
Physics Letters B 686 (2010) 264–267

View metadata, citation and similar pa
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

AdS3/LCFT2 – Correlators in new massive gravity

Daniel Grumiller a,∗, Olaf Hohm b

a Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8–10/136, A-1040 Vienna, Austria
b Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 December 2009
Received in revised form 12 February 2010
Accepted 17 February 2010
Available online 25 February 2010
Editor: M. Cvetič
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We calculate 2-point correlators for New Massive Gravity at the chiral point and find that they behave
precisely as those of a logarithmic conformal field theory, which is characterized in addition to the central
charges cL = cR = 0 by ‘new anomalies’ bL = bR = −σ 12�

G N
, where σ is the sign of the Einstein–Hilbert

term, � the AdS radius and G N Newton’s constant.
© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

In the recent two years there has been increasing interest in
a possible AdS/CFT relation for gravity in three dimensions. After
the proposal of [1] for pure gravity, another model has been inves-
tigated in [2], namely cosmological topologically massive gravity
(CTMG) [3]. The latter extends the pure Einstein–Hilbert theory
with negative cosmological constant by a parity-violating, third-
order, gravitational Chern–Simons term. Due to this Chern–Simons
term, the left- and right-moving central charges cL and cR of the
dual CFT are different, and accordingly the parameters of the the-
ory can be tuned such that precisely one of the central charges
vanishes. It has been conjectured that the theory at this ‘chiral
point’ is dual to a chiral CFT [2]. Soon afterwards [4] it has been
realized, however, that there are logarithmic modes in the bulk
[5] that violate chirality [6] but are compatible with asymptotic
AdS behavior [7,8], and so it remains as an open question whether
there is a consistent truncation to a quantum theory of ‘chiral grav-
ity’ [9]. Irrespective of whether this will turn out to be true or not,
the full gravitational theory, i.e. untruncated CTMG at the chiral
point, may itself have a description in terms of a dual CFT. Provided
this is the case, the dual CFT has to be a so-called logarithmic CFT
(LCFT) [5]. Despite being non-unitary, these theories are of interest
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in their own right [10], with potential applications in condensed
matter physics, see [11,12] and references therein.

Recently, it has been shown that the 2-point [13] and 3-point
correlators [14] of CTMG at the chiral point (CCTMG) are indeed
of the form of an LCFT. It is the aim of this Letter to verify the
same at the level of the 2-point correlators for yet another the-
ory of gravity in three dimensions, the so-called ‘new massive
gravity’ (NMG) [15], which has several features in common with
CTMG. They differ, however, in the respect that NMG extends the
Einstein–Hilbert term by a parity-preserving fourth-order term in-
stead. Consequently, at the chiral point both central charges are
zero, leading to an LCFT both for the left- and right-moving sector,
thereby potentially providing a novel gravitational dual to LCFTs of
this type.

2. New massive gravity in AdS backgrounds

The action for NMG with a cosmological parameter is given
by [15]

S = 1

κ2

∫
d3x

√−g

[
σ R + 1

m2

(
Rμν Rμν − 3

8
R2

)
− 2λm2

]
, (1)

where m is a mass parameter, λ a dimensionless cosmological pa-
rameter and σ = ±1 the sign of the Einstein–Hilbert term. This ac-
tion leads to equations of motion that have as particular solutions
maximally symmetric vacua for λ � −1. One special feature of this
model is that it propagates unitarily massive graviton modes about
some of its (A)dS vacua, provided the sign of the Einstein–Hilbert
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term is chosen to be the opposite of the sign in higher dimensions,
σ = −1.1 (See also [17].)

In this Letter we focus on the special case where the vacuum
is global AdS3, for which the AdS radius � is determined by real
solutions of

1/�2 = 2m2(σ ± √
1 + λ

)
. (2)

In the following we will focus on λ > 0, for which there is always
a unique AdS vacuum. The AdS3 metric reads

ds2
AdS3

= �2(dρ2 − cosh2 ρ dt2 + sinh2 ρ dφ2), (3)

and the boundary cylinder on which the dual CFT will be defined
corresponds to ρ → ∞.

For the computation of the 2-point correlators according to the
AdS/CFT recipe, the quadratic fluctuations about AdS3 are required.
These fluctuations (bulk and boundary gravitons), which we col-
lectively denote by ψ , need to solve the linearized field equa-
tions, which are fourth order linear partial differential equations.
In transverse-traceless gauge for the fluctuations they are given
by [18](

D L D R D M D M̃ψ
)
μν

= 0, (4)

with the mutually commuting first order operators(
D M/M̃)

μ
β = δμ

β ± αεμ
αβ∇α,(

D L/R)
μ

β = δμ
β ± �εμ

αβ∇α, (5)

where α is determined from the parameters in the action. We tune
now the parameters according to

λ = 3 ⇒ m2 = − σ

2�2
. (6)

We observe that this special point, which defines the ‘chiral point’,
exists for σ = −1 and m2 > 0 or for σ = 1 and m2 < 0. Although
this latter choice leads to ghost modes at the chiral point, we will
analyze this case as well since the computation below does not
depend on the actual sign of m2. For the choice (6) the parameter
in (5) is determined to be α = �. Consequently, the operators D M

and D L degenerate, and analogously for D M̃ and D R . In CTMG at
the chiral point a similar degeneration led to the structure of a
logarithmic CFT [5], with central charges and ‘new anomaly’ given
by [13,14]

CCTMG: cL = 0, cR = 3�

G N
, bL = − 3�

G N
, bR = 0. (7)

More precisely, the parameters bL and bR denoting the new
anomalies together with the central charges completely determine
an LCFT at the level of 2-point correlators, see the discussion be-
low. In NMG the central charges of the dual CFT (if it exists) are
given by [18,16]

New Massive Gravity: cL = cR = 3�

2G N

(
σ + 1

2�2m2

)
. (8)

They vanish at the chiral point (6), which provides another hint
that the dual CFT might be logarithmic. (The consistency of log
boundary conditions has been demonstrated in [19].) It is therefore
fair to inquire if NMG (1) at the chiral point (6) is dual to an LCFT
as well. The purpose of this Letter is to show that this is the case,
at least at the level of 2-point correlators, to which we turn now.

1 To be more precise, if one assumes that a Breitenlohner–Freedman-type bound
is consistent with unitarity, then on certain AdS backgrounds away from the chiral
point there are also unitary graviton modes for σ = +1 and m2 < 0 [16].
3. Two-point correlation functions

In order to calculate the 2-point correlators on the gravity side
we proceed exactly as in [14] by following the AdS/CFT recipe. The
starting point are solutions ψ of the linearized equations of motion
(4), which we expand in Fourier modes

ψμν(h, h̄) = e−ih(t+φ)−ih̄(t−φ) Fμν(ρ). (9)

Next, we have to analyze their asymptotic (large ρ) behavior for
any given set of weights h, h̄. If the tensor F has components
that grow exponentially with 2ρ , the corresponding mode is called
non-normalizable and acts as a source for the corresponding oper-
ator in the dual CFT. Using the standard AdS/CFT dictionary we
insert these sources into the second variation of the on-shell ac-
tion and obtain in this way 2-point correlators between the cor-
responding operators. In fact, we can reduce the calculation up to
pre-factors to calculations that were performed in detail in [14],
and thus we shall exhibit below only the points where NMG dif-
fers from CCTMG.

As we focus on the 2-point correlators, it is sufficient to con-
sider the action quadratic in the fluctuations. This action has been
determined in [16] for a formulation involving an auxiliary field
fμν ,

S = 1

κ2

∫
d3x

√−g

×
[
σ R + f μνGμν − 1

4
m2( f μν fμν − f 2) − 2λm2

]
, (10)

which can be seen to be equivalent to (1) upon integrating out
fμν . We define the fluctuations to linear order to be

gμν = ḡμν + hμν,

fμν = − 1

m2�2

(
ḡμν + hμν + �2kμν

)
. (11)

We note that, in contrast to [16], here we have not rescaled the
fluctuations by κ . The quadratic piece of the Lagrangian, at the chi-
ral point, is then given by [16]

L2 = − 1

m2κ2
kμν Gμν(h) − 1

4m2κ2

(
kμνkμν − k2), (12)

where G is the linearization of the Einstein tensor modified by the
cosmological constant. This bilinear Lagrangian contains the same
information as the second variation of the action, which formally
differs from the former only in that it corresponds to a quadratic
form with two different arguments, cf. Eq. (15) below. In the fol-
lowing we perform a gauge-fixing to transverse-traceless gauge,
which implies in particular that on-shell k is traceless as well. The
result for the quadratic action at the chiral point then reads

S(2) = − 1

16πG Nm2

∫
d3x

√−ḡ

[
kμν Gμν(h) + 1

4
kμνkμν

]
+ boundary terms, (13)

where

Gμν(h) = 1

2�2

(
D L D Rh

)
μν

, (14)

and we have introduced Newton’s constant via κ2 = 16πG N .
By analogy to the Einstein–Hilbert case or to CCTMG, the sec-

ond variation of the on-shell action is given by

δ(2)S
(
ψ1,ψ2) ∼ 1

32πG Nm2
lim

ρ→∞

t1∫
dt
t0
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×
2π∫
0

dφ
√−gk1∗

i j gik g jl∇ρψ2
kl, (15)

which we have evaluated in the coordinates (3). Here, k1 is related
to the mode ψ1 by virtue of the linearized equations of motion

k1
μν = −2Gμν

(
ψ1) = − 1

�2

(
D L D Rψ1)

μν
. (16)

The formula (15) is the analog of (4.8) in [14]. The asterisk de-
notes complex conjugation. The sign ∼ denotes equivalence up to
contact terms. The fact that the boundary counterterms dropped in
(15) are contact terms follows from the asymptotic expansion in ρ
of the left, right, logarithmic and flipped logarithmic modes in the
momentum representation (9), provided explicitly in Section 3 of
[14]. These boundary counterterms all turn out to be polynomial in
the weights h, h̄, which by definition renders them contact terms.
The remaining linearized equations of motion, (D L D R)2ψ = 0, lead
to four branches of solutions: ψ L (ψ R ) [ψ log] {ψ l̃og}, which are
annihilated by the linear differential operators D L (D R ) [(D L)2]
{(D R)2}. The modes ψ L (ψ R ) [ψ log] {ψ l̃og} are called left (right)
[logarithmic] {flipped logarithmic} modes. The left and logarith-
mic modes were constructed in [14]. The right modes are obtained
from the left modes by exchange of the light-cone coordinates and
of the weights, which amounts to the substitutions φ → −φ and
h ↔ h̄, see again [14] for details. Analogously, the flipped logarith-
mic modes are obtained from the logarithmic modes by exchange
of the light-cone coordinates and of the weights. The modes obey
the following identities:

D Lψ L = 0, D Lψ R = 2ψ R , D Lψ log = −2ψ L, (17)

D Rψ R = 0, D Rψ L = 2ψ L, D Rψ l̃og = −2ψ R . (18)

The identities (17)–(18) allow relevant simplifications in the calcu-
lations of correlators.

Generically the 2-point correlators on the gravity side between
two modes ψ1(h, h̄) and ψ2(h′, h̄′) in momentum space are deter-
mined by〈
ψ1(h, h̄)ψ2(h′, h̄′)〉 = 1

2

(
δ(2) S

(
ψ1,ψ2) + δ(2) S

(
ψ2,ψ1)), (19)

where 〈ψ1ψ2〉 stands for the correlation function of the CFT op-
erators dual to the (bulk and/or boundary) graviton modes ψ1

and ψ2. Below we present the Fourier-transformed version of the
momentum space correlators (19), i.e., the correlators in ordinary
space. The results (15)–(18) allow to determine immediately the
vanishing of the correlators between left and right modes:〈
ψ L(z)ψ L/R(0)

〉 = 〈
ψ R(z)ψ L/R(0)

〉 = 0. (20)

The result (20) is consistent with the corresponding correlators in
an LCFT with cL = cR = 0.

The remaining correlators involve also the (flipped) logarithmic
modes. All non-vanishing ones essentially can be reduced to corre-
lators that have been calculated already in CCTMG, see Section 4.1
in [14]. We provide here results for all non-vanishing 2-point cor-
relators in the near coincidence limit:〈
ψ log(z)ψ L(0)

〉 = bL

2z4
, (21)

〈
ψ l̃og(z)ψ R(0)

〉 = bR

2z̄4
, (22)

〈
ψ log(z)ψ log(0)

〉 = −bL ln (m2
L |z|2)

z4
, (23)

〈
ψ l̃og(z)ψ l̃og(0)

〉 = −bR ln (m2
R |z|2)

4
, (24)
z̄

The new anomalies bL and bR will be calculated below. The mass
scales mL and mR play no physical role and can be rescaled to any
finite value by redefining ψ log → ψ log + γψ L and ψ l̃og → ψ l̃og +
γ̃ ψ R , which corresponds to a well-known ambiguity in LCFTs. The
results (21)–(24) coincide precisely with the non-vanishing 2-point
correlators in an LCFT with cL = cR = 0, cf. e.g. [22]. Thus, at the
level of 2-point correlators NMG (1) at the chiral point (6) is in-
deed dual to an LCFT with vanishing central charges.

We close with a derivation of the result for the new anoma-
lies bL and bR . After taking into account the linearized equations
of motion (16)–(18) the overall factor in front of the second vari-
ation of the on-shell action (15) differs by a factor 4σ from the
corresponding expression in CCTMG, Eqs. (4.8) and (4.19a) in [14],
provided we use the same normalizations of the modes as in that
work. Therefore, all normalizations being equal, the new anoma-
lies bL = bR must be given by 4σ times the value of bL in CCTMG.
Inserting the result (7) finally establishes

bL = bR = −σ
12�

G N
. (25)

We note that the new anomalies are positive only upon choosing
the negative sign in front of the Einstein–Hilbert term, σ = −1.

4. Discussion and comments

In this Letter we calculated the 2-point correlators (20)–(24) of
the CFT dual to new massive gravity (1) at the chiral point (6). We
found that the dual CFT, if it exists, takes the form of a logarithmic
CFT, with new anomalies given by (25).

We address now a particular consequence of our results. For
generic values of the parameters it was found in [16] that the
propagating degrees of freedom about AdS3 are massive spin-2
modes that are unitary whenever the central charges of the dual
CFT are negative. The only exception is the chiral point (6) at
which the bulk modes become massive spin-1 modes while the
central charges and the mass of BTZ black holes are zero [16,23].
The central charges determine the entropy of black holes and the
number of microstates via Cardy’s formula and should therefore
be positive. The requirements of positivity of central charges and
of positive-energy graviton modes are mutually exclusive, which is
problematic for the consistency/stability of the AdS vacua, analo-
gous to the problems unraveled in [2] for cosmological topologi-
cally massive gravity. In a logarithmic CFT with vanishing central
charges the new anomalies bL and bR take over the role of the
parameters that measure the number of degrees of freedom [20],
and here we see from (25) that they are positive only for σ = −1.
It should be noted, however, that there are physically interesting
CFTs with negative central charges and LCFTs with negative new
anomalies, like polymers with b = −5/8 [21]. If we nevertheless
take at face value the interpretation of the new anomalies as a
measure for the number of microstates we can draw an interesting
conclusion. Positivity of the number of microstates in the dual CFT
and positive-energy bulk modes now both require the ‘wrong-sign’
Einstein–Hilbert term. Moreover, at the chiral point black hole so-
lutions are known whose mass is also positive only provided one
chooses σ = −1 [24,25]. Thus, all these physical requirements con-
sistently lead to the ‘wrong-sign’ Einstein–Hilbert term.

This research can be extended into various directions. An ob-
vious but technically challenging extension is to calculate 3-point
functions as it has been done in [14] for CCTMG, which requires
the calculation of the third variation of the action (1). Apart from
‘general massive gravity’, which involves both the gravitational
Chern–Simons term and the curvature-square combination of NMG
[15,16,26], another interesting case is the N = 1 supergravity con-
structed in [27]. Due to the presence of non-trivial curvature cou-
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plings of an auxiliary field, the values of the central charges turn
out to be unmodified as compared to the Brown–Henneaux val-
ues [27]. Consequently, after including the N = 1 super-invariant
of the gravitational Chern–Simons term, a chiral point appears ex-
actly as for CTMG, and it might be interesting to see in which
respects this model deviates from CCTMG. Finally, it is important
to investigate whether there are applications of the LCFTs dual to
the gravitational theories considered here, say, in the context of
condensed matter physics described by strongly coupled LCFTs.

Note added

If one takes for granted the AdS3/LCFT2 correspondence then there is a shortcut
to derive the value of the new anomaly (25) that avoids the explicit calculation of
2-point correlators on the gravity side. One has to go away slightly from the chiral
point, i.e., consider small but non-vanishing central charges. Then also the weights
h and h̄ of the massive modes will differ infinitesimally from the corresponding
weights of the left and right modes. The new anomaly is then simply given by the
ratio of these two small quantities. The reason for this result and the precise nor-
malization follows from the formulas in Section 2 of [28]. Using this algorithm for
CTMG we recover the results of [13,14]. Using this algorithm for new massive grav-
ity we recover precisely (25). This provides an independent check on the correctness
of the new anomaly (25).
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