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Abstract

Chung and Graham (J. Combin. Theory Ser. A 61 (1992) 64) define quasirandom subsets of

Zn to be those with any one of a large collection of equivalent random-like properties. We

weaken their definition and call a subset of Zn e-balanced if its discrepancy on each interval is
bounded by en: A quasirandom permutation, then, is one which maps each interval to a highly

balanced set. In the spirit of previous studies of quasirandomness, we exhibit several random-

like properties which are equivalent to this one, including the property of containing

(approximately) the expected number of subsequences of each order-type. We present a

construction for a family of strongly quasirandom permutations, and prove that this

construction is essentially optimal, using a result of Schmidt on the discrepancy of sequences

of real numbers.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, combinatorialists have been investigating several realms of
random-like—‘‘quasirandom’’—objects. For a given probability space X; the basic
idea is to choose some collection of properties that large objects in X have almost

surely, and define a sequence fXigNi¼1CX to be quasirandom if Xi has these properties

in the limit. Often, this approach amounts to choosing some random variables Zj

defined on X which tend to their expected values almost surely as jX j-N; and
defining Xi to be quasirandom when ðZ0ðXiÞ; Z1ðXiÞ;yÞ-ðEZ0; EZ1;yÞ sufficiently
quickly. The resulting definitions are explored by finding many such collections of
properties and showing that quasirandomness with respect to any one of them is
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equivalent to all the rest—often rather surprisingly, since the properties may appear
completely unrelated to one another. Quasirandom graphs, hypergraphs, set
systems, subsets of Zn; and tournaments have all been examined in this way [4–6].
Quasirandom families of permutations have been defined in [12], and Gowers [9] has
used a careful quantitative analysis of strongly quasirandom (‘‘a-uniform’’, in his
terminology) subsets of Zn as an integral component of his remarkable new proof of
Szemerédi’s Theorem. Quasirandom objects also have applications in algorithms as
deterministic substitutes for randomly generated objects, in addition to their purely
theoretical uses. In fact, specific types of random-like permutations have been used
already in a number of contexts. Lagarias [11] constructed random-like permutations
of a d-dimensional array of cells in order to solve a practical memory-mapping
problem, and Alon [1] used ‘‘pseudo-random’’ permutations to improve on the best
known deterministic maximum-flow algorithm of Goldberg and Tarjan. Quasiran-
dom sequences of reals are also fundamental to the extensively studied ‘‘quasi-Monte
Carlo’’ methods of numerical analysis [13]. In this paper, we add (individual)
permutations to the growing list of objects for which a formal notion of
quasirandomness has been defined.
In Section 2, we discuss the concept of e-balance, which weakens the

quasirandomness of Chung and Graham. It is shown to be equivalent to several
‘‘types’’ of quasirandomness for subsets of Zn; including an infinite family of
eigenvalue bounds. In Section 3, quasirandom permutations are defined as those
which map intervals to uniformly balanced sets, and we prove that this definition is
equivalent to several other random-like conditions. Section 4 contains a construction
for a family of strongly quasirandom permutations that generalize the classical van
der Corput sequences. We show that this construction is essentially optimal, using a
result of Schmidt on the discrepancy of sequences of real numbers. Finally, Section 5
concludes with some open problems and directions for future work.

2. Balanced sets

Throughout the following, we consider permutations, i.e., elements of Sn; as
actions on Zn as well as sequences of numbers ðsð0Þ; sð1Þ;y; sðn � 1ÞÞ (‘‘one-line
notation’’). When an ordering on Zn is used, we mean the one inherited from ½0; n �
1	CZ: If fi; i ¼ 1; 2; is a function from a totally ordered set A to a totally ordered set
Bi; we say that f1 and f2 are isomorphic (and write f1Bf2) if, for any a1; a2AA;
f1ða1Þof1ða2Þ iff f2ða1Þof2ða2Þ: Note that this definition still makes sense when f1
and f2 are defined on different sets A1 and A2; so long as jA1j ¼ jA2j is finite and we
identify them via the unique order-isomorphism between them. Then, if sASn and

tASm; mpn; we say that t occurs in s at the set A ¼ faigm
i¼1CZn whenever sjABt:

For each ACZn and permutation t; we write Xt
AðsÞ for the indicator random

variable of the event that t occurs in s at A; and we write XtðsÞ for the random
variable that counts the number of occurrences of t in s; i.e., XtðsÞ ¼

P
A Xt

AðsÞ
where A ranges over all subsets of Zn of cardinality m:
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For any subset SCZn (or SCZ), there is a minimal representation of S as a union
of intervals. We call these intervals the components of S and denote the number of
them by cðSÞ: Also, we adopt the convention that the symbols for a set and the
characteristic function of that set be the same, so, for example, SðxÞ ¼ 1 if xAS and

SðxÞ ¼ 0 if xeS: Finally, for any function from Zn to C; we write f̃ðkÞ for the kth
Fourier coefficient of f ; defined by

f̃ðkÞ ¼
X
xAZn

f ðxÞe�2pikx=n:

A well-known alternative definition of the Fourier coefficients of a set S is the
spectrum of the circulant matrix MS whose ði; jÞ entry is Sði þ jÞ:
One would expect random permutations to ‘‘jumble’’ the elements on which it

acts, i.e., there should be no correlation between proximity in Zn and proximity in
the image. We can measure proximity by means of intervals: the elements of a small
interval are all ‘‘close’’ to one another. Thus, if we define an interval of Zn to be the
projection of any interval of Z; a permutation sASn will be called ‘‘quasirandom’’ if
the intersection of any interval I with the image of any other interval J under s has
cardinality approximately jI jjJj=n; i.e., no interval contains much more or less of the
image of any other interval than one would expect if s were chosen randomly.
Thus, for any two sets S;TCZn we define the discrepancy of S in T as

DTðSÞ ¼ jS-T j � jSjjT j
n

����
����:

Note that we may apply this definition to multisets S and T ; and that it is
symmetric in its arguments. Before proceeding, we present a simple lemma to the
effect that D is subadditive.

Lemma 2.1. If S ¼ A,B; A and B disjoint, then DSðTÞpDAðTÞ þ DBðTÞ: If T ¼
C,D; C and D disjoint, then DSðTÞpDSðCÞ þ DSðDÞ: That is, D is subadditive in

both of its arguments.

Proof. By the triangle inequality, we have

DTðSÞ ¼ j S-T j � jSjjT j
n

����
����

¼ j A-T j þ j B-T j � jAjjT j
n

� jBjjT j
n

����
����

p jDTðAÞj þ jDT ðBÞj:
The other statement follows by symmetry. &

Define DðSÞ to be the maximum of DJðSÞ; taken over all intervals JCZn; and call
a set SCZn e-balanced if DðSÞoen: We state, for contrast, the definition of
quasirandomness for a set SCZn; studied by Chung and Graham [5]. (Here, and
throughout the rest of this paper, we notationally suppress the fact that we actually
mean an infinite sequence of sets Si and a sequence ni-N:) In fact, the authors
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showed that several definitions were equivalent, including all of the following. Let
s ¼ jSj and t ¼ jT j; and denote the characteristic function of S by w:

1. (Weak translation) For almost all xAZn; jS-ðS þ xÞj ¼ s2=n þ oðnÞ:
2. (Strong translation) For all TCZn; and almost all xAZn; jS-ðT þ xÞj ¼ st=n þ

oðnÞ:
3. (k-pattern) For almost all u1; u2;y; ukAZn;X

x

Yk

i¼1
wðx þ uiÞ ¼ sk=nk�1 þ oðnÞ:

4. (Exponential sum) For all ja0 in Zn;
P

x wðxÞ expð2pijx=nÞ ¼ oðnÞ:

It is easy to see that a set which is quasirandom in these senses is also
oð1Þ-balanced. Indeed, for each interval JCZn; ‘‘Strong translation’’ implies that
DJþxðSÞoen for some x with jxjpen: Therefore, since jJWðJ þ xÞjp2en; this
implies that DJðSÞo3en: On the other hand, the set S ¼ f2x j 0pxpn � 1gCZ2n

is, for any e40 and sufficiently large n; e-balanced. However, S-ðS þ tÞ does not
have cardinality approximately jSj2=n for almost all t; i.e., it violates ‘‘Weak
translation’’. Therefore, e-balance is strictly weaker than quasirandomness in the
sense of [5].
We use the convention that when ‘‘little oh’’ notation is used, convergence in n

alone is intended. (That is, the convergence is uniform in any other quantities
involved.) The following is the main result of this section.

Theorem 2.2. For rAZn; we define jrj to be the absolute value of the unique

representative of r from the interval ð�n=2; n=2	: Then, for any sequence of subsets

SCZn and choice of a40; the following are equivalent:

½B	 (Balance) DðSÞ ¼ oðnÞ:
½PB	 (Piecewise balance) For any subset TCZn; DTðSÞ ¼ oðncðTÞÞ; where cðTÞ

denotes the number of components T.

½MB	 (Multiple balance) Let kS denote the multiset fksjsASg: Then, for any

kAZn\f0g; DðkSÞ ¼ oðnjkjÞ:
½Eð12Þ	 (Eigenvalue bound 1

2) For all nonzero kAZn; S̃ðkÞ ¼ oðnjkj1=2Þ:
½EðaÞ	 (Eigenvalue bound a) For all nonzero kAZn; S̃ðkÞ ¼ oðnjkjaÞ:

½S	 (Sum)
P

ra0 ðjS̃ðkÞj=jkjÞ
2 ¼ oðn2Þ:

½T	 (Translation) For any interval J;

X
kAZn

jS-ðJ þ kÞj � jSjjJj
n

� �2

¼ oðn3Þ:

We will show that [B] ) [PB] ) [MB] ) [E(12)] ) [E(a)] ) [S] ) [T] ) [B]. In

each case, a statement involving some e is shown to imply the next for some f ðeÞ;
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where f is a function which tends to zero as its argument does. For example,
Proposition 2.3 below states that if DTðSÞoencðTÞ for all T ; then DT ðkSÞo2enjkj
for all k, so that f ðeÞ ¼ 2e: It appears to be theoretically useful to track what happens
to e as we pass through each implication—see, for example, [9]. Thus, we include
Fig. 1 as an accompaniment to Theorem 2.2. (Note that, by the proof of Proposition
2.4, Fig. 1 is only valid for eop=8; though this is hardly a significant restriction.) The
shortcut edge from [E(1

2
)] to [S] is given to illustrate the (best possible) choice of

a ¼ 1=4 in [E(a)], and the circular arrow represents one complete traversal of the
cycle of implications, including the shortcut edge.
Theorem 2.2 is proven in pieces, beginning with the following proposition.

Proposition 2.3. [B] ) [PB] ) [MB].

Proof. Suppose that DðSÞoen: Then, by Lemma 2.1, for any T ; DTðSÞp
P

DTi
ðSÞ;

where the sum is over the components of T : Thus, DT ðSÞoen cðTÞ; and [B] ) [PB].
Now, suppose [PB] holds for S: Note that, for a given kAZn\f0g and interval J;

the set J 0 of elements xAZn such that kxAJ has at most jkj components. Let Ji be the
set of integer points (viewed as elements of Zn) lying in ½a=k; b=k	 þ in=k; so that
J 0 ¼

S
i Ji: Then the cardinality of Ji is off from jJj=k by at most 1: By [PB] and the

triangle inequality,

DJðkSÞ ¼ jkS-Jj � jSjjJj
n

����
����

p
X

i

jS-Jij �
X

i

jSjjJij
n

�����
�����þ jSj

n

X
i

jJij � jJj
�����

�����
o enjkj þ jkj jSj

n
p2enjkj

since, trivially, eXn�1: &

Now, we wish to show that multiple balance implies the first eigenvalue bound.
The basic idea is to imbed the elements of S into the unit circle via the exponential
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map, and then show that a great deal of cancellation happens because of the
relatively uniform distribution of elements of S:

Proposition 2.4. [MB] ) [E(1
2
)].

Proof. Let o ¼ e2pi=n and Jj
m ¼ ½nj

m
; nð jþ1Þ

m
Þ; and let e be the bound on ðnkÞ�1DðkSÞ:

Recall that eXn�1: First, we prove the following:

Claim. Let m and j be positive integers with 0pjom; and mX2: If we define the

multiset Sj ¼ kS-Jj
m and let gj ¼ o�nð jþ1=2Þ=m; then

X
xASj

o�x � jSj
m

gj

������
������o

pjSj
m2

þ 2ejkjn:

Proof of Claim. We may write the left-hand side of the above expression as

X
xASj

o�x � jSj
m

gj

������
������ ¼

X
xASj

o�x � jSj
mjSj j

gj

� �������
������

p
jSj

mjSjj
X
xASj

ðo�x � gjÞ

������
������þ

X
xASj

o�x 1� jSj
mjSjj

� �������
������

p
jSj

mjSjj
X
xASj

j ðo�x � gjÞj þ
X
xASj

o�x 1� jSj
mjSjj

� �����
����:

Now, for xASj;

jo�x � gj jpjo�nj=m � o�nð jþ1=2Þ=mjp n=2

m
 2p

n
¼ p

m
:

Plugging this expression in and applying [MB], we have

X
xASj

o�x � jSj
m

gj

������
������p

jSj
mjSjj

 jSjj 
p
m

þ jSj j �
jSj
m

����
����

p
pjSj
m2

þ jkS-Jj
mj �

jSjjJj
mj

n

����
����þ jSj

n

n

m
� jJj

mj
��� ���

o
pjSj
m2

þ ejkjn þ jSj
n

p
pjSj
m2

þ 2ejkjn;

thus, proving the claim. &
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If we sum over all jA½0;m � 1Þ;

X
xAS

o�kx

�����
����� ¼

Xm�1

j¼0

X
xASj

o�x

������
������

p
Xm�1

j¼0

jSj
m

gj

�����
�����þ

Xm�1

j¼0

X
xASj

o�x � jSj
m

gj

������
������

o 0þ pjSj
m

þ 2ejkjnm

if we assume that mX2: Thus, letting m ¼ pjSj
2ejkjn

� 	1=2
 �
; we have

X
xAS

o�kx

�����
�����o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18penjkjjSj

p
pn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18pejkj

p
unless mo2; i.e., e4 p

8; which is eventually impossible, given [MB]. We may therefore

conclude that jS̃ðkÞj ¼ oðnjkj1=2Þ: &

Before we proceed with the next implication, the following lemma will be
necessary. It implies, surprisingly, that [E(a)] is equivalent to [E(b)] for all a and b:

Lemma 2.5. [E(a)] implies [E(b)] for any a; b40:

Proof. Let M ¼ a
b

l m
; and assume [E(a)]. Then

jS̃ðkÞjM ¼
X
tAZn

SðtÞo�kt

�����
�����
M

¼
X

t1;y;tM

YM
j¼1

SðtjÞ
" #

o�k
PM

i¼1 ti

�����
�����:

Letting u ¼
PM

i¼2 ti; we have

jS̃ðkÞjM ¼
X

t2;y;tM

YM
j¼2

SðtjÞ
" #X

t1

Sðt1Þo�kðt1þuÞ

�����
�����

p
X

t2;y;tM

YM
j¼2

SðtjÞ
" # X

t1

Sðt1Þo�kt1

�����
�����

¼
X

t2;y;tM

YM
j¼2

SðtjÞ
" #

jS̃ðkÞj

o
X

t2;y;tM

YM
j¼2

SðtjÞ
" #

enjkja

¼ jSjM�1enjkjapenM jkja:
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Thus, taking the Mth root of both sides, we have

jS̃ðkÞjoe1=Mnjkja=MpeJa=bn
�1

njkjb: &

The following corollary is actually what is needed for Theorem 2.2.

Corollary 2.6. [E(1
2
)] ) [E(a)].

Note that, to proceed with the next proposition, a ¼ 1=2 would not quite be
enough—we have to reduce it by a bit with Proposition 2.5.

Proposition 2.7. [E(a)] ) [S].

Proof. By Proposition 2.5, we know that jS̃ðkÞjoeJ4an
�1

njkj1=4 for all ka0: Then

X
ra0

jS̃ðkÞj
jkj

� �2

o
X
ka0

eJ4an
�1

njkj1=4

jkj

 !2

pe2J4an
�1

n2
X
ka0

jkj�3=2o6e2J4an
�1

n2;

where we have used the approximation jzðsÞjoðReðsÞ � 1Þ�1 þ 1 for s with
ReðsÞ41: &

We now write a cyclic sum in terms of Fourier coefficients. A proof of the
following standard lemma is included for the sake of completeness.

Lemma 2.8. If J is an interval of Zn; then J̃ðkÞp n
2jkj:

Proof. We may write the magnitude of the kth Fourier coefficient of J ¼ ½a þ 1; a þ
M	 as

jJ̃ðkÞj ¼
X

x

JðxÞo�kx

�����
����� ¼

Xb

x¼a

o�kx

�����
����� ¼

XM
x¼1

o�kx

�����
�����

¼ jo�kM � 1j
jo�k � 1j p

2

4jkj=n
¼ n

2jkj

since jeiy � 1jX 2jyj
p for all y: &

Proposition 2.9. [S] ) [T].

Proof. Assume that
P

ka0
jS̃ðkÞj
jkj

� 	2
oen2: We may write the ‘‘translation’’ sum as

X
kAZn

jS-ðJ þ kÞj � jSjjJj
n

� �2

¼
X
kAZn

jS-ðJ þ kÞj2 � jSj2jJj2

n
: ð1Þ
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Recall that MS is the n � n matrix whose ði; jÞ entry is Sði þ jÞ: Letting v be the vector
ðJð0Þ; Jð1Þ;yÞ; we find that MSv is the vector whose kth entry is jI-ðJ þ kÞj:
Therefore, letting fk ¼ ð1;ok;o2k;yÞ be the kth eigenvector of MS;

X
kAZn

jS-ðJ þ kÞj2 ¼ jMSvj2 ¼ MS

X
k

/v;fkS

jfkj
2

fk

�����
�����
2

¼
X

k

S̃ðkÞ2 /v;fkS
2

jfkj
2

�����
�����

¼
X
ka0

S̃ðkÞ J̃ð�kÞffiffiffi
n

p
����

����
2

þ jSj2jJj2

n
:

Applying this equality, property [S], and Lemma 2.8 to Eq. (1),

X
kAZn

jS-ðJ þ kÞj � jSjjJj
n

� �2

¼
X
ka0

S̃ðkÞ J̃ð�kÞffiffiffi
n

p
����

����
2

p
n

4

X
ka0

S̃ðkÞ
jkj

����
����
2

o en3=4: &

To complete the circle of implications and finish the proof of Theorem 2.2, we
show that e-balance is implied by the ‘‘translation’’ property.

Proposition 2.10. [T] ) [B].

Proof. Suppose that, for some interval JCZn;

jS-Jj � jSjjJj
n

����
����X2e1=3n:

Then we may conclude that

jS-ðJ þ kÞj � jSjjJj
n

����
����Xe1=3n;

whenever jkjpe1=3n: Since there are at least e1=3n such k’s,

X
k

jS-ðJ þ kÞj � jSjjJj
n

����
����
2

Xe1=3n  e2=3n2 ¼ en3

contradicting [T]. &

ARTICLE IN PRESS
J.N. Cooper / Journal of Combinatorial Theory, Series A 106 (2004) 123–143 131



3. Quasirandom permutations

In this section, we discuss several equivalent formulations of quasirandom
permutations. The central definition is, roughly, that a quasirandom permutation is
one which sends each interval to a highly balanced set. Thus, we will write DðsÞ for
maxðDJðsðIÞÞ; where the maximum is taken over all intervals I and J; and a
sequence of permutations sj will be called quasirandom if DðsjÞ ¼ oðnÞ: The

following is the main result of this section.

Theorem 3.1. For any sequence of permutations sASn and integer mX2 with n4m;
the following are equivalent:

½UB	 (Uniform balance) DðsÞ ¼ oðnÞ:
½SP	 (Separability) For any intervals I ; J;K ;K 0CZn;

X
xAK-s�1ðK 0Þ

IðxÞJðsðxÞÞ � 1

n

X
xAK ;yAK 0

IðxÞJðyÞ

������
������ ¼ oðnÞ:

½mS	 (m-Subsequences) For any permutation tASm and intervals I ; JCZn with

jI jXn=2 and jJjXn=2; we have jI-s�1ðJÞjXn=4þ oðnÞ and

XtðsjI-s�1ðJÞÞ ¼
1

m!

jsðIÞ-Jj
m

� �
þ oðnmÞ:

½2S	 (2-Subsequences) For any intervals I ; JCZn with jI jXn=2 and jJjXn=2; we have

jI-s�1ðJÞjXn=4þ oðnÞ and

Xð01ÞðsjI-s�1ðJÞÞ � Xð10ÞðsjI-s�1ðJÞÞ ¼ oðn2Þ:

It follows immediately that these conditions are also equivalent to each
interpretation of the statement ‘‘For all intervals JCZn; sðJÞ is e-balanced’’ given
by the equivalences of Theorem 2.2. Thus, we have a total of 10 equivalent
quasirandom properties: seven arising as ‘‘uniformly convergent’’ versions of the
properties in Theorem 2.2 and three new ones, which are included with uniform
balance in Fig. 2.
Again, we prove the theorem piece by piece, keeping track of e as we go. The next

result states that, if uniform balance is obeyed, then the variable x and its image
under s are nearly independent.

Proposition 3.2. [UB] 3 [SP].

Proof. [UB] holds iff, for all intervals I ; J;K ;K 0CZn;

jsðI-KÞ-ðJ-K 0Þj � 1

n
jI-K jjJ-K 0j

����
����oen:
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But this quantity is equal to

X
xAK-s�1ðK 0Þ

IðxÞJðsðxÞÞ � 1

n

X
xAK ;yAK 0

IðxÞJðyÞ

������
������;

so that [UB] is equivalent to [SP]. &

Now, we show that the separability achieved in the last proposition is sufficient to
imply that subsequences happen at the ‘‘right’’ rate (i.e., what one would expect of
truly random permutations) on certain sets of indices. A simple lemma will aid in the
proof.

Lemma 3.3. If, for each j with 1pjpk; jxj � aj jpdajpaj ; then

Yk

j¼1
xj �

Yk

j¼1
aj

�����
�����o2kd

Yk

j¼1
aj:

We may now prove that [SP] ) [mS].

Proposition 3.4. [SP] ) [mS].

Proof. Let I ; J be intervals with jI jXn=2 and jJjXn=2; and let K ¼ I-s�1ðJÞ: It is
clear that [SP] implies that jK jXn=4þ oðnÞ: Note that we may write the number of
‘‘occurrences’’ of tASm in sjK as

XtðsjKÞ ¼
X

x1;y;xmAK

Ym
i¼0

ðwðxioxiþ1Þwðsðxt�1ð jÞÞosðxt�1ð jþ1ÞÞÞÞ:

In the interest of notational compactness, we will denote wðxoyÞ by /xjyS; and
define /xjyS ¼ 1 if either x or y is undefined. Furthermore, for any subset AC½m	;
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we will denote the following expression

X
fxigieACK

X
fxkgkAACI

X
fx0

k
gkAACJ

Ym
j¼0

/xjjxjþ1SxA
t�1ð jÞjxA

t�1ð jþ1ÞS

 !

by SðAÞ; where xA
j means SðxjÞ for jeA; and x0

k for jAA: Thus, XtðsjKÞ ¼ Sð|Þ: The
proof will now proceed by induction on the subsets of ½m	; ordered by inclusion.
Suppose ACBC½m	; with B\A ¼ fsg; and assume that

jXtðsjKÞ � n�jAjSðAÞjojAjenm: ð2Þ

By [SP], we know that, for any a; b; c; dAZn; the quantity

X
xsAK

/ajxsS/xsjbS/cjsðxsÞS/sðxsÞjdS

������
� 1

n

X
xsAI ;x0

sAJ

/ajxsS/xsjbS/cjx0
sS/x0

sjdS

������
is bounded above by en: Then, substituting a ¼ xs�1; b ¼ xsþ1; c ¼ xA

t�1ðtðsÞ�1Þ; and

d ¼ xA
t�1ðtðsÞþ1Þ to account for all the terms containing xs in the product portion of the

expression SðAÞ; we have (after a very messy but otherwise straightforward
calculation),

jSðAÞ � n�1SðBÞjoenjK jm�jBjjI jjAjjJjjAjpenmþjAj:

Applying this to the inductive hypothesis with the aid of the triangle inequality
yields

jXtðsjKÞ � n�jBjSðBÞjp jXtðsjKÞ � n�jAjSðAÞj þ n�jAjjSðAÞ � n�1SðBÞj

o jAjenm þ n�jAjenmþjAj ¼ jBjenm:

Therefore, (2) is true for all AC½m	: In particular, it is true for A ¼ ½m	; so that

jXtðsjKÞ � n�mSð½m	Þjomenm:

Since we have

X
fxjgCI

Ym
j¼0

/xj jxjþ1S� jI jm

m!

������
������ ¼

jI j
m

� �
� jI jm

m!

����
����pðjI j þ mÞm � jI jm

m!

¼ 1

m!

Xm

k¼1

m

k

� �
jI jm�k

mkp
jI jm�1

m!

Xm

k¼0

m

k

� �
mk

¼ð1þ mÞm

m!
jI jm�1 ð3Þ
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and also

X
fxjgCJ

Ym
j¼0

/xjjxjþ1S� jJjm

m!

������
������p

ð1þ mÞm

m!
jJjm�1;

we may conclude that

Sð½m	Þ � jI jmjJjm

m!2

����
����o4n2m�1 ð1þ mÞm

m!2

by Lemma 3.3. Thus,

XtðsjKÞ �
1

m!2
jI jjJj

n

� �m����
����p XtðsjKÞ �

1

nm
Sð½m	Þ

����
����þ 1

nm
Sð½m	Þ � jI jmjJjm

m!2

����
����

omenm þ 4n2m�1 ð1þ mÞm

m!2

o enmðm þ 3Þ:

But, by [UB] (which is equivalent to [SP]), and Lemma 3.3

jI jjJj
n

� �m

�jsðIÞ-Jjm
����

����o2menm:

Since mX2; this gives

XtðsjKÞ �
1

m!2
jsðIÞ-Jjm

����
����oenmðm þ 4Þ:

Finally, the fact that eXn�1 implies, as in (3),

jsðIÞ-Jj
m

� �
� jsðIÞ-Jjm

m!

����
����pe

ð1þ mÞm

m!
nm;

so we may conclude

XtðsjKÞ �
1

m!

jsðIÞ-Jj
m

� �����
����oenmðm þ 5Þ: &

Proposition 3.5. [mS] ) [2S].

Proof. Let K ¼ sðIÞ-J for some intervals I ; JAZn with jI jXn=2 and jJjXn=2; and
let k ¼ jK j: It is easy to see that

Xð01ÞðsjKÞ ¼
k � 2

m � 2

� ��1X
pASm

Xð01ÞðpÞXpðsjKÞ:
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Therefore, applying [mS], we have

Xð01ÞðsjKÞ ¼
k � 2

m � 2

� ��1
1

m!

k

m

� �
þ oðnmÞ

� � X
pASm

Xð01ÞðpÞ:

Since the last sum in this expression is m!  mðm � 1Þ=4 by symmetry, we may
simplify to

Xð01ÞðsjKÞ ¼
1

2

k

2

� �
þ m!2enm

ðn=4Þm�2ð4þ oð1ÞÞ

¼ 1

2

k

2

� �
þ 4m�1m!2en2:

We have Xð01ÞðsjKÞ þ Xð10ÞðsjKÞ ¼ ðk
2
Þ; so the result follows. &

Call a proper interval ICZn ‘‘contiguous’’ if I does not contain both 0 and n � 1;
‘‘terminal’’ if its complement is contiguous, ‘‘initial’’ if it is terminal and contains 0;
and ‘‘final’’ if it is terminal and contains n � 1: We denote the complement of an

interval I by %I:

Proposition 3.6. [2S] ) [UB].

Proof. Suppose s satisfies [2S] but not [UB]. We claim that, for infinitely many n and
some e40; there are intervals I ; JCZn with I and J initial, and DJðsðIÞÞ at least
27en=2: Since [UB] is not true for s; we may choose e so that there are proper
subintervals I ; JCZn with DJðsðIÞÞX864en: By taking complements, splitting sets
into initial and final intervals, and taking unions, we may assume that I and J are
terminal and have length Xn=2: Doing so has the impact of dividing DJðsðIÞÞ by 64
at most, so DJðsðIÞÞX27en=2: Since the other three cases are essentially identical, we
assume that I and J are initial.
For ease of notation, we will let

A ¼ I-s�1ðJÞ a ¼ jAj;

B ¼ I-s�1ð %JÞ b ¼ jBj;

C ¼ %I-s�1ðJÞ c ¼ jCj;

D ¼ %I-s�1ð %JÞ d ¼ jDj:

For subsets S;TCZn; let @sðS;TÞ denote the number of pairs ðx; yÞAS � T such
that xoy and sðxÞosðyÞ: Then

Xð01ÞðsÞ ¼Xð01ÞðsjI Þ þ Xð01Þðsj %IÞ þ @sðI ; %IÞ

¼Xð01ÞðsjI Þ þ Xð01Þðsj %IÞ þ @sðA;CÞ

þ @sðA;DÞ þ @sðB;CÞ þ @sðB;DÞ:
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Now, @sðB;CÞ ¼ 0 and @sðA;DÞ ¼ ad; since every element of J is less than every

element of %J; and every element of I is less than every element of %I: Also,

@sðA;CÞ ¼ Xð01Þðsjs�1ðJÞÞ � Xð01ÞðsjAÞ � Xð01ÞðsjCÞ;

@sðB;DÞ ¼ Xð01Þðsjs�1ð %JÞÞ � Xð01ÞðsjBÞ � Xð01ÞðsjDÞ:

Thus, we have

Xð01ÞðsÞ ¼Xð01ÞðsjI Þ þ Xð01Þðsj %IÞ þ Xð01Þðsjs�1ðJÞÞ � Xð01ÞðsjAÞ

� Xð01ÞðsjCÞ þ ad þ Xð01Þðsjs�1ð %JÞÞ � Xð01ÞðsjBÞ � Xð01ÞðsjDÞ:

By [2S], for sufficiently large n; each term Xð01ÞðsjSÞ can be approximated by ðjSj
2
Þ=2

to within en2=2; and therefore by jSj2=4 to within 3en2=4; since

jSj
2

� �
� jSj2

2

�����
����� ¼ jSj

2
p

e
2

n2:

Therefore, rewriting and multiplying by 4; we have that

jn2 � ða þ bÞ2 � ðc þ dÞ2 � ða þ cÞ2 � ðb þ dÞ2 þ a2 þ b2 þ c2 þ d2 � 4adj

is bounded above by 27en2: Since n ¼ a þ b þ c þ d; we may simplify down to

jbc � adjo 27e
2

n2: ð4Þ

Let dn ¼ jI-s�1ðJÞj � jI jjJj=n: Then, since s violates [UB],

jbc � adj ¼ jI jj %Jj
n

� dn

� �
j %IjjJj

n
� dn

� �
� jI jjJj

n
þ dn

� �
j %Ijj %Jj

n
þ dn

� �����
����

¼ jdjðjI jjJj þ jI jj %Jj þ j %IjjJj þ j %Ijj %JjÞ

¼DJðsðIÞÞ
n

 ðjI j þ j %IjÞðjJj þ j %JjÞX 27e
2

n2

contradicting (4). &

We present a simple application of these results. The following observation has
some relevance to the investigations of [2,3].

Proposition 3.7. If a permutation sASn excludes tASm (in the sense that XtðsÞ ¼ 0),

where nXm3; then

DðsÞXnðm  m!4  4m�1Þ�1:
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Proof. Let e ¼ DðsÞ=n: We show that, if

eoðm  m!4  4m�1Þ�1

then there is at least one copy of every element t of Sm in s: According to the
implication from [UB] to [mS], if DðsÞpen; then

XtðsÞ � 1

m!

n

m

� �����
����o ðm þ 5Þ4m�1m!2

m  m!4  4m�1 nmp
1

m!

n

m

� �
;

so that XtðsÞ40: &

Corollary 3.8. There is a constant c40 so that, if nXm3 and sASn excludes tASm;
then

DðsÞ
n

4ðcmÞ�4m:

4. A construction

In this section, we present a construction for a large class of permutations which
are highly quasirandom. We will assume throughout that sASn and tASm; unless
indicated otherwise.

Definition 4.1. For permutations sASn and tASm; considered as actions on Zn and
Zm; respectively, define s#tASnm by ðs#tÞðxÞ ¼ tðIx

n
mÞ þ msðx mod nÞ: We will

also denote the kth product of s with itself as sðkÞ:

A special case of this product appears in [7], where the authors define a sequence
of permutations lacking ‘‘monotone 3-term arithmetic progressions’’ by taking
iterated products of the elements of S2:
Note that s#t has the property that ðs#tÞð½0; n � 1	Þ is the set of all elements of

Znm congruent to 0 mod m (i.e., m  ½0; n � 1	), a set which necessarily lacks the ‘‘weak
translation’’ property of quasirandom sets. Thus, a sequence
fs1; s1#s2; s1#s2#s3;yg sends intervals to sets which are not quasirandom in
the sense of [5]. Nonetheless, we will prove shortly that it does satisfy UB. First, note
that, since x ¼ an1n2 þ bn1 þ c implies

½ðs1#s2Þ#s3	ðxÞ ¼ s3ðaÞ þ n3s2ðbÞ þ n2n3s1ðcÞ ¼ ½s1#ðs2#s3Þ	ðxÞ

the operation # is associative.
Define dðsÞ by

dðsÞ ¼ max
I ;J

DJðsðIÞÞ;

where J is allowed to vary over all possible intervals, but I is restricted to initial
intervals. We denote the analogue for final intervals by d 0: Then we have the
following result:
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Proposition 4.2. dðs#tÞpm � 1þ dðsÞ:

Proof. Let the interval Ik ¼ ½kn; ðk þ 1Þn � 1	CZnm: Then, any initial interval S of
Znm can, for some lom; be written

S ¼
[l

k¼0
Ik,S0;

where S0 is an initial segment of Ilþ1: For any interval JCZnm; then, we may write

DJððs#tÞðSÞÞp
Xl

k¼0
DJððs#tÞðIkÞÞ þ DJððs#tÞðS0ÞÞ

by Lemma 2.1. First, we estimate DJðsðIkÞÞ:

DJððs#tÞðIkÞÞ ¼ jðs#tÞðIkÞ-Jj � jðs#tÞðIkÞjjJj
nm

����
����

¼ jðm½0; n � 1	 þ kÞ-Jj � njJj
nm

����
����

p
jJj þ m � 1

m
� jJj

m

����
���� ¼ m � 1

m
:

Let J0CZn denote the set fIx
m
mj xAJg; and let S1CZn be the set S0 reduced mod n:

Then,

DJððs#tÞðS0ÞÞ ¼ jðs#tÞðS0Þ-Jj � jðs#tÞðS0ÞjjJj
nm

����
����

¼ jsðS1Þ-J0j �
jS1jjJj

nm

����
����

¼ jsðS1Þ-J0j �
jS1jmjJ0j

nm
þ jS1j

nm
ðmjJ0j � jJjÞ

����
����

pDJ0ðsðS1ÞÞ þ
n

nm
ðm � 1Þ

� 	
pdðsÞ þ m � 1

m
:

Thus,

dðs#tÞp ðm � 1Þ m � 1

m
þ m � 1

m
þ dðsÞ

¼m � 1þ dðsÞ: &

An identical result holds for d 0; by symmetry. We use this in the next proposition,
which allows us to bound discrepancies recursively.

Proposition 4.3. Dðs#tÞpm � 1þ dðsÞ þ d 0ðsÞ:
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Proof. Note that every interval I of Znm is of the form

S ¼
[

kA½l;L	
Ik,S0,S0

0;

where ½l;L	 is an interval of Zm of length no more than m � 2; S0 is an initial segment
of ILþ1; and S0

0 is a final segment of Il�1: Applying Lemma 2.1,

DJððs#tÞðSÞÞp
XL

k¼l

DJððs#tÞðIkÞÞ þ DJððs#tÞðS0ÞÞ þ DJððs#tÞðS0
0ÞÞ:

By the arguments presented in the proof of the previous proposition,

DJððs#tÞðIkÞÞp
m � 1

m
;

DJððs#tÞðS0ÞÞpdðsÞ þ m � 1

m
;

DJððs#tÞðS0
0ÞÞpd 0ðsÞ þ m � 1

m
:

Thus,

Dðs#tÞpm � 1þ dðsÞ þ d 0ðsÞ: &

If we apply these results to a product of permutations,

Corollary 4.4. For sASn; DðsðkÞÞo2kn:

Corollary 4.4 provides us with a family of very strongly quasirandom

permutations, since, if N ¼ nk; then sðkÞASN and DðsðkÞÞoOðlog NÞ: Immediately
one wonders whether permutations exist with discrepancies which grow slower than
log N: A theorem of Schmidt [14] answers this question in the negative, implying that

the DðsðkÞÞ are, in a sense, ‘‘maximally’’ quasirandom.

Theorem 4.5 (Schmidt). Let fxigN�1
i¼0 C½0; 1Þ; and define

DðmÞ ¼ sup
aA½0;1Þ

jjfxigm�1
i¼0 -½0; aÞj � maj:

Then there exists an integer npN so that DðnÞ4log N=100:

We may immediately conclude that discrepancies grow at least as fast as log N:

Corollary 4.6. For any sASN ; DðsÞ4log N=100� 1:

Proof. Take xi ¼ sðiÞ=N in Theorem 4.5. Then there exists an aA½0; 1Þ and an npN

so that

sð½0; n � 1	Þ
N

-½0; aÞ
����

����� na
����

����4 log N

100
:
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Defining k ¼ IaNm; we have

jsð½0; n � 1	Þ-½0; k	j � nðk þ 1Þ
N

����
����þ nðk þ 1Þ

N
� na

����
����4 log N

100
:

Therefore, if we let I and J vary over all intervals in ZN ;

max
I ;J

jsðIÞ-Jj � jI jjJj
n

����
����4 log N

100
� 1;

so that DðsÞ4log N=100� 1: &

One might expect that the algebraic properties of quasirandom permutations, such
as the number of cycles, should be approximately that of random permutations (in
this case, log n). However, we have the following counterexample. Let in be the

identity permutation on Zn: Then i
ðkÞ
n is always an involution in Snk—and the

sequence fi
ðkÞ
n =nkgn�1

i¼0C½0; 1Þ is an initial segment of the van der Corput sequence. In
fact, under this interpretation, Corollary 4.4 can be considered a generalization of
the classical theorem that the discrepancy of the van der Corput sequence is
Oðlog NÞ: (See, for example, [8] for a modern version of this result.)

5. Conclusion

The original motivation for this paper was a (still unanswered) question of
Graham [10]. For a sequence of permutations sjASnj

; let PðkÞ be the property of

asymptotic k-symmetry: for each tASk;

X tðsjÞ �
nj

k

� 	
k!

������
������ ¼ oðnk

j Þ:

Note that this property is weaker than property [kS] of Theorem 3.1, which we will
call strong asymptotic k-symmetry. Theorem 3.1 says that strong asymptotic k-
symmetry implies strong asymptotic ðk þ 1Þ-symmetry for any kX2: Graham asks
whether there exists an analogous N so that, for all k4N; PðkÞ ) Pðk þ 1Þ? At first
it might seem like one is asking for too much. However, precisely this type of
phenomenon occurs for graphs [6]. It turns out that, if we let GðkÞ be the property
that all graphs on k vertices occur as subgraphs at approximately the same rate, then

Gð1Þ ( Gð2Þ ( Gð3Þ ( Gð4Þ 3 Gð5Þ 3 Gð6Þ 3?

In particular, Gð4Þ implies quasirandomness, which in turn implies GðkÞ for all k:
The fact that Pð1ÞRPð2Þ is trivial. To show that Pð2ÞRPð3Þ; let snAS2n be the

permutation which sends x to x þ n: Then X 01ðsnÞ ¼ 2nð2n � 1Þ; and X 10ðsnÞ ¼ 4n2;

so that jX 01ðsnÞ � X 10ðsnÞj ¼ oðð2nÞ2Þ: However, the pattern (021) never appears
in sn: We have been unable to date to provide an analogous result for any PðkÞ
with k42:
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A second, very natural question is that of the existence of perfect m-symmetry: the
property of having all subsequence statistics precisely equal to their expected values.
That is, for sASn;

X tðsÞ ¼
n
kð Þ
k!

for all tASm: For this to occur, the number of permutations of length m must evenly
divide ðn

m
Þ: Let DðmÞ be the property of an integer N that

m!
n

m

� ����� :

It is easy to see that a permutation sASn with perfect m-symmetry must have
perfect m0-symmetry for any m0pm; so n must satisfy Dðm0Þ for all such m0: Let hðmÞ
be the least n for which this occurs. A quick calculation reveals that hð2Þ ¼ 4; hð3Þ ¼
9; hð4Þ ¼ 64; and hð5Þ ¼ 128: In fact, there is a perfect 2-symmetric permutation on 4
symbols: 3012. A computer search reveals that there are exactly two 3-symmetric
permutations on 9 symbols: 650147832 and its reverse, 238741056. No m-symmetric
permutation is known for m43; and the question of whether such permutations exist
remains open. We conjecture that an m-symmetric permutation on sufficiently many
symbols exists for all m; and believe it likely that one exists on hðmÞ symbols.
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