

Fig.

mortality was noted when comparing patients with prophylactic vs. post-op drains.

Conclusions: SCI can be a devastating complication after TEVAR and patients without functional improvement have a dismal prognosis. Measures to decrease the rate of SCI and/or mitigate its severity are needed. Timing of drain placement does not appear to have an impact on functional recovery.

Author Disclosures: A. W. Beck: Nothing to disclose; K. DeSart: Nothing to disclose; R. J. Feezor: Nothing to disclose; M. Hong: Nothing to disclose; T. S. Huber: Nothing to disclose; S. T. Scali: Nothing to disclose.

RR25.

Outcomes following Late Explantation of Aortic Endografts Depend on the Indication

Shipra Arya¹, Dawn M. Coleman¹, Jordan Knepper¹, Peter K. Henke¹, Gilbert R. Upchurch², John E. Rectenwald¹, Enrique Criado¹, Jonathan L. Eliason¹, Katherine Galagher¹. ¹Vascular Surgery, University of Michigan, Ann Arbor, MI; ²University of Virginia, Charlottesville, VA

Objectives: This study compares our experience with explantation of aortic endografts for endoleak versus infection.

Methods: The medical records of 1500 aortic procedures performed at our center were queried from 2002-2011. Relevant data from patients needing explantation of aortic endografts was analyzed.

Results: 36 patients underwent aortic explantation (63.9% male). Mean age was 71.6 years with a mean aneurysm size of 6.6cm (range 3.5 - 10.7cm). Hypertension (97%), hyperlipidemia (77.8%) and smoking (83%) were the most prevalent risk factors. Mean time to explant was 45.3 months (range 2.2- 118.4 months). The primary explant indication was endoleak in 24 (66.7%) and infection in 12 (33.3%) patients. Thirty-day morbidity was

54%(endoleak) and 83%(infection). There were 2 deaths(16.7%) in the infection group within 30 days. Five patients were symptomatic, while 2 patients had ruptured aneurysms. In the endoleak group, there were 9 type Ia, 7 type II, 1 type III, 3 type V, 1 rupture and 3 patients with multiple endoleaks. 78% of patients were alive at a mean follow-up of 17. 4 months.

Conclusions: This is the largest endograft explantation series to date. Patients with an infectious etiology have significantly worse morbidity and mortality than patients requiring explantation for endoleaks.

Table. Peri-operative variables by indication for explant

Peri-operative variable	Endoleak $(n = 24)$	$\begin{array}{l} Infection \\ (n = 12) \end{array}$
Males (%)	50.0	91.7ª
ASA class > 3 at explant (%)	50.0	66.7 ^a
Supra-mesenteric clamping (%)	4.4	50.0 ^a
Re-exploration needed (%)	4.2	41.7 ^a
Post-op DIC (%)	0	25.0^{a}
30-day mortality (%)	0	16.7
Intra-op blood loss (Liters)	3.3	6.3ª
Mean PRBCs transfused intra-op (n)	4.3	12.2^{a}
ICU length of stay (days)	5.4	10.4
Length of stay (days)	12.2	18.7

ASA, American Society of Anesthesiologists; DIC, disseminated intravascular coagulation; ICU, intensive care unit $^{a}P < 0.05$

Author Disclosures: S. Arya: Nothing to disclose; D. M. Coleman: Nothing to disclose; E. Criado: Nothing to disclose; J. L. Eliason: Nothing to disclose; K. Gallagher: Nothing to disclose; P. K. Henke: Nothing to disclose; J. Knepper: Nothing to disclose; J. E. Rectenwald: Nothing to disclose; G. R. Upchurch: Nothing to disclose.

RR26.

Primary Balloon Angioplasty of Small (≤2 mm) Cephalic Veins Shortens Maturation Time, Decreases Reinterventions and Improves Mid-term Patency of Arteriovenous Fistulae

Pierfrancesco Veroux¹, Tiziano Tallarita¹, Alessia Giaquinta¹, Peter Gloviczki², Massimiliano Veroux¹. ¹Policlinico of Catania, Catania, Italy; ²Mayo Clinic, Rochester, MN

Objectives: To evaluate the novel technique of Primary Balloon Angioplasty (PBA) of cephalic veins with diameter ≤2mm on patency of radio-cephalic arteriovenous fistulae (AVF) before performing the anastomosis.

Methods: Forty patients, all candidates for distal radiocephalic fistula, with a cephalic vein $\leq 2 \text{ mm}$, were randomized to undergo dilatation of the cephalic veins with two different techniques, before performing the anastomosis: A) PBA of a long cephalic vein segment from the wrist up to the elbow (n=19); B) hydrostatic dilatation (HD) of a short venous segment (5cm) at the level of the anastomosis (n=21). PBA was performed using a Pacific Extreme