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h i g h l i g h t s

• We consider the bond-diluted long-range percolation problem on a linear chain.
• Dilution of nodes, which is also considered, competes with long-range connectivity.
• The percolation order parameter only depends on the average connectivity.
• The average connectivity is explicitly computed in terms of the free parameters.
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a b s t r a c t

We study the very long-range bond-percolation problem on a linear chain with both node
and bond dilution. Very long-rangemeans that the probability pij for a connection between
two nodes i, j at a distance rij decays as a power-law, i.e. pij = ρ/[rα

ij N
1−α

]when α ∈ [0, 1),
and pij = ρ/[rij ln(N)] when α = 1. Node dilution means that the probability that a node
is present in a site is ps ∈ (0, 1]. The behavior of this model results from the competition
between long-range connectivitywhich enhances the percolation, and node dilutionwhich
weakens percolation. The case α = 0 with ps = 1 is well-known, being the exactly
solvablemean-fieldmodel. Thepercolation order parameter P∞ is investigatednumerically
for different values of α, ps and ρ. We show that in all range α ∈ [0, 1] the percolation
order parameter P∞ depends only on the average connectivity γ of the nodes, which can
be explicitly computed in terms of the three parameters α, ps and ρ.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the last fifty years, percolation theory has brought new understanding and methods to a broad range of topics in
physics like materials science, complex networks, surface roughening, epidemiology, geography, and fire propagation (see
Refs. [1,2] for a review). This theory was first considered for the optimization of masks supplied to the miners in the coal
pits needing a protection which could block poisoning materials, while permitting the passage of air. In other words, it was
needed an appropriate dosage of porosity of the material which composed the masks in order to have connected path for
air and unconnected path for poisoning materials. After that, the theory was applied to the study of movement and filtering
of fluids through porous materials (the most familiar phenomena probably being coffee percolation) and its scope has been
progressively extended to all other domains [3–5].
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Nowadays, percolation is still a very active field of research in physics and applied to an always increasing number of
phenomena as, for example, fluid flow in random media [6], dielectric breakdown [7] and reaction–diffusion processes in
two-dimensional percolating structures [8].

Percolation models have also been increasingly adopted for many phenomena besides physics to understand important
features of chemical, biological and social systems. Many of them form complex networks, whose vertices are the elements
of the system andwhose edges represent their interactions. For example, living systems form a huge genetic networkwhose
vertices are proteins, while the edges represent their chemical exchanges [9]. Equally complex networks occur also in social
science, where the vertices are individuals, organizations or countries and the edges characterize their social contacts [10].
Moreover, the effects of the complex connectivity of biological systems can be also studied by percolation theory. Recent
advances in this field points to universal laws and offer a new conceptual framework that could potentially revolutionize
our view of biology [11].

The effect of long-range connections on percolation is of fundamental interest, since they give rise to a variety of new
interesting dynamical and thermodynamical phenomena. In view of that, long-range models have been intensively studied
in recent times in different contexts [12–18]. The phenomenology becomes very interesting when long-range connections
appear together with node dilution. In this case, in fact, there is competition between long-range connectivity which
enhances percolation and node dilution which weaken it [19–21].

In this work we investigate the very long-range percolation problem on a linear chain with both node and bond dilution.
Very long-range means that the probability pij of a connection between two nodes i, j at a distance rij decays as a power-
law, i.e. pij = ρ/[rα

ij N
1−α

] when α ∈ [0, 1) and pij = ρ/[rij ln(N)] when α = 1. Node dilution means that the probability
that a node is present in a site is ps ∈ (0, 1]. Notice that for this very long-range models, in order to obtain the correct
thermodynamic limit, it is compulsory to assume that the probability of a connection decays with the size N of the system
as 1/N1−α (or as 1/ ln(N) in case α = 1).

The case α = 0, with ps = 1, is well-known, being the exactly solvable mean-field model, while the case α = 0 with
ps < 1 is its almost trivial extension. In the other regions, the percolation order parameter P∞ is investigated numerically
for different values of α, ps and ρ. Intuitively, one expects the percolation order parameter P∞ be reduced by the dilution of
nodes [19,20]. Indeed, we will show not only that this is true, but we also show that in all range α ∈ [0, 1], the percolation
order parameter P∞ depends only on the average connectivity γ of nodes, whichwe explicitly compute in terms of the three
parameters α, ps and ρ.

In other words, given γ = γ (α, ρ, ps), P∞(γ ) is always the same function, independently on the values of α, ρ and
ps. We stress that this result is not only true at the transition, but for all possible values of γ . Therefore, not only we state
that the model is the universality class of mean-field bond-percolation (it would be an almost trivial result being it well
known when node dilution is absent) but we prove that spatial structures are irrelevant for all values of parameters, being
the average connectivity the only relevant aspect.

The paper is organized as follows: In Section 2 we consider the simple case α = 0 in the absence and in the presence of
dilution. Sections 3 and 4 discuss the cases α ∈ (0, 1) and α = 1 respectively. Finally, our conclusions are in Section 5.

2. Mean-field (α = 0)

The percolation order parameter P∞ is defined as the fraction of nodes of the system that belongs to the infinite cluster.
Obviously, P∞ attains its maximum value (P∞ = 1) when all the nodes are in the infinite cluster, whereas P∞ = 0 below a
certain threshold, when the infinite cluster is absent.

A particularly simple model is the mean-field, which corresponds to α = 0. We describe below this almost trivial case,
first when only bonds are diluted, and afterwards considering dilution for both nodes and bonds.

2.1. Mean-field (bond diluted)

In mean-field bond diluted model (α = 0, ps = 1), one assumes that there are N nodes. Any pair of nodes is connected
(closed bond) with probability ρ/N and unconnected (open bond) with probability 1 − ρ/N .

The average connectivity γ of a given node (the average number of connections of a node to the remaining N − 1 nodes)
is given by

γ =
ρ

N
(N − 1) ≃ ρ. (1)

This number is simply obtained bymultiplying the numberN−1 of remaining nodes by the probability that a bond is closed.
Let us call P∞ the fraction of nodes in the giant component (number of nodes in the giant component divided by the total

number of nodes N), which can also be seen as the probability that a node belongs to the giant component itself. The order
parameter P∞ satisfies the self-consistency equation (see, for example, Ref. [22,23])

exp(−γ P∞) = 1 − P∞, (2)

whose solution P∞(γ ) is depicted in Fig. 1. The critical value of the control parameter is γc = 1.
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Fig. 1. (Color online) Order parameter P∞ versus the control parameter γ (ρ, α, ps). For a given choice of the parameters α and ps, γ only depends on ρ.
The figure shows a complete collapse, i.e. the shape is the same for any choice of α and ps , and coincides with the well-known mean-field result.

2.2. Mean-field (bond and node diluted)

This model has a distribution of bonds as the previous model but node dilution is introduced (α = 0, ps ∈ (0, 1)). It is
assumed that a site is active (node is present) with probability ps, and inactive (node is absent) with probability 1 − ps. The
number Ns of nodes (active sites) is about psN .

The average connectivity γ of a given node is

γ =
ρ

N
(Ns − 1) ≃ ρ ps. (3)

This number is simply obtained bymultiplying the number Ns −1 ≃ ps N of remaining active sites with the probability ρ/N
that a bond is closed.

It is easy to show that the size P∞(γ ) of the giant component is still the function of the average connectivity given by
Eq. (2). In fact, it is sufficient to remark that the size of the giant component is, by definition, the number of active sites in
the giant component divided by the total number of active sites. Therefore, it is enough to consider a system composed only
by active sites (whose number Ns is about ps N) which are connected with probability ρ/N ≃ ρps/Ns. In this way, we are
re-conduced to the previous model with the difference that ρ and N are replaced by ρ ps and Ns in Eq. (1). Observe that the
average connectivity was γ = ρ in previous model, while now γ = ρ ps. So, Eq. (2) must hold also for the present model
with γ given by (3).

Notice that γ increases linearly with ps, while P∞ is a non-decreasing function of γ . Therefore, dilution decreases the
value of P∞ as expected.

3. Power-law model (α ∈ (0, 1))

3.1. Definitions

Herewe consider a one-dimensional (periodic chain) problemwhere sites are active according to a given rate ps ∈ (0, 1].
Two nodes are connected (closed bonds) at a power-law probability depending on their distance.

Assuming that i is the position of a node on the chain, periodic boundary conditions imply that the node i coincides with
node i+ N . Furthermore, given the periodic boundary conditions, the distance rij between two nodes i and j is rij = |i− j| if
1 ≤ |i − j| ≤ N/2 and rij = N − |i − j| if N/2 < |i − j| < N .

Therefore, we assume that two active sites i and j of the chain are connected by a closed bond depending upon their
distance rij according to the probability P(rij) which obeys a power-law, i.e.

pij =
ρ

(rij)α N1−α
, (4)

with α ∈ (0, 1). According to the above prescription, nearest neighbors sites (when both are active) are connected with
probability ρ/N1−α , thus one has to assume ρ ∈ (0,N1−α

], which reduces to ρ ∈ (0, ∞) when the thermodynamic limit
is reached. Notice that N1−α in the denominator is necessary, otherwise the average connectivity would explode with N
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and the correct thermodynamic limit would not be reached. This is the equivalent of the N in the denominator of the bonds
probability in the mean-field case α = 0.

The exponent α ∈ (0, 1) controls the range of the network connections, ρ ∈ (0, ∞) the number of closed bonds and
ps ∈ (0, 1] the number of active sites.

It must be mentioned that the limiting case ps = 1 (absence of node dilution) was firstly considered in the pioneering
work [12].

3.2. Solution

Given a node at position i, the joint probability that there is a node at position j and that it is connected to node in i is

ρ ps
rα
ij N1−α

, (5)

where rij is the distance of the two nodes.
Since we assume periodic boundary conditions, there are two nodes at any given distance 1 ≤ r ≤ N/2. Therefore, the

average connectivity γ = γ (ρ, α, ps) is obtained by the sum

γ =

N/2
r=1

2
ρ ps

rα N1−α
≃

2α

1 − α
ρ ps, (6)

wherewe have neglected termswhich vanish in the thermodynamical limit as 1/N1−α . We stress again that γ remains finite
in the thermodynamic limit due to the N1−α in the denominator of (4). Also we remark that (6) reduces to (3) when α → 0.

The average distance d between two active connected sites of the system is a fraction of the system size. In fact:

d =
1
γ

N/2
r=1

2 r
ρ ps

rα N1−α
≃

1 − α

2 (2 − α)
N. (7)

Given that P∞ is the ratio between the number of active sites in the giant component and the total number of active
sites, the aim of our numerical work is to show that P∞(γ ) is still given by the solution of Eq. (2), provided that γ is now
given by (6).

In practice, for any value of α, ρ and ps one should compute numerically P∞ and plot against γ = γ (α, ρ, ps) given by
(6). Once obtained a curve, one should compare it with the mean-field curve given by Eq. (1). In Fig. 1 we show that, indeed,
the shape of P∞(γ ) is the same independently on the numerical parameters, and coincides with the well knownmean-field
result.

For a given choice of the parameters α and ps, γ only depends on ρ. Therefore, we have considered various values of ps
and α and plotted P∞(γ ) with respect to γ . For all cases we have considered a system of N = 10,000 sites, and we have
obtained P∞ as an average over 500 different independent realizations of the network.

Fig. 1 only shows results up to α = 0.6 because for larger values of α, a size N = 10,000 is not enough to reach the
thermodynamical limit. This may result counterintuitive, but consider that the next to the leading term in Eq. (6) is of order
1/N1−α whose power-law convergence to zero is slower as α approaches 1. Thus, a slowing-down of the convergence can
be also expected for PN(γ ).

In fact, we are able to show, by a scaling analysis, that the mean-field value is anyway reached in the N → ∞ limit. This
can be seen in Fig. 2 where the difference PN(γ ) − P∞(γ ) is plotted against N in a log–log scale for the case α = 0.8. The
function P∞(γ ) is the value calculated analytically, while PN(γ ) is the value obtained by a simulation of a network of size
N . We observe that the difference PN(γ ) − P∞(γ ) converges as a power-law to zero (PN(γ ) − P∞(γ ) ∼ 1/Nq), confirming
our data collapse. In Fig. 2 we considered four choices for the parameters ρ and ps, both upper lines correspond to γ = 1.5
while both lower lines γ = 3.5. In all cases, the values of PN(γ ) are obtained as an average over 500 different independent
realizations of the network, with N ranging from 1000 to 64,000.

4. The case α = 1

When α = 1 everything goes as before but scaling 1/ ln(N) replaces scaling 1/N1−α in Eq. (4), i.e.:

pij =
ρ

rij ln(N)
. (8)

Then, the average connectivity is

γ =

N/2
r=1

2
ρ ps

r ln(N)
≃ 2 ρ ps. (9)
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Fig. 2. (Color online) The function PN (γ ) − P∞(γ ) plotted against N in a log–log scale for the case α = 0.8.

Fig. 3. (Color online) Order parameter P∞ versus the control parameter γ (ρ, ps) for α = 1. For a given choice of the parameter ps, γ , as in Fig. 1, only
depends on ρ. The figure shows again a complete collapse.

We remark that now, at variance with the case α ∈ (0, 1), the average distance d between two active connected sites is
not of the order of the size of the system. In fact:

d =
1
γ

N/2
r=1

2
ρ ps
ln(N)

≃
1
2

N
ln(N)

, (10)

nevertheless, the system still has mean-field properties.
We have checked numerically that P∞(γ ) given by the solution of Eq. (2) is still valid, provided γ is given by (9), as it is

shown in Fig. 3, where P∞(γ ) is plotted against γ . Considering α = 1, for a given choice of the parameter ps, γ only depends
on ρ. We have taken into account various values of ps and, for all cases, a systemwithN = 10,000 sites. P∞ is again obtained
as an average over 500 different independent realizations of the network.

5. Discussion

We have shown that very long-range percolation (α ∈ [0, 1]), with both node and bond dilution on a linear chain
behaves as in the mean-field theory if P∞ is expressed in terms of the average connectivity γ of a node. In other words, all
data collapse on the same universal curve if P∞ is plotted against γ = γ (α, ρ, ps). We stress, that this result holds for any
possible bond dilution and, more important, for any node dilution.
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Noticeably, collapse is absentwhen the parameterα is larger then unity [12,19,20]. In this case, in fact, connectivity is not
an exhaustive description of the topology of the system, as it can be easily understood. If α > 1 one can assume pij = ρ/rα

ij
(no rescaling with the system size is necessary now) and then compute the average connectivity

γ =

N/2
r=1

2 ρ ps/rα
≃ 2 ρ psζ (α), (11)

where ζ (α) =


∞

r=1 r−α is the zeta Riemann function. In this α > 1 case, at variance with the case α ∈ [0, 1], the
probability of connections to nodes at a distance of order unity remains finite in the thermodynamic limit.

This implies that local fluctuations of connectivity and site activity may prevent the emergence of a giant component
even when γ > 1. For example, in the limit α → ∞, which corresponds to the first-neighbors percolation on a linear chain,
whenever ρ < 1 or ps < 1 percolations is forbidden by a single missing bond or node. On the contrary, we have shown in
this paper that spatial structures are irrelevant when α ∈ [0, 1], being the average connectivity the only relevant aspect for
all possible values of the parameters.

We would like to finally stress that while we are always able to explicitly compute γ in terms of α, ps and ρ for all
possible range of these three parameters, the case α = 0 is the only one which we are able to completely treat analytically.
Our conclusions concerning the region α ∈ (0, 1] are mainly based on numerical simulations. Our results are very precise
and hopefully correct, although a rigorous mathematical proof of our conclusions still remains open.
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