
International Journal of Solids and Structures 48 (2011) 2393–2401

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Magneto-electro-elastic coated inclusion problem and its application
to magnetic-piezoelectric composite materials

F. Dinzart ⇑, H. Sabar
Laboratoire de Biomécanique Polymères et Structures, Ecole Nationale d’Ingénieurs de Metz, 1 route d’Ars Laqueny, 57078 Metz Cedex 3, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 January 2011
Received in revised form 5 April 2011
Available online 24 April 2011

Keywords:
Micro-mechanics
Magnetic-piezoelectric composite materials
Coated inclusion
Mori–Tanaka’s model
0020-7683/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.ijsolstr.2011.04.010

⇑ Corresponding author. Fax: +33 3 87 34 42 78.
E-mail address: dinzart@enim.fr (F. Dinzart).
In this work, a micromechanical model for the estimate of the magneto-electro-elastic behavior of the
magnetic-piezoelectric composites with coated reinforcements is proposed. The coating is considered
as a thin layer with properties different from those of the inclusion and the matrix. The micromechanical
approach based on the Green’s functions techniques and on the interfacial operators is designed for solv-
ing the magneto-electro-elastic inhomogeneous coated inclusion problem. The effective magneto-elec-
tro-elastic properties of the composite containing thinly coated inclusions are obtained through the
Mori–Tanaka’s model. Numerical investigations into magneto-electro-elastic moduli responsible for
the magneto-electric coupling are presented as functions of the volume fraction and characteristics of
the coated inclusions. Comparisons with existing models are presented for various shape and orientation
of the coated inclusions.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction composite are highly affected by the magneto-electro-elastic char-
Consecutively to their attractive applications in smart and
adaptative systems using their magneto-electro-mechanical
energy conversion capacities, the study of such dedicated
‘magneto-electro-elastic’ materials has become more extensive in
recent years. The coupled phenomena like piezoelectricity and
piezomagneticity can be found in some natural single crystals
(Alshits et al., 1992) and more widely in specifically dedicated
composites (Harshe et al., 1993). The prediction of the overall
properties of ‘magneto-electric-elastic’ composites has aroused
great interest among researchers, in particular in the description
of the coupled phenomena induced from discontinuous reinforce-
ments. A better understanding of the interaction of microstruc-
tures and coupling effects such as magnetolectricity is essential
for the comprehensive design of novel materials for desired appli-
cations. The magneto-electric (ME) coupling effects result from
cross or product properties which are absent from each phases of
the composite as described by the Nan et al. (2008) in their review.

The concept of hybrid fiber constituted of a core surrounded by
a high performance piezoelectric materials has appeared recently
for the sake of improvement of electroelastic properties (Torah
et al., 2004). Xie et al. (2008) synthesized hybrid multiferroic
CoFe2O4-Pb(Zr0.52Ti0.4)O3 nanofibers by electrospinning and ob-
tained good ferroelectric and ferromagnetic properties measured
by piezoresponse force microscopy. The effective properties of a
ll rights reserved.
acteristics and the geometry of the interphase between the constit-
uents. Consequently, studying the influence of a coating layer in
‘magneto-electric-elastic’ composites may be valuable to better
understand the transmission of mechanical, electrical and mag-
netic fields throughout the inclusion toward the matrix for the sake
of improvement of the strength and/or the ME. The increase of the
strength may be obtained for example via the introduction of a stiff
interphase of defined thickness as demonstrated by Kari et al.
(2008) for elastic composites. The ME enhancement is more tricky
as it implies coupled mechanical, electrical and magnetic proper-
ties. The voluntary introduction of an active interphase (in the
sense of the ME) allows to comprehend the transmission of the dif-
ferent fields from the core towards the matrix. A parametric anal-
ysis conducted in a further publication may also provide the better
material combination for core, coating and matrix to enhance the
ME coupling. An interphase layer may be also introduced to model
the debonding between the particles and the matrix (Sevostianov
and Kachanov, 2007) or to describe hybrid magneto-electric com-
posites synthesized with a core–shell (Islam et al., 2008).

First attempts to model the ME in multilayered composites
were restricted to simplified material behavior (Harshe et al.,
1993) or to particular geometry: fibrous (Benveniste, 1995) or
lamellar composites (Huang et al., 1998). Huang and Kuo (1997)
generalized the classical method based on inclusion formulation
and Huang et al. (1998) extended the resolution to various shape
inclusions thanks to the extension of the classical Eshelby’s elastic
tensor to magneto-electric behavior. The Green’s functions tech-
niques allowed the ME analysis via various homogenization
scheme (Mori–Tanaka, self-consistent. . .), for multi-inclusion and
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Fig. 1. Topology of the magneto-electro-elastic coated inclusion problem.
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inhomogeneity problems (Li, 2000a,b). Among the numerous
methods dedicated to overcome the mathematical difficulties in-
duced by the intrinsic electro-mechanical and magneto-mechani-
cal couplings, the finite element technique succeeded to
characterize the optimization of the ME in laminate (Liu et al.,
2003) or fibrous composites (Lee et al., 2005). The concept of peri-
odic structure was improved by Tang and Yu (2008) via a varia-
tional asymptotic homogenization scheme for composites
including piezoelectric and magnetoelecric phases both embedded
in an epoxy matrix.

The most recent studies dealing with the influence of the inter-
phase properties were conducted in electro-elasticity (Jiang and
Cheung, 2001 and Sudak, 2003) and in magneto-electro-elasticity
(Shen, 2008 and Tong et al., 2008). They provided exact and analyt-
ical results based on the complex variable method in particular
configurations (in-plane or anti-plane loading) limiting the implied
material properties and the geometry of the reinforcement (essen-
tially cylindrical). To our knowledge, only Li (2000a) proposed a
solution to the multi-inclusion and inhomogeneity problems for
magneto-electro-elastic composites by extending the double inclu-
sion method developed by Hori and Nemat-Nasser (1993) to equiv-
alent multi-inclusion. The double inclusion method gives the exact
solution to the multi-inclusion problem provided that the mag-
neto-electro-elastic fields are uniform in every coating. Generally,
these fields are heterogeneous as they are intended to accommo-
date the incompatible fields between the inclusion, the interphase
and the matrix. In the double inclusion model, these complex
interactions between the phases are not completely taken into ac-
count inducing some imprecision on the effective properties. We
propose a method where heterogeneous fields may be considered
in the coating.

This work is devoted to the determination of the effective mag-
neto-electro-elastic behavior of a magneto-electro-elastic compos-
ite with coated reinforcements in the general case of anisotropic
behavior. The thinly coated inclusion is described by two non-
homothetic concentric ellipsoidal inclusions. The concept of the
interfacial operators initially developed by Hill (1983) in elasticity
is widened in magneto-electro-elasticity by the formulation of
magneto-electro-elastic interfacial operators. By basing itself
simultaneously on the Green’s functions techniques and the mag-
neto-electro-elastic interfacial operators, this study establishes a
new integral equation taking into account the presence of the coat-
ing situated between the inclusion and the matrix. This approach
has already proved to be effective in the particular cases of elastic
(Cherkaoui et al., 1995) and thermo-elastic composites (Cherkaoui
et al., 1996) and piezoelectric composites (Dinzart and Sabar,
2009). The formulation of the integral equation and the solution
of the magneto-piezoelectric coated inclusion problem are pre-
sented in the second section. The effective magneto-electro-elastic
moduli of the composite with coated reinforcements are expressed
in the third section via a Mori–Tanaka’s scheme of homogeniza-
tion. Applications are conducted for reinforced magneto-electric-
elastic composites. Some connections with the double-inclusion
model developed by Li (2000a) for magneto-electro-elastic com-
posites are proposed in the particular problem of fibrous compos-
ites. The effects of the shape, orientation and volume fraction of the
coated inclusions are explored to identify the possible optimization
of the ME coupling in magneto-electro-elastic composite with
coated reinforcements.
2. Micromechanical approach of the magneto-electro-elastic
coated inclusion problem

The topology of the magneto-electro-elastic coated inclusion
problem drawn in Fig. 1 is described by an inclusion of volume VI
surrounded by a thin coating of volume Vc. The coating is bounded
at its outer boundary to a surrounding homogeneous material (ma-
trix). Each phase is described by magneto-electro-elastic properties
including the elastic moduli C, the piezoelectric and piezomagnetic
properties denoted by e and q, the dielectric constants j, the mag-
netic permeabilities n and the magneto-electric coefficients a. In
our analysis, the constituents are linear electroelastic and mag-
netoelastic. The boundaries are assumed perfectly bonded.
2.1. Fundamental equations

For stationary behavior in the absence of free electric and mag-
netic charges or body forces, the equations of linear magneto-elec-
tro-elasticity consist of the constitutive equations, the divergence
equations (elastic equilibrium and Gauss’ Law), and the gradient
equations (strain–displacement, electric field-potential and mag-
netic field-potential relations). The coupled relationships between
the magnetic electric and mechanical variables are given by the
following equations:

rij ¼ Cijmnemn � enijEn � qnijHn

Di ¼ eimnemn þ jinEn þ ainHn

Bi ¼ qimnemn þ ainEn þ ninHn

ð1Þ

rij;j ¼ 0; Di;i ¼ 0; Bi;i ¼ 0 ð2Þ

emn ¼
1
2
ðum;n þ un;mÞ; En ¼ �U;n; Hn ¼ �v;n ð3Þ

rij, emn and un are the elastic stress, strain and displacement. En, Di,
and U are the electric field, displacement and potential. Hn, Bi, and v
are the magnetic field, flux and potential. The elastic stiffness tensor
denoted by Cijmn is measured in constants electric and magnetic
fields, the third order tensors ejmn and qjmn are the piezoelectric
and piezomagnetic properties measured at a constant strain and
the second orders tensors jin and nin are the dielectric and magnetic
permeabilities and ain the magneto-electric coefficients.

For the sake of simplification, the coupled interaction between
the magnetic, electric and mechanical variables are rewritten by
using displacement-magneto-electric potential U, magneto-elec-
tro-elastic Z and stress-magneto-electric R fields (Alshits et al.,
1992):
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UM ¼
um

U

f

8><
>: ; ZMn ¼

emn

�En

�Hn

8><
>: ; RnM ¼

rnm

Dn

Bn

8><
>: with

M ¼ 1;2;3
M ¼ 4
M ¼ 5

8><
>:

ð4Þ

The magneto-electro-elastic moduli L are expressed as:

LiJMn ¼
Cijmn eijn qijn

eimn �jin �ain

qimn �ain �nin

2
64

3
75 with

J;M ¼ 1;2;3 J ¼ 1;2;3 M ¼ 4 J ¼ 1;2;3 M ¼ 5
M ¼ 1;2;3 J ¼ 4 J ¼ 4 M ¼ 4 J ¼ 4 M ¼ 5
M ¼ 1;2;3 J ¼ 4 J ¼ 5 M ¼ 4 J ¼ 5 M ¼ 5

2
64

3
75

ð5Þ

with the index (J,M) defined for the same position of the matrix L.
The symmetry properties of LiJMn are induced from those of

Cijmn, eijn and qijn. The coupled magneto-electro-elastic behavior
can be rewritten into the single shorthand equation:

RiJ ¼ LiJMnZMn ð6Þ

Introducing this equation in shorthand notations of (4) and (6), we
obtain the equilibrium equations for the magneto-electro-elastic
potential field UM for given boundary conditions:

ðLiJMnUM;nÞ;i ¼ 0 ð7Þ
2.2. Integral equation

The problem consists of finding UM, ZMn and RiJ at an arbitrary
point r located in each phase when the magneto-electro-elastic
material is loaded by homogeneous boundary conditions
U0

M ¼ Z0
Mnxn where Z0

Mn is an uniform field. Using de Green’s func-
tions techniques GJK(r), we transform the differential Eq. (7) into
an integral equation linking the magneto-electro-elastic field ZKl

with the tensor Z0
Kl:

ZKlðrÞ ¼ Z0
Kl �

Z
V 0

CiJKlðr � r0ÞdLiJMnðr0ÞZMnðr0ÞdV 0 ð8Þ

where V is the volume of the infinite medium and C (r � r0) is the
magneto-electro-elastic modified Green’s tensor of the reference
medium L0 defined by CiJKl (r � r0) = �GJK,il(r � r0) The local mag-
neto-electro-elastic tensor L(r) can be splitted into a uniform part
L0 of the infinite homogeneous medium and the fluctuating part
dL(r) due to the inhomogeneous coated inclusion:

LðrÞ ¼ L0 þ dLðrÞ ð9Þ

As the inclusion and the thin surrounding coating are characterized
by their magneto-electro-elastic moduli LI and Lc of volume VI and
Vc, the heterogeneous part dL(r) may be expressed as:

dLðrÞ ¼ DLIhIðrÞ þ DLchcðrÞ ð11Þ

where DLI = LI � L0 and DLc = Lc � L0.
hI(r) and hc(r) are the Heaviside step functions defined by:

hIðrÞ ¼
1 if r 2 VI

0 if r R VI

�
; h2ðrÞ ¼

1 if r 2 V2

0 if r R V2

�
; hcðrÞ ¼ h2ðrÞ � hIðrÞ

ð12Þ

In this case, V2 denotes the volume of the composite inclusion
(V2 = VI [ Vc).

Substituting (11) in (8) and using the properties (12) of hI(r) and
hc(r), we obtain:

ZKlðrÞ ¼ Z0
Kl �

Z
V 0I

CiJKlðr � r0ÞDLI
iJMnðr0ÞZMnðr0ÞdV 0

�
Z

V 0c

CiJKlðr � r0ÞDLc
iJMnðr0ÞZMnðr0ÞdV 0 ð13Þ
As L(r) is quite uniform by pieces, we consider averaged values of
the fields of each phase: ZI; Zc and Z2 in the inclusion, the coating
and the composite inclusion respectively:

ZI
Mn ¼

1
VI

Z
VI

ZMnðrÞdV ; Zc
Mn ¼

1
Vc

Z
Vc

ZMnðrÞdV ;

Z2
Mn ¼

1
V2

Z
V2

ZMnðrÞdV ð14Þ

The field Z2 over the composite inclusion is issued from averaging of
(13):

Z2
Kl ¼ Z0

Kl �
1

V2

Z
V2

Z
V 0I

CiJKlðr � r0ÞDLI
iJMnðr0ÞZMnðr0ÞdV 0dV

� 1
V2

Z
V2

Z
V 0c

CiJKlðr � r0ÞDLc
iJMnðr0ÞZMnðr0ÞdV 0dV ð15Þ

With use of the uniform Eshelby’s magneto-electro-elastic tensor
T2(L0) defined as

R
V2

Cðr � r0ÞdV ¼ T2ðL0Þ if r0 2 V2 (see Eshelby,
1957 and Li and Dunn, 1998), the field Z2 may be expressed as by
considering (14):

Z2
Kl ¼ Z0

Kl �
VI

V2
T2

iJKlðL
0ÞDLI

iJMnZI
Mn �

Vc

V2
T2

iJKlðL
0ÞDLc

iJMnZc
Mn ð16Þ

As Z2
Kl ¼

VI
V2

ZI
Kl þ Vc

V2
Zc

Kl, we obtain:

VI

V2
IKlMn þ T2

iJKlðL
0ÞDLI

iJMn

� �
ZI

Mn þ
Vc

V2
IKlMn þ T2

iJKlðL
0ÞDLc

iJMn

� �
Zc

Mn ¼ Z0
Kl

ð17Þ

where I is the notation for the fourth order and two second order
identity tensors:

IKlMn ¼
ðdkmdln þ dkndlmÞ=2 0 0

0 dnl 0
0 0 dnl

2
64

3
75

with
K;M ¼ 1;2;3 K ¼ 1;2;3 M ¼ 4 K ¼ 1;2;3 M ¼ 5

M ¼ 1;2;3 K ¼ 4 K ¼ 4 M ¼ 4 K ¼ 4 M ¼ 5
M ¼ 1;2;3 K ¼ 4 K ¼ 5 M ¼ 4 K ¼ 5 M ¼ 5

2
64

3
75 ð18Þ

The index (K,M) are defined for the same position of the matrix I.
The remaining unknowns are then ZI and Zc which have to be

related by an additional equation introduced in the following sec-
tion with use of magneto-electro-elastic interfacial operators.

2.3. Magneto-electro-elastic interfacial operators

We consider an interface between two homogeneous magneto-
electro-elastic medium made of two different phases whose mag-
neto-electro-elastic moduli are denoted by L+ and L�. In the context
of continuum mechanics, the interface is modeled by a mathemat-
ical surface across which material properties change discontinu-
ously. As presented by Mura (1987) in his description of the
discontinuities throughout interfacial surfaces and developed by
Hill (1983) also in elasticity, by Dunn (1994) and Dunn and Taya
(1994) in piezoelectricity, the stress–strain magneto-electric fields
are discontinuous across the interface and their jumps are related
by the interfacial operators. This concept is widened in this work to
the case of a magneto-electro-elastic behavior. Under perfect
bonding hypothesis, the continuity of the magneto-electro-elastic
potential, the interfacial tension and the electric displacement
and magnetic displacement across the interface are expressed:

½UM� ¼ UþM � U�M ¼ 0 ð19Þ

½RiJ �NJ ¼ RþiJ � R�iJ
� �

NJ ¼ 0 ð20Þ

where a normal unit vector N is given by
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NJ ¼
nj J ¼ 1;2;3
1 J ¼ 4
1 J ¼ 5

8><
>: ð21Þ

with ni the outward unit normal of the interface directed of (�) to-
wards (+).

At an arbitrary point r of the interface, the compatibility condi-
tions dui = ui,jdxj, dU = U,jdxj and dv = v,jdxj added to the continuity
of displacement and potential along the boundary impose the rela-
tions: [ui,j]dxj = 0, [U,j]dxj = 0 and [v,j]dxj = 0. Since njdxj = 0, the dis-
placement and potentials gradient are proportional to the unit
normal [ui,j] = kinj, [U,j] = kEnj and [v,j] = kHnj where ki, kE and kH

are the proportionality vector and scalars.
The magneto-electro-elastic displacement jump is expressed

as:

½ZMn� ¼ kMNN ð22Þ

where the magnitude of the jump kM is defined by

kM ¼
km M ¼ 1;2;3
�kE M ¼ 4
�kH M ¼ 5

8><
>: ð23Þ

The continuity condition (20) induces LþiJMnZþMn � L�iJMnZ�Mn

� �
NJ ¼ 0.

After introduction of the Christoffel’s matrix K⁄(⁄ = +or�) defined
by K�iM ¼ L�iJMnNJNN , the magneto-electro-elastic jump kM may be
evaluated in terms of the magneto-electro-elastic field on both
sides of the interface. Under the specified coated inclusion problem,
the phase (�) is the inclusion surrounded by the coating of phase
(+). Thus, the fields ZI(r�) inside the inclusion and Zc(r+) inside the
coating in the neighborhood of the interface may be related via an
magneto-electro-elastic interfacial operator P (for more precision
see Dinzart and Sabar (2009) in the case of electro-elasticity:

Zc
MnðrþÞ ¼ ZI

Mnðr�Þ þ Pc
iJMnðL

c;NÞDLIc
iJRsZ

I
Rsðr�Þ ð24Þ

where Pc is defined as function of the Christoffel’s matrix K by

Pc
iJMnðL

c;NÞ ¼ 1
4

Kc�1

iM NJNN þ Kc�1

jM NINN þ Kc�1

iN NJNM þ Kc�1

jN NINM

� �
:

2.4. Average magneto-electro-elastic field inside the inclusion and the
coating

To establish the localization formulae between the average field
in each phase and the macroscopic field Z0, the field ZI(r�) is re-
placed by its average value ZI over the inclusion. So, the Eq. (24)
becomes:

Zc
MnðrþÞ ¼ ZI

Mn þ Pc
iJMnðL

c;NÞDLIc
iJRsZ

I
Rs ð25Þ

Under the thin coating assumption, the mean value of the field in
the coating is obtained by considering that Zc(r+) depends only on
the boundary’s normal of VI, which leads to:

Zc
Mn ¼ ZI

Mn þ Tc
IJMnðL

cÞDLIc
iJRsZ

I
Rs with

Tc
IJMnðL

cÞ ¼ 1
Vc

Z
Vc

Pc
iJMnðL

c;NÞdV ð26Þ

The problem of localization for the magneto-electro-elastic coated
inclusion is solved by supplying the fields within the inclusion
and the coating as function of the macroscopic uniform field in
the following system:

VI
V2

IKlMnþT2
rSKlðL

0ÞDLI
rSMn

� �
ZI

Mnþ Vc
V2

IKlMnþT2
rSKlðL

0ÞDLc
rSMn

� �
Zc

Mn¼Z0
Kl

Zc
Kl¼ZI

KlþTc
rSKlðL

cÞDLIc
rSMnZI

Mn

8<
:

ð27Þ
The resolution requires the knowledge of tensors T2 and Tc. The ten-
sor Tc can be expressed as Dinzart and Sabar (2009):

Tc
iJKlðL

cÞ ¼ TI
iJKlðL

cÞ � VI

Vc
T2

iJKlðL
cÞ � TI

iJKlðL
cÞ

� �
ð28Þ

where TI and T2 are related respectively to the inclusion VI and the
composite inclusion V2. In the case of ellipsoidal inclusions and of
anisotropic tensors L0, TI and T2 are obtained via a numeric method
using the Fourier transformation of the Green’s tensor. Numeric
algorithm intended to estimate the tensors TI and T2 was developed
by Li (2000a). The Eshelby’s tensors are a function of the magneto-
electro-elastic moduli of the reference medium and of the shape
and the orientation of the inclusions. The analysis is conducted by
following the scheme described in the previous section leading to
the determination of the magneto-electro-elastic Eshelby’s tensors
T2 and TI which last can be considered as TI = T2 in the homothetic
topology of coated inclusion.

In the next part, the previous results are used to predict the
effective properties of a composite material made of several coated
inclusion in a matrix. The theoretical study is based on the Mori–
Tanaka’s scheme.

3. Effective magneto-electro-elastic properties of the composite
with coated reinforcements

3.1. Mori Tanaka’s approach

We assume the material as being a mixture of three phases. The
first phase is constituted by several inclusions with magneto-elec-
tro-elastic moduli LI. Each inclusion is surrounding by a thin layer
of another phase with magneto-electro-elastic moduli Lc. The
coated inclusions are bonded to a matrix whose magneto-elec-
tro-elastic moduli are LM.

When this composite is subjected to homogeneous magneto-
electro-elastic boundary conditions U0

M ¼ Z0
Mnxn it gives rise to

internal strain and stress, electric and magnetic fields in the com-
posite, whose averages, over the representative volume element,
are denoted by Z and R respectively, so that:

ZMn ¼
1
V

Z
V

ZMnðrÞdV ; RiJ ¼
1
V

Z
V
RiJðrÞdV ð29Þ

These averages serve to define the effective magneto-electro-elastic
properties Leff of a composite according to the relation:

RiJ ¼ Leff
iJMnZMn ð30Þ

On the other hand, it can be written from the linearity of the prob-
lem that:

ZI
Mn ¼ AI

MnKlZKl; Zc
Mn ¼ Ac

MnKlZKl ð31Þ

where AI and Ac are the magneto-electro-elastic concentration ten-
sors of the inclusion and the coating respectively. With the help of
(29)–(31), the following expression is obtained:

Leff
iJKl ¼ LM

iJKl þ fI LI
iJMn � LM

iJMn

� �
AI

MnKl þ fc Lc
iJMn � LM

iJMn

� �
Ac

MnKl ð32Þ

where fI and fc denote the volume fraction of the inclusion and the
coating respectively. It is seen that the determination of Leff requires
only the evaluation of AI and Ac.

These tensors are calculated by the Mori–Tanaka’s method
(Mori and Tanaka, 1973) where a single coated inclusion is embed-
ded in a matrix with magneto-electro-elastic behavior defined by
LM. Consequently, AI and Ac can be deduced formally from Eq.
(27) where L0 is replaced by LM, so that:
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AI ¼ fI

fI þ fc
ðIþ fMT2ðLMÞDLIÞ þ fc

fI þ fc
ðIþ fMT2ðLMÞDLcÞðIþ TcðLMÞDLIcÞ

� ��1

ð33Þ
Ac ¼ ½ðIþ TcðLMÞDLIcÞ�AI ð34Þ

with DLI = LI � LM, DLc = Lc � LM, D LIc = LI � Lc and fM = 1 � fI � fc the
volume fraction of the matrix. For the sake of a better linking with
the double-inclusion model developed by Li (2000a), the magneto-
electro-elastic concentration tensors of the inclusion and the
coating are expressed as AIðDIÞ

¼ ½I þ T2ðLMÞDLI��1 and AcðDIÞ
¼

½I þ T2ðLMÞDLc��1.
3.2. Applications

We apply the above developed homogenization method to a
three phase composite constituted by a core surrounded by a pie-
zoelectric coating of BaTiO3 embedded in a magnetic matrix of Co-
Fe2O4. As already shown by Torah et al. (2004) and retrieved by
Dinzart and Sabar (2009), a global improvement of electro-elastic
properties may be obtained by the use of piezoelectric layer sur-
rounding a glassy core. Lin and Sodano (2010) have studied a three
phase piezoelectric composite constituted by a carbon fiber sur-
rounded by a piezoelectric material embedded in an epoxy matrix.
As a consequence, the proposed micromechanical model is applied
to composites made of glassy or carbon reinforcement surrounded
by a thin piezoelectric layer embedded in a magnetic matrix. The
piezoelectric, magneto-electric and reinforcement phases are both
transversely isotropic. The piezoelectric and magneto-electric
media present permittivity constants responsible for the electro-
mechanical and the magneto-mechanical couplings. These piezo-
electric and piezomagnetic constants are denoted (e31,e33,e15)
and (q31,q33,q15) respectively by using the Nye (1957) convention:
the index ij or kl in the tensors eijk and qijk are replaced by m or n
when ij or kl take values (1,2,3) and m or n assumes the values
(1,2,3,4,5,6). It is thought-worthy that both materials present no
magneto-electric coupling leading to parameters a11 and a33

equals to zero. The constants for the magneto-electric matrix Co-
Fe2O4, the piezoelectric medium BaTiO3 are provided in Table 1
from Huang and Kuo (1997). The characteristics of the glass of
grade E are taken from Saint-Gobain data. The material properties
of the carbon core are taken from Odegard (2004). For both these
reinforcement materials, the magnetic coefficients n11 and n33 are
taken small enough but equal to 10�6Ns2/C2 in order to assure
the mathematical inversion of the tensors and the magneto-elec-
tric properties qijk are assumed identically equal to zero.

The volume fraction of the coating is a percentage of the
inclusion volume fraction and is represented by its normalized
Table 1
Magneto-electro-elastic materials properties.

BaTiO3 CoFe2O4 Glass Carbon

C11(GPa) 166 286 88.8 24
C12(GPa) 77 173 29.6 9.7
C13(GPa) 78 170 29.6 6.7
C33(GPa) 162 269.5 88.8 11
C44(GPa) 44 45.3 29.6 27
j11(10�9C2/Nm2) 11.2 0.08 0.056 0.1062
j33(10�9C2/Nm2) 12.6 0.093 0.056 0.1062
n11(10�6Ns2/C2) 5 �590 1 1
n33(10�6Ns2/C2) 10 157 1 1
e31(C/m2) �4.4 0 0 0
e33(C/m2) 18.6 0 0 0
e15(C/m2) 11.6 0 0 0
q31(N/Am) 0 580.2 0 0
q33(N/Am) 0 699.7 0 0
q15(N/Am) 0 550 0 0
thickness Da/a where a is the inclusion radius. Lamellar, spherical
or cylindrical fibers are analyzed through a shape factor defined as
the ratio c/a where c is the third half axe of inclusion along the pol-
ing direction x3.

We analyze successively the influence of the thickness of the
coating, the shape and the orientation effects of the coated inclu-
sion and eventually the consequence of the material choice for
the core.

3.2.1. Influence of the thickness layer
The study is further conducted for a three phase composite

made of glass fibrous core surrounded by a thin piezoelectric layer
both embedded in a magnetic matrix. The evolution of the ME cou-
pling coefficients aeff

11 and aeff
33 are presented for various normalized

thickness Da/a taken below 10% in Figs. 2a and 2b. Our results are
in good agreement with the effective properties predicted with the
double-inclusion scheme formulated by Li (2000a). The similar
study we conducted in electro-elasticity (Dinzart and Sabar,
2009) showed differences between our method and the double
inclusion scheme in the case of spherical shape. These differences
may be explained by the lack of one integral term during the gen-
eralization from local eigen-field to average eigen-field of each
phase in the double inclusion method (as pointed out by Hu and
Weng, 2000). The concordances of our results with the exact re-
sults produced by Jiang and Cheung (2001) and Sudak (2003) al-
lowed us to validate our scheme of resolution of the coated
inclusion problem.

The ME coupling shows attenuated effects for aeff
11 and aeff

33 when
compared to the BaTiO3/CoFe2O4 fibrous composite (Benveniste,
1995; Tang and Yu, 2008; Li, 2000a) due to the fewer part of piezo-
electric material implicated in the coupling phenomena. However,
the ME coupling coefficients are greater by increasing the thickness
of the coating i.e. the piezoelectric rate. The optimized volume
fraction at the extremum of the ME coupling aeff

33 diminishes from
44% for the BaTiO3/CoFe2O4 composite (Tang and Yu, 2008; Zhang
and Soh, 2005) to 38% for the Glass/BaTiO3/CoFe2O4 hybrid com-
posite. Similar trend may be observed for the coefficient aeff

11: the
optimized volume fraction varies from 86 % for non-coated fiber
to 50%, 53% and 63% for the thickness Da/a equal to 2%, 5% and
10% respectively.

3.2.2. Influence of the shape
The influence of the shape of the reinforcement is conducted for

BaTiO3/CoFe2O4 composites and for Glass/BaTiO3/CoFe2O4 hybrid
composites. As already demonstrated by Benveniste (1995) and
by Tang and Yu (2008) for fibrous BaTiO3/CoFe2O4 composite, the
ME coupling aeff

33 is positive whereas the ME coupling aeff
11 is
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Fig. 2a. Influence of the BaTiO3 coating thickness on the effective ME coupling aeff
33

for Glass/BaTiO3/ CoFe2O4 cylindrical composites (c/a = 100).
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negative consecutively to opposite signs of e31 and e33 in piezoelec-
tric phase and identical signs of q31 and q33 in magnetic phase: this
induces an offset in interaction between the electric E3 and mag-
netic H3 fields in the poling direction. This phenomenon is inversed
for aeff

33 in the case of spherical or flattened shape (Li, 2000b). Sim-
ilar trends are observed for Glass/BaTiO3/CoFe2O4 hybrid compos-
ites. The ME coefficient aeff

33 is first drawn in Fig. 3 for various shape
factor c/a at a fixed thickness of the coating Da/a = 0.02. The lamel-
lar shape conducts to a decrease of the ME coupling aeff

33 consecu-
tive to this peculiar shape and to the fewer contribution of the
piezoelectric phase in the coating. The spherical shape gives a neg-
ative ME coupling aeff

33 as in BaTiO3/CoFe2O4 composite (Zhang and
Soh, 2005); the minimum of aeff

33 is shifted towards the smaller vol-
ume fraction of the coated inclusion as already described for the
cylindrical shape in the previous section. As already observed by
Li (2000a), the ME coupling effect aeff

33 results from the transmission
of the stresses r33 and r11 from the piezoelectric phase and from
the induced balance with the magnetic flux in the magneto-electric
phase. The shear stress r13 gives rise to magnetic flux in the piezo-
electric phase and diminishes the aeff

11 coefficient as the magnetic
properties in the piezoelectric phase are three order smaller than
in the magneto-electric phase. The lamellar shape leads to highest
ME coefficient aeff

11 since the interactions between piezoelectric and
magneto-electric phases are maximized in the orthogonal plane.
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Fig. 3. Influence of the BaTiO3 reinforcement shape on the effective ME coupling aeff
33

for Glass/BaTiO3/ CoFe2O4 composites (Da/a = 0.02) as function of the volume
fraction.
The discussion of Li (2000a) may be consulted for the complete
description of mechanisms implied during the ME coupling.

These observations may be retrieved by analyzing the ME coef-
ficients aeff

33 and aeff
11 as function of the aspect ration c/a for BaTiO3/

CoFe2O4 composites (Figs. 4a and 4b) and for Glass/BaTiO3/CoFe2O4

hybrid composites (Figs. 5a and 5b) for a relative thickness of the
coating Da/a = 0.02. The plots present different volume fractions f
of the inclusion or the coated inclusion from 10% to 50%. In the case
of BaTiO3/CoFe2O4 composite, the ME coefficients present a great
evolution when the shape changes from lamellar to fibrous; the
range of variation is found between 0.001 to 0.1 for aeff

11 and
between 1 to 100 for aeff

33 . Similar trends were observed by Srinivas
and Li (2005) with a slight shift of the evolution range which may
be attributed to a different homogenization scheme, the extremum
values of aeff

11 and aeff
33 are comparable (respectively �5.10�8Ns/VC

and 4.10�9Ns/VC for the PZT-5H/CoFe2O4 composite studied by
Srinivas and Li (2005) versus �3.5.10�8Ns/VC and 3.10�9Ns/VC for
the BaTiO3/CoFe2O4 composite studied here). However, as seen in
Fig. 4a, for intermediate shape factor describing slightly flattened
spherical inclusion (c/a = 0.45), the ME coefficient aeff

33 presents a
minimum not described by Srinivas and Li (2005). The minimized
value of aeff

33 appears amplified for Glass/BaTiO3/CoFe2O4 hybrid
composite. The combination of the negative and positive magnetic
properties n11 and n33 for the piezoelectric and magneto-electric
phases may favor the existence of extremum values in the resolu-
tion (Srinivas and Li considered in their analysis both values n11

and n33 positives and identical for each phase). As already observed
for the ME coefficient aeff

33 , the coefficient aeff
11 presents the same

evolution with regards to the aspect factor c/a for the simple
BaTiO3/CoFe2O4 composite and for the hybrid Glass/BaTiO3/Co-
Fe2O4 composite (Figs. 4b and 5b) with an attenuated values as
expected for fewer participation of the piezoelectric phase when
used as coating.

A change of sign of the ME coefficient aeff
33 appears for the same

shape factor c/a around 2 (slightly ellipsoidal with the great axe in
the poling direction) for BaTiO3/CoFe2O4 composite (Fig. 4a). This
singular shape corresponds to a particular combination of the pie-
zoelectric and piezomagnetic properties as discussed by Li (2000a).
Two changes of sign of the ME coefficient aeff

33 are observed for the
Glass/BaTiO3/CoFe2O4 hybrid composite (Fig. 5a) when the shape
evolves from flattened (c/a� 1) to cylindrical (c/a� 1): around
c/a � 0.06 and c/a � 4. The change of sign of the ME coefficient
aeff

33 appears almost independent on the volume fraction: this is
due to the proportion of the interacting piezoelectric and piezo-
magnetic properties which remains quite the same whatever the
volume fraction is. The slight scattering in shape factor where
-1.0E-09

0.0E+00

1.0E-09

2.0E-09

3.0E-09

4.0E-09

0.01 0.1 1 10 100 1000

Aspect ratio of the inclusion

α 3
3ef

f  (
N

s/
V

C
)

f=0.1 
f=0.2
f=0.3 
f=0.4
f=0.5

Fig. 4a. Influence of the BaTiO3 reinforcement shape on the effective ME coupling
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33 for BaTiO3/ CoFe2O4 composites (Da/a = 0).
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the change of sign occurs in the coated inclusion results from the
difference of the repartition of the properties more pronounced
in the coating.

3.2.3. Influence of the orientation
We present the influence of the orientation of the fibrous rein-

forcement in Glass/BaTiO3/CoFe2O4 fibrous composite. Both core
and coating are affected by the orientation described by three Euler
angles (h,w,/). This induced anisotropy affects the tensors of sec-
ond rank jin, nin, of third rank ejmn and qjmn, and of fourth rank Cijmn.
The effective second rank tensor aeff

in is consequently affected by
the orientation effects. The terms of the matrix LiJMn are trans-
formed from their principal value in local coordinate to the global
coordinate thanks the direction matrix T defined as:

T�1¼
coswcoshcos/�sinwsin/ sinwcoshcos/�coswsin/ �sinhcos/

�coswcoshsin/�sinwcos/ �sinwcoshsin/�coswcos/ sinhsin/

sinhcosw sinhsinw cosh

2
64

3
75
ð35Þ

We consider the influence of a single orientation defined by the an-
gle / with the poling direction x3 on fibrous aligned reinforcement
(c/a = 100). We only present the influence of the orientation on the
ME coefficient aeff

33 in Fig. 6a for various angle /. The orientation in-
duces a decrease of the inclusion height in the poling direction by a
factor cos/ which is combined to an increase of the coating surface
area in the orthogonal plane by a factor 1/cos2/. The balance be-
tween these two effects is maximized for the orientation / = 45�

as may be observed in Fig. 6b which presents the ME coefficient
evolution aeff

33 as function of the orientation for fixed volume fraction
of the coated inclusion. The orientation effect may be compared to a
flattening of the coated inclusion combined with an increase of the
coating thickness whose effects are described above in Fig. 5a.
3.2.4. Influence of the choice of the material core
We further analyze the material choice for the core of the rein-

forced hybrid composite, the piezoelectric surrounding and the
magneto-electric matrix taken identical. The ME coefficient aeff

33

plotted in Fig. 7a remains positive whatever the chosen core but
shows attenuated values when compared to the BaTiO3/CoFe2O4

fibrous composite due to the fewer part of piezoelectric material
implicated in the coupling phenomena. The ME coupling coeffi-
cients are greater for the glass core than for the carbon core: this
phenomenon results from the transfer of the elastic strain through-
out the phases from the core towards the matrix. As described by
Huang et al. (2000), the ME coupling aeff

33 depends on the elastic
moduli of the materials in relation with the growth direction of
the phase with respect to the poling direction. Benveniste (1995)
gave an expression of the ME coupling aeff

33 for magneto-electric
fibrous composite showing an increase of aeff

33 for close moduli
C11 and C12 in each phase. The mechanical transfer is all the greater
that the effective elastic moduli Ceff

11 and Ceff
12 are close to matrix

moduli as shown in the Fig. 7b.
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4. Conclusions

We obtain the effective magneto-electro-elastic properties of a
magnetic-piezoelectric composites reinforced by coated inclusions
in the general case of anisotropic materials and ellipsoidal inclu-
sions with non homothetic topology. Moreover, the solution of
the magneto-electro-elastic coated inclusion problem is only based
on the classical Eshelby’s magneto-electro-elastic tensors.

The micromechanical model is applied to particular coated
inclusions in magnetic matrix: piezoelectric layer surrounding a
glassy core or a carbon core. Some comparisons with two phase
models are successfully conducted. A potential enhancement of
the magneto-electric coupling effects may be obtained provided
that the shape, the thickness and orientation of the coated inclu-
sion are thoughtfully chosen according to the direction to be opti-
mized (poling or transverse). Lamellar shape induces higher ME
coupling aeff

11 whereas cylindrical shape favors aeff
33 . For a given vol-

ume fraction of the coated inclusion, the ME coupling aeff
33 changes

of sign for particular shapes. The increase of the thickness coating
increases the ME coupling effects. The ME coupling effects aeff

33 are
optimized for an orientation of the fibers of 45� with the poling
direction. A more detailed study of the choice of the material core
could also offer tracks of improvement. The present model may
provide also homogenized properties indispensable to the optimi-
zation of the mechanical strength of the hybrid composite (elastic
stiffness, piezoelectric and piezomagnetic properties, dielectric
constants and magnetic permeabilities).
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