 
pi = (i i+ 1) for i= 0 ,..., d- 1’. Next, we embed U into the permutation 
group A on the numbers 0, l,..., d, d+ 1, d + 2, d+ 3 generated by the 
elements of U and by pd : = (d d + 1 )(d + 2 d + 3). Then, it turns out that 
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A has the required properties of Theorem 1. This guarantees the existence 
of a regular (d-t- 1)-incidence-polytope of type (3d-‘, 6) with group A and 
simplicial facets. Easy calculations show also A+ = S{i,,,,,d+ , i x 
S(d+Z,d+3} “sd+2-i x S2 for i = O,..., d - 1, implying A 2: Sd+ 2 x S, for i = 0 
and A i- 2 N S4 x S2. The latter reveals toroidal co-faces to (d - 3)-faces of 
type ~3~%,o. As (3, f-h is degenerate, our incidence-polytope is of 
course degenerate too. Therefore, we obtain an infinite sequence of 
degenerate incidence-polytopes of type ( { 3d ’ >, { 3, 6}2,0)., and by con- 
struction, the &dimensional member of the sequence is the vertex-figure of 
the (i+ I)-dimensional one (i> 4). It seems that the 4-dimensional member 
is just the dual of Griinbaum’s XZ,0 (cf. [ 181). 

It is also noteworthy that the incidence-polytopes of type 
(j3d- ‘L {3, %J h ave Petrie-polygons; these are hamiltonian and thus 
have length d + 2. This shows in particular that in case of degeneracy the 
number h need not coincide with the length of the Petrie-polygon. 

Our methods are less effective for incidence-polytopes of type 
{PI,-, p& , } with pd _ 1 # 3. However, in some instances, there are other 
possibilities for embedding the automorphism group into a suitable per- 
mutation group. For instance, the author has proved that, for h >, 3,. L‘ = 0, 
and b = c 2 3, the toroidal map {4,4},,. can be realized as the facet-type of 
a finite regular member in ( {4, 4}h.C., {4,4},,,). Also for d > 4, the map 
14, 4}2,2 appears as the 3-face of a finite regular d-incidence-polytope of 
type ( {4,4},,,, (4, 3d- ‘} ). Moreover, each map { 6, 3 )h,C is the facet-type 
of a finite regular 4-incidence-polytope with octahedral vertex-figures 
{3 4). However, in all these cases the group is rather complicated so that 
its’order is just as little known as whether the respective incidence-polytope 
is degenerate or not. 

Finally, we note that other finite and non-degenerate regular d-incidence- 
polytopes of the above-mentioned type can be obtained from the results in 
Danzer [ 11, 121, namely from the construction of the incidence-polytopes 
y, Whereas our constructions provide incidence-polytopes of type 
[ p1 ,..., pdP 1, 6}, Danzer’s methods give incidence-polytopes of type 
{P,,...7Pd- ,341. 
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Note added in proof: Further incidence-polytopes of the type in question can be obtained 
from the constructions in the author’s paper “Extensions of regular complexes,” Proc. Finite 
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