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Increased expression of the epidermal growth factor receptor HER-2/ErbB2 is frequently 
observed in breast cancer and is targeted by the anticancer drug Herceptin. Now, Zuo et 
al. (2007) reveal that an X-linked gene encoding the transcription factor FOXP3 is a breast 
cancer tumor suppressor that represses expression of HER2/ErbB2.
One of the first lessons taught in tumor 
genetics courses is that activation of 
a proto-oncogene requires mutation 
of a single allele, whereas inactivat-
ing a tumor suppressor gene requires 
biallelic inactivation. This difference 
was recapitulated in Knudson’s two-
hit theory to explain the genetics of 
retinoblastomas (Knudson, 1971) and 
helped identify the first tumor sup-
pressor genes. Following this easy 
rule of thumb, the tumor suppressor 
protein p53 was originally classified 
as an oncogene, because introduc-
tion of a single mutant allele provides 
transforming activity. But once it was 
realized that p53 is a tumor sup-
pressor that can acquire dominant-
negative mutations, it became clear 
that tumor suppressor genes do not 
always require biallelic inactivation 
(Levine et al., 2004). In another vari-
ation on this theme, two new studies 
describe identification of the first X-
linked tumor suppressor genes. One 
study describes involvement of the 
X-linked WTX gene in Wilms tumor 
(Rivera et al., 2007), and in this issue 
of Cell, Zuo et al. (2007) report that 
FoxP3 is an X-linked tumor suppres-
sor gene involved in breast cancer.

What makes an X-linked tumor 
suppressor gene special? First, as 
males only carry one copy of the X 
chromosome, this allows for “one-
hit” inactivation. Second, X chro-
mosome inactivation results in tran-
scriptional silencing of one of the two 
X chromosomes in female somatic 
cells to equalize the dosage imbal-
ance of X-linked genes between 
males and females. Which of the 
two X chromosomes is inactivated is 
completely random, but once estab-
lished, this pattern of inactivation is 
stably propagated to the daughter 
cells. As a result, females normally 
display a mosaic pattern of X inacti-
vation: 50% of the cells inactivate the 
maternally inherited X chromosome, 
whereas the other 50% inactivate 
the paternal X chromosome. Conse-
quently, X chromosome inactivation 
in combination with a single muta-
tion in the active X chromosome can 
inactivate an X-linked tumor sup-
pressor gene. Indeed, WTX is inac-
tivated by monoallelic mutation tar-
geting the active X chromosome in 
female patients (Rivera et al., 2007). 
Similarly, mammary tumors in FoxP3 
mutant heterozygous mice have 
invariably inactivated the X chro-
mosome carrying wild-type FoxP3. 
Thus, inactivation of X-linked tumor 
suppressor genes can be achieved 
by a “single-hit” event, both in males 
and in females.

Why have tumor suppressor genes 
on the X chromosome not been 
selected against during evolution? 
This may reflect a lack of sufficient 
selective pressure against these 
genes, especially considering that 
reproductive age generally precedes 
the onset of cancer. In fact, the risk 
that comes with an X-linked tumor 
suppressor gene is comparable to 
Cell 129,
that associated with a haploinsuf-
ficient tumor suppressor gene, of 
which several examples exist (Santa-
rosa and Ashworth, 2004). Nonethe-
less, the genetics of X-linked tumor 
suppressors might be more complex. 
First, X inactivation does not silence 
all genes on the X chromosome. 
Although there is clear evidence that 
FoxP3 is subject to X inactivation, 
silencing at the FoxP3 locus might be 
incomplete (Wildin and Freitas, 2005). 
Indeed, in 38% of the analyzed breast 
cancer tissue samples carrying 
somatic FoxP3 mutations, the wild-
type FoxP3 allele is lost, suggest-
ing leaky X inactivation at the FoxP3 
locus. Secondly, in females carrying 
mutations in critical X-linked genes, 
selective X inactivation is observed 
due to negative selection of cells 
expressing the mutant allele. This 
selection, known as skewed X inacti-
vation, allows for phenotypic suppres-
sion of X-linked dominant disorders in 
females by selecting for expression of 
the wild-type allele in relevant tissues 
(Figure 1). In fact, although inactiva-
tion of FoxP3 causes an autoimmune 
disorder (IPEX syndrome) in males, 
females with a single mutant FoxP3 
allele are not affected by the disease, 
as skewing can select against expres-
sion of the mutant allele. Now, Zuo et 
al. (2007) show that FoxP3-hetero-
zygous female mice develop breast 
cancer at an enhanced rate as they 
age. This leads to the peculiar notion 
that in female carriers of a mutant 
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FoxP3 allele, skewed X inactiva-
tion selects against expression 
of the mutant allele in certain tis-
sues to prevent autoimmune dis-
ease, whereas skewing selects 
for expression of the mutant allele 
during tumorigenesis in breast 
epithelial cells to promote breast 
cancer.

How does FoxP3 act to sup-
press the development of breast 
cancer? FoxP3 belongs to the 
Forkhead family of transcription 
factors, of which several mem-
bers (FoxO, FoxM, FoxG1) have 
been implicated in tumorigenesis. 
Initially, it was shown that FoxP3 
is essential for the commitment 
of thymocytes to become regu-
latory CD4+ T cells (Tregs) with 
dedicated immunosuppressive 
functions (reviewed in Zheng and 
Rudensky, 2007). Indeed, FoxP3 
is predominantly expressed in 
Tregs, where it can act as a trans-
activator and repressor of a large 
variety of genes. Zuo et al. present 
evidence for FoxP3 expression 
in breast epithilium and indicate 
that the HER-2/ErbB2 oncogene 
is a relevant target of FoxP3. Most 
tantalizing is their observation that 
ectopic expression of ErbB2 com-
pletely reverses the antitumorigenic 
effect of FoxP3, at least as measured 
in colony-formation assays in vitro. 
This outcome suggests that ErbB2 
is the single most important target 
of FoxP3 in preventing tumorigen-
esis. Interestingly, Liu and colleagues 
previously proposed that ErbB2 is 
a pivotal target of FoxP3 in thymic 
epithelium where FoxP3 regulates 
differentiation of Tregs (Chang et al., 
2005). This suggests that deregu-
lated ErbB2 expression is respon-
sible for both the autoimmunity in 
males and the increased tumor for-
mation seen in females. However, a 
role for FoxP3 in thymic epithelium 
was recently disputed (Zheng and 
Rudensky, 2007), and ErbB2 was not 
identified as a major FoxP3 target by 

expression profiling in Tregs. Possi-
bly, FoxP3 requires specific cofac-
tors to repress ErbB2 expression, 
similar to the cooperation between 
NFAT and FoxP3 to repress IL-2 
expression (Wu et al., 2006). In addi-
tion, several FoxP3-negative breast 
cancers express low levels of ErbB2, 
and FoxP3 can also suppress growth 
of ErbB2-negative breast cancer cell 
lines. Based on expression profiling 
of FoxP3-regulated genes in ErbB2-
negative cells, the authors propose 
multiple other players in the ErbB2 
signaling pathway. However, this 
seems to contradict the observa-
tion that ErbB2 expression alone can 
overcome the tumor-suppressive 
effect of FoxP3. Clearly, the situation 
downstream of FoxP3 is more com-
plex than mere regulation of ErbB2 
signaling.

Although the data at hand indi-
cate that FoxP3 acts in breast epi-
thelium to suppress breast cancer, 
it remains possible that Treg func-
tion also contributes. Mosaic FoxP3 
expression in Tregs may result in 
partial impaired Treg function with-
out disease and elevated expres-
sion of inflammatory cytokines. 
Given that inflammation is increas-
ingly recognized as a contributing 
factor in tumorigenesis (reviewed in 
Karin and Greten, 2005), increased 
and sustained inflammation may 
provide a mechanism for a more 
general involvement of FoxP3 in 
cancer development. Clearly, X-
linked tumor suppressor genes are 
the new kids on the block, and it 
will be of interest to find out why 
and how nature tolerates these 
genetic booby traps.
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Figure 1. Inactivation of X-Linked Tumor 
Suppressor Genes and Tumor Formation
Mosaic expression of a mutant X-linked gene, such as 
FoxP3, in females depends on X chromosome inac-
tivation. Growth of cells carrying a mutant allele can 
be actively suppressed by negative selection result-
ing in skewed X inactivation (right). Mechanism(s) for 
selection can be diverse, such as increased intrinsic 
cell death of cells carrying the mutant allele. However, 
clonal outgrowth of cells carrying a mutant allele can 
also occur, and this results in disease (left). Clonal out-
growth can be caused by secondary genetic changes 
(such as Ras activation), resulting in hyperprolifera-
tion of cells carrying a mutant allele or silencing of the 
wild-type allele through loss of heterozygosity or, in 
the case of FoxP3 and other X-linked tumor suppres-
sor genes, through X chromosome inactivation.
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