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This paper introduces a one-parameter bivariate family of distributions whose 
marginals are arbitrary and which include Frechet bounds as we11 as the 
distribution corresponding to independent variables. Some geometrical and 
statistical properties on the stochastic dependence parameter are studied, 
considering this family as a member of Efron’s curved exponential families of 
distributions. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let X, Y be two random variables with continuous distribution functions 
F(x), G(y). Let us consider the class 9 of all possible joint cdf’s H for 
(X Y). 

Hoeffding [ 111 and Frkchet [lo] stated that the following extremal 
cdf’s 

H+(x, Y) = min{f’(x), G(Y)} 

H-(x,y)=max{F(x)+G(y)-1,O) 

define two elements of 9 with associated extreme correlations, i.e., 
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p <pdp+, where pP, p, p+ are the correlation coefficients for H-, H, 
H+, respectively. H- , H+ are called the Frechet bounds. It is verified that 

H-(x, Y) f H(x, Y) 4 H+(x, Y) V(x, y) E R2. 

Furthermore. if H = H- then 

F(X)+G(Y)= 1 (a.s.), 

and if H= Ht then 

F(X) = G(Y) (as.). 

Many authors have been interested in constructing parametric families of 
cdf’s with given marginals F and G. Frechet states that every family should 
include HP and H’. Kimeldorf and Sampson [12], proposed five 
desirable conditions that should be satisfied by any one-parameter family 
{H,: - 1 < 0 6 + 1 } of cdf’s with absolutely continuous marginals F and 
G. These conditions are: 

(a) H,(x,Y)=H+(x,.Y); 

(b) fJ,(x, Y) = F(x) G(Y); 

(~1 HP ,(x, y) = H-(x, Y) (i.e., the family contains the Frtchet 
bounds as well as the stochastic independence case); 

(d) H, is continuous in 8~ [ - 1, 11; 

(e) H, is absolutely continuous for fixed 8 E (- 1, 1). 

The uniform representation (Kimeldorf and Sampson [ 131) and the 
notion of copula (Schweizer and Sklar [18]) provide the natural 
framework in which to study certain dependence properties of bivariate 
distributions and non-parametric measures of correlation. The uniform 
representatin or copula of H, is 

U,(u, u)= H(F-‘(u), G-‘(u)) (4 0) E co, 1 I27 

the marginal distributions of UH then being uniform on [0, 11. 
Frechet, Farlie, Gumbel, Morgenstern, Plackett, Mardia., Kimeldorf, 

Sampson, Ruiz-Rivas, Cuadras, Auge, Algarra, Nelsen, and others, have 
proposed one-parameter families. One of these families (see Section 2.2) is 
studied here. 

Some applications deal with: 

(a) Variance reduction in statistical simulation (Fishman [9], Whitt 
PO1 I 
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(b) The construction of non-negative quantum-mechanical dis- 
tribution functions, given the marginal distribution of position and 
moment (Cohen and Zaparovanny [4], O’Connell and Wigner [15], 
Cohen [3]). 

(c) The construction of upper and lower bounds of the cdf’s when 
the marginal are given, under the additional condition that X< Y with 
probability one (Smith [ 191). 

2. ONE-PARAMETER SYSTEM 

2.1. Definition 

Cuadras and Auge [6] defined the cdf on R2, 

Ho@, Y) = F(x)’ -’ G(y) if F(x) 2 G(y), 

H,(x, Y) = F(x) G(Y)‘-~ if F(x) < G(y), 

8 being a parameter satisfying 0 < Q < 1. The general definition, including 
the negative parameter case, is: 

H&s Y) = Cmin{F(x), Gb))l”~ [F(x) Wv)l’-’ for 068<1, 

HB(x,y)=F(x)-Cmin{F(x), l-G(y)}l~e.CF(x)(l-G(y))l’+e 
(1) 

for -1<e<o. 

2.2 General properties 

The one-parameter system H, of cdf’s has some interesting properties: 

(1) If (X, Y) is distributed as H,(x, y), 06 8 < 1, and 2 verifies 
G(Z) = 1 -G(Y) (a.s.) then (X, Z) is distributed as H-,(x, y). 

(2) H,=H+, H,=FG, H-,=H-, and H,iscontinuousin 8. 

(3) He is not absolutely continuous for 6’ # 0, but can be decomposed 
as 

H, = Hi” + HI;?‘, (2) 

Hb’) being its absolutely continuous part with density function (for 
eg co, 11) 

~dx~ Y) = (1 - Q)f (x)dy) max(F(x), G(Y)} -* Vk Y) E R2, (3) 

provided that F, G are absolutely continuous with densities f, g, and Hb2) 
being its singular part corresponding to a positive mass over the curve 
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F(x) = G(y). (The negative case 8 E [ - 1,0) is straightforward considering 
property (1 ).) In fact, 

= -&min{F(x), G(y)}*-’ 

+ min{f’(x), WY)) C max{f’(x), NY)}I~-~ 

= - Hk2)(x, Y) + H,(x, Y) V(x, y) E [w*. 

(4) Let PO = Pi’) + Pi*) be the probability measure related to Ho. The 
family {P, : 8 E [0, 1 ] } is dominated by a a-finite measure p, and 

f&T Y) = M? Y) ~C(X? Y) + b(x) Z,(X> Y) w, Y) E R2, OE co, 11 (4) 

are the corresponding Radon-Nykodim derivatives, where C = 
{(x, y) ( F(x) = G(y)}, Z is the indicator function, and 

i&(x) = t-y-(x) F(x)’ ~ e. 

Proof. Let i1*, 1 be the Lebesgue measures in Iw* and 08, respectively. 
For any Bore1 set B in R* let us define 

po(B)=A{x~R’ 1 (x, G-‘F(x))EB}, 

p = /I* + po; 

p. can be characterized as a product measure on ([w*, fi2) 

PO(A x B) = !p, P(x, B) 4x1, A, Be8, 

where fi is the Bore1 a-algebra of R, and 

,ii(x, B) = 1 if G-IF(x) E B, 

=o if G-IF(x) $ B. 

Applying Fubini’s theorem it is easily shown that 

Hi,*‘(x, Y) = f‘ J-” ii,(u) dp,(u, u) 
--m -8 

so that &, = dPi*)/dp,. 
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Noting that n*(C) = 0, ,M~(C) = 0, and h, = dPe’)/dA*, the result (4) 
follows. 

(5) POP(X) > ‘3 Y)) + P#l’(x) < G( Y)) = 2(1- WV - e), 

PJF(X) = G(Y)) = 8/(2 - 0). 

(6) The relations among 8 and the Pearson’s p, Kendall’s T, and 
Spearman’s ps correlations are 

38 

P=4-lel 
(for uniform marginals), 

e 38 
==2-101) ps=4- /q 

(Cuadras and Auge [6]; Cuadras [S]). 

(7) If (Xi, Yi), (X2, Y,) are i.i.d. as H,, then 

e=2-[P&X,-X*)(Y,-Y*)>O)]-‘. 

Hence 8 is invariant under monotone transformations of X and Y 
(Cuadras [S]). 

3. SOME STATISTICAL PROPERTIES 

3.1. One-Parameter Curved Exponential Family 

Let (X, , Y, ), . . . . (X,, Y,) be a bivariate random sample from H,, 
0E [0, l] (the study of the negative case 8 E [ - LO) is straightforward 
using suitable modifications). 

Let a c { 1, 2, . . . . n} be the set of indexes of points in the sample lying on 
the curve C (i.e., i E a iff (xi, yi) E C). 

Using the density function (4) with respect to the measure p, the joint 
density function of the sample can be expressed as 

.({xr,Yi})=[,h~(xi,Yi)][ fl E@(,i)] 
isa 

=(1-e)~~({~,,y,})e~p{e~+n,log(~/(1-e))), eE co, 11 
(5) 

where 
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does not depend on 9, 

n,.= #a, T= - f log max{F(xi), G(y,)}. (6) 
i=l 

The family of densities (5) constitutes a curved exponential family as 
named by Efron [7], where its curvature is the geometric curvature of 
9 = { (e,log(0/( 1 - 0)): 8 E [0, 1 ] } with respect to the inner product &, 
being ‘& the covariance matrix of (T, n,). 

It immediately follows that (T, n,) is a minimal sufficient statistic for 8. 

3.2. Joint and Marginal Distribution of (T, n,.) 

(1) As n,. is the number of points in the sample lying on the curve C 
and PJF(X) = G( Y)) = e/(2- 6), n,. is a Binomial random variable 
44 w - m. 

(2) T is a gamma random variable G(2 - 0, n). 

Proof: Let Z=max(F(X),G(Y)}. Then P,(Z<z)=H,(F-l(z), 
G-‘(z))=z~-~, O~~dl~P,(-logZ>u)=e~~“‘*~~~‘, 24 > 0. Thus 
-logmax{F(X),G(Y)}-G(2-8, 1) and hence T-G(2-8,n). 

(3) T and n,. are independent random variables. 

Proof: n,. = C;= i Ui, where Ui = 1 if F(x;) = G(.v,), and Ui = 0 if 
P(x,) # G( y,). Then U, - B( 1, Q/( 2 - e)), i = 1, . . . . n, are all independent. 
T= C;=, Vi being V, = -log max{ F(X,), G( Y;)} - G(2 - 8, 1). It is 
obvious that Uj is independent of I’, for i#j. In the case i=j, let 
Z, = P(Xi), Z, = G( Yi). Then 

P(Ui=l, Vj>v)=P(Z,=Z2,Z,<ep”,Z2<ep”) 

w-e) if u < 0, = 
thpYd.x=&e- a(2- 81 if v 20, 

and thus 

P(ui=l, v,>u)=P(uj=l)~P(vi>o). 

Analogously 

P(ui=o, vi>u)=P(u,=o)~P(v,>u). 

Let us remark that (T, n,.) is not a complet statistic. For instance, from 
(1) and (2), we have 

E,(2T- n,.) = n vee [O, l] 
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3.3 Curvature and Fisher Information Measure 

Let us denote qe = (0, log(e/( 1 - e))‘, Z, the covariance matrix of (T, n,) 
and 

the point meaning componentwise derivatives with respect to 0. If ie(X) 
represents the Fisher information measure obtained for the r.v. X, we have 
(Efron [7]) 

n(O( 1 - 0) + 2) 
rik~f& = (2 _ e)2 e(l _ e)= &AT) + i&b) = GdT 4.1. 

The curvature being 

Ye = 
lM*l ( ) 

1’2 (28-1)(2-e) 2 
ii( T, n,) =(e(l-e)+2)3/2 2 J 

8 E (0, i 1. 

These properties may be used to study second-order efficiency and to con- 
struct confidence intervals for the estimation of 8 (Efron [8], Moolgavkar 
and Venzon [ 141). 

3.4. Rao Distance 

Let rj = tj(0) be an admissible transformation of the parameter 8. The 
Fisher information measure on II/ contained in (T, n,) satisfies 

ij( T, n,) = 
( ) 

g 2 ie( T, n,). 

Thus, ie( T, n,) can be considered as a covariant tensor of the second order 
for all 8 E (0, 1) and we can obtain the Rao distance [17] for the family He 
(see Burbea and Rao [2]; Burbea [l]; Oller and Cuadras [16]). The Rao 
distance between 8, and t12 is given by 

sh e,)=J 02 J n[e(l-8)+23 de 

fh (2-ej&iTij ' 

This distance is invariant under any admissible transformation of the 
parameter 8 and the random vector (X, Y). 
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Using the function 

@(cp)= f ( -gi BZi(cp) i (7’) (9P)’ 
i=O /=O 

where 

with 

(a;b;c)=a(a+b)(a+2b)...(a+(c-1)b) 

for real numbers a, b, and integer number c, we obtain 

S(,,,,,)=~[~(sin-‘~~)-m(sin~‘~~~1. 

If 19, 1: 02, it is easy to check that 

Lqe,, L9,)= 
J;; 

J2+e1(1pe1)[sine1(2~ -l)-sinp1(2e -I)] 
(2-w 2 1 

+w2-el)(JGJh, 

which provides a useful approximation for S(O1, 0,). 

4. MAXIMUM LIKELIHOOD ESTIMATION OF 8 

From expression (5) we obtain the log-likelihood function 

i0g L( {xi, J+); e) = tn - n,) i0g(l- e) + n, i0g e + eT 

and by solving the equation 

we get the maximum likelihood estimation of 0 

(g= 
T-n++(n-T)*+4n,T 

2T 



CURVED EXPONENTIAL FAMILY 455 

Let a = ,/(n - 7’)2 + 4n, T. Since In - TI <a < n + T, we see that 

O<T-n+ln-T~<T-n+a<n+T+T-n 
\ 

2T ‘2T‘ 2T =I* 

Thus, we check that 0 < 0 < 1. 
Let (x,, y,), . . . . (x,, y,) be a bivariate random sample from HO, 

- 1 Q 0 < 0. Let Z,. be such that G(Zi) = 1 - F(X,) (a.s.), i= 1, . . . . n, so 
(Xl, Zl), . . . . (x,, z,) is a sample from HP0 and we obtain the maximum 
likelihood estimate for 8, 

(j= 
n- T-,/(n-T)‘+4n,T 

2T 
3 

where now n, is the number of pairs (xi, yi) satisfying F(xi) + G(yJ = 1 and 
T= --Cr=, logmax{F(x,), 1 -G(y,)}. 
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