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Abstract

The physical origin of the nuclear symmetry energy is studied within the relativistic mean field (RMF) theory. Based on the nuclear bindir
energies calculated with and without mean isovector potential for several isobaric chains we confirm earlier Skyrme—Hartree—Fock result that
nuclear symmetry energy strength depends on the mean level spadingnd an effective mean isovector potential strength). A detailed
analysis of the isospin dependence of these two components contributing to the nuclear symmetry energy reveals a quadratic dependence ¢
the mean-isoscalar potential,st, and, completely unexpectedly, the presence of a strong linear comper@HiT + 1+ ¢/«) in the isovector
potential. The latter generates a nuclear symmetry energy in RMF theory that is proportiBgahte T (T + 1) at variance to the non-relativistic
calculation. The origin of the linear term in RMF theory needs to be further explored.

0 2005 Elsevier B.VOpen access under CC BY license.
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One of the most important topics in current nuclear physics The NSE is conventionally parametrized as:
is to search for the existence limit of atomic nuclei, i.e., to de-
termine the nuclear drip line. In this respect, the role of theEsym= asym(A)T (T + 1), 1)

continuum in loosely bound nuclei and, in particular, its impact .
on the treatment of pairing correlations has been discussed Y&hgreT = |T:| =N — Z|/2. The strength of the NSE admits
pically volume and surface componemigm(A) = ay/A —

great extent in recent time. However, the proper understandin[é{ A83 and i hvsical oridin i ditionall lined i
and correct reproduction of the nuclear symmetry energy (NS s/ and its physical origin is traditionally explained in

may have even greater bearing for masses of loosely bound n 2'ms of the kinetig energy and mean isovector potential (in-
clei and certainly is a key issue in the study of exotic nuclei. Théeract_lonl) Zon'fprl])utll_ons, "G"Sym.(Af) = ‘éki”(’?j) + ai”t(AI)’ re- del

very fundamental questions in this respect concern both the uﬁpectl\ée yl2]. q E Inear term is ouk? I't? he strong 3]{ T(;) € d
derstanding of the microscopic origin of the NSE strength agepen entand there is a common beliet that mean-field mod-

well as its isospin dependence. The latter issue has attracted ,%J_S yield essentially only a quadratic team 0. On.the. other
cently great attention also iV ~ Z nuclei, see Ref[1] and hand, the nuclear shell-mod8&l-5] or models restoring isospin
references therein symmetry[6] suggest that ~ 1. No consensus is reached so far

concerning the value of although there is certain preference
for A ~ 1. Indeed, experimental masses of nuclei with small
" Corresponding author. values ofT lsupports the existence .(')f the linear tgifh Simi-
E-mail addresses: mengj@pku.edu.ctd. Meng) satula@fuw.edu.pl lar conclusions were reached by Janecke gBabased on the
(W. Satuta) wyss@nuclear.kth.g&R.A. Wyss). analysis of experimental binding energies for< 80 nuclei.
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One of the most accurate mass formula, the so-called FRDM  _ ,,Ff& ' ' " 77"
[9] employs a value of. ~ 1 but inconsistently admits only a % 18l \ T, ]
volume-like linear term. Assuming (T + 1) dependence Duflo % 12 —K TN .
and Zuker have performed a global fit to nuclear masses obtain- O'g T
ing [10] 0O 4 8 12 16 0 4 8 12 16 20
2 T T T T T T T LN L L L N R
asym(4) = 13# - ZAOTE/‘S [MeV]. ) Z iak ToAss ]
= o_gilﬂ“"'“:.\ ]
A different view on the origin of the NSE was presented © 04l " + = .
recently by Satuta and Wyss. In Ref¢1-13]it was demon- O T e e 16 0 4 s 12 16 20
strated using the Skyrme—Hartree—Fock (SHF) model that the 3 e
NSE can be directly associated with the mean level spac- ~ 24 | T Az160 .
ing £(A) and mean isovector potentiakisym = 1£(A)T? + z m + ]
%K(A)T(T + 1) [11-13] Surprisingly, the self-consistent cal- “ 6L ::‘k,,! ]

culations revealed that the complicated isovector mean potential T

) . 0 8 16 24 32 0 8 16 24 32 40

induced by the Skyrme force is similar to that obtained from a To 22

simple interaction%;c(A)T - T, i.e., is very accurately charac- )

terized by a single streng#(A) [11-13] This study revealed Fig. 1. The mean level spacing (left) and its counterpart (right) scaled

also that the SHF theory yield in fact a (partial) linear termby m*/m for A = 48 (upper), 88 (middle) and 160 (lower) isobaric chains

with 1 ~ K/(zasym) and that this term originates from neutron— calculated using effective Lagrangians NL3, TM1, and PK1 as marked in the

proton exchange interaction. Qgr%e; gféh;ivved areas correspond to the empirical mean level spacing:
Alongside with the SHF calculation, the relativistic mean AAa T

field (RMF) theory has been used for a large variety of nuclear . ) ,
structure phenomerfd4]. Since the RMF theory is based on approach pertaining to the isovector channel. These properties

a very different concept from the SHF, it is highly interesting € expected to be fairly parameterization independent, in par-

to investigate the structure of the NSE in the framework of thdicular that these parameterizations reproduce rather well the
RMF theory. equation of state for densitigs< 0.2 fm~3 [21,22]

The details of RMF theory together with its applications The Dirac equations are solved by expansion in the harmonic
can be found in a number of review articles. see for eXammé)scillator basis with 14 oscillator shells for both the fermion
Ref.[15] and references therein, and will not be repeated herdi€!dS and boson fields. The oscillator f_riz/%uency of the har-
The basic ansatz of the RMF theory is a Lagrangian densit]'onic oscillator basis is set two = 414~/ MeV and the
whereby nucleons are described as Dirac particles which ind€formation of harmonic oscillator bagig is reasonably cho-

teract via the exchange of various mesons [the isoscalar—scalS" 10 obtain the lowest energy. Generally speaking, the RMF
sigma ¢), isoscalar—vector omega) and isovector—vector calculation reproduce the experimental binding energy to an ac-

rho (0)] and the photon. Ther and » mesons provide the CUracy less than 1%. For the present study we are mainly inter-
attractive and repulsive part of the nucleon—nucleon force, re€Sted in the NSE emerging in the RMF theory due to the strong
spectively. The isospin asymmetry is provided by the isovectofParticle-hole) interaction. Hence the Coulomb potentials and
» meson. Hence, by switching on and off the coupling tohe the pairing ct_)rrelatlo_ns will be _neglected in the following. The
meson, one can easily separate the role of isoscalar and isovdt!l Potential in the Dirac equation is

tor parts of the interaction and study them independently. _

In the nuclei considered here, time reversal symmetry ithOt_ V(r)0+ﬂS(r) o
preserved and the spatial vector component®0p and A =8w® (N +8pT - p () + Bgoo (). 3)
fields vanish. This leaves only the time-like componen®s
7% and A°. Charge conservation guarantees that only the thir
component of the isovectgi® meson is active. For reason of
simplicity, axial symmetry is assumed in the present work. They. ) — o 0(r) + Bg, o (1),

Dirac spinory; as well as the meson fields can be expanded N -0

in terms of the eigenfunctions of a deformed axially symmetricViV(r) =8pT P (D). (4)
oscillator potentia]16] or Woods—Saxon potentifil 7], and the The binding energy calculated with the full potentiaj in
solution of the problem is transformed into a diagonalization ofgq, (3) is denoted a€. The energy obtained by switching off

a Hermitian matrix. - the isovector potentiali, =0, i.e. by taking in the calculation
The RMF calculations are performed for the= 40, 48, 56, Viot = Vis, is denoted byE7. In order to single out the impact

88, 100, 120, 140, 160, 164, and 180 isobars with the effectivgf jsoscalar fields on the NSE, we use to extract the mean
Lagrangians NLJ18], TM1 [19], and PK1[20]. Our choice |eye| spacing:(A, T,) along an isobaric chain

of the parameterizations is somewhat arbitrary. However, the

purpose of this work is not to make a detailed comparison O A T)—E AT.—=0) = } A THT2 5
the data but rather to investigate specific features of the RMF 74, T.) — Er—o(A. I =0) 28( T ®)

It can easily be separated into isovector and isoscalar compo-
ents, i.e.Viot = Vis + Viv, Where
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The values of:(A, T;) calculated for theA = 48, 88, and 24 rrr{A=48 T A=88 frrr{ASI60 fr
160 isobaric chains of nuclei froffi = 0 to the vicinity of the 16 _.\;\E‘s‘ -+ + i
drip line are shown in the left panels &ig. 1. The calcula- - M .
tions have been performed for three different parameterizations 08 - T “\"'m""-m_
of the effective Lagrangian including NL3, TM1, and PK1, re- 0 ]
spectively, which all yield very similar results. For small values - T T =—aN3|

T(T+1) i A—ATMI

of T,, strong variations ire(A, T;) are seen, which are asso-
ciated with shell closures. For larger values ©f ¢(A, T,) 0
become less sensitive to the shell structure and its value is stabi-~ | 1 1%ye0eyn,tt0000000s |
lized,s(A, T,) ~ ¢(A). Note, that the calculated valuesagfd) o +—H+++++++++t++++t+++++++++++

are much larger then the empirical estimates for the mean level | T(T+lee)
spacing 53A < ®MP < 66/A MeV [11,23-25] However, after i 1 1 i
rescalings*(A) = (m*/m)e(A) by the corresponding effective 0.8 —/NE% —-/H*ﬁ*.g.—— .
massesn*/m = 0.595, 0634, and 05055 for NL3, TM1, and i T 17 i

[MeV]
>
}l
1
Ll
T

| | | |
PK1 respectively, the effective mean level spacifigd) neatly 0 4 8 1216 0 4 8 12 16 0 8 16 24 32 40
falls within the empirical bounds (shaded areas), as shown in T = (N-Z)/2
the corresponding right panels. Let us also note that with in-_

. . _ _ Fig. 2. The average effective strengthof the isovector potential foA = 48
creasingA, i.e., from A = 48 to A = 160, all curves move (left), 88 (middle) and 160 (right) isobaric chains calculated using effective La-

towarq the upper limit of the empiri(_:al datq, re.ﬂe.Cting the de-grangians NL3, TM1, and PK1 as marked in the figure. Upper, middle and
creasing role of surface effects with increasiygsimilar to the  lower panels show the values of obtained assumingy — Er = 3«72,

SHF resultg11]. IKT(T + 1), and 3k T(T + 1+ ¢/k), respectively. See text for further de-
When comparing to the results of the SHF calculations irfails.

Ref. [11], the following two important conclusions can be

made: (i) even though the valuessgfA) from the RMF calcula-  effectively as:

tion are much larger than those from the SHF, after the effective 1

mass scaling both models generate essentially identical resulBym ~ “eT? + EKT(T +14¢/k)

in agreement to the empirical boundaries for the mean level

spacing; (ii) the results from the RMF calculations clearly con- ~ (e +1)T(T +1). 7
firm the general outcome of Rgfl1], that the isoscalar field 2
generates the NSE of the forsT2 and that its strength is in- The important aspect to note is that in the SHF approxima-

deed governed by the mean level density rather than the kinetton the linear term originates predominantly from the Fock
energy, see alsfi3]. Let us stress that the contributie™®  exchange in the isovector channel. In the RMF, which is a
can also be derived analytically using the simple iso-crankingHartree approximation, one would therefore expecta de-
model [1,11,12] Note further, that the evidence and conclu- pendence. In contrast, the large slope of the isovector potential
sions gathered from the SHF and the RMF calculations arsetrengthk (A, T3), fitted using eithex T2 or « T(T + 1) depen-
independent of the iso-cranking model. dence reveals the presence of an effective linear term that is
After obtaining the average level densitywe now proceed large enough to compensate the lack of the linear term i the
to calculate the average effective strengtbf the isovector po- proportional term, se€ig. 2 Similar tendencies for the mean
tential. The effective isovector potential strengtlis obtained level spacings and effective isovector potential strengttare
from the binding energy difference between the RMF calculapresent in all the 10 isobaric chains we calculated, including
tions with and without the isovector potential for the same nu-A = 40, 48, 56, 88, 100, 120, 140, 160, 164, and 180.
cleus. As explained later, three different typeg'eflependence At a first glance, the RMF theory is a Hartree approximation
of the isovector potential are investigated: (without exchange term) and one does not expect a linear term
to be present. On the other hand, the RMF as well as the SHF
Er —Er = }KTZ and};cT(T +1) and};cT(T +1+e/k). are two particular realizations of the density functional (DF)
2 2 2 theory. Moreover, due to the large meson masses the relativistic
(6)  forces should be close to zero range forces and both approaches
The resulting effective isovector potential strengthfor  are expected to be rather alike since in this limit the exchange
A =48, 88, and 160 isobaric chains in RMF theory are showrterm takes the same form as the direct term and should be effec-
in Fig. 2 Similar to the SHF calculation in Refl1], the tively included within the DF. The question that arises is why
complicated isovector potential along an isobaric chain can bthe RMF is capable to generate the linear term in contrast to the
characterized by an effective isovector potential strergth). SHF approach? In this context it is interesting to observe that
However, at variance with the SHE1], the RMF dependence within the RMF approach the isovector mean-potential is gen-
on T is best reproduced by a dependence like — E; ~  erated by theo-meson field. Hence, its properties are defined
%KT(T + 1+ ¢/k), rather tharT'? or T(T + 1). Apparently,  essentially by a single coupling constant see Eq(4). In this
the linear term in RMF is considerably larger than that in therespect the RMF seems to be more flexible than the SHF where
SHF calculation, implying that the total NSE in RMF behavesisoscalar and isovector parts of the Skyrme local energy density



234 S Banet al. / Physics Letters B 633 (2006) 231-236

functional are strongly dependent upon each other through th&mply as an arithmetic mean over such a pair of nuclei. In or-
auxiliary Skyrme force (SF) parameters which are fitted to theder to compare with the empirical data of REf0], we depict
data. In the process of determining the SF, one should therefoie Fig. 3the productA * asym as a function ofA for all the 10
balance properly and very carefully the isoscalar and isovedsobaric chains calculated with the effective Lagrangian PK1.
tor data used in the fitting procedure. Indeed, our earlier stud¥he dot-dashed line ifig. 3is taken from Ref[8] revealing
[11] shows that the Sk(®6] parameterization of the SF, which the shell structure of the symmetry energy coefficient and the
has been fitted to neutron-rich nuclei, has a stronger linear termhashed line represents a fit to experimental data given b{2lEq.
than the so-called standard parameterizations but not as strofff)]. The maxima ad = 40 andA = 56 can easily be seen in
as that in RMF theory. our calculation, which is in good agreement with H8{. This

We proceed further by investigating the mass dependence dehavior is easy to understand sirfice- 0 nuclei in thed = 40,
the NSE. Since the total NSE in RMF theory behaves effec56, 100 and 164 isobaric chains are double magic nuclei and
tively like T (T + 1) we extract the NSE strengtiaym(A) from  hence, more bound, resulting in an increase of the symmetry

the difference of the binding energies: energies for nuclei witll" > 0. Still, the average of the calcu-
lated symmetry energy is quite close to the dashed line, which
Esym= Er — Er=0=asym(A)T(T +1). (8) s fitted to masses in Reffl0].

Restricting this analysis to volume and surface terms only, a

To avoid the influence of shell structure we chose two nUCIe|east-square fit to the calculated points (filled circle&ig. 3)
with large T, for each isobaric chai and calculateigym(A) leads to a smooth curve:

150 13320 22027
. T alMP) — — ~ aa; MeVl, (9)
®PK1
120 | o e | shown as solid line, which is very close to the empirical values
“ D Janeeke (dashed line).

In a similar manner, the volume and surface contributions to
the mean level spacing and the average effective strength
are determined from the calculations. In the left panetigf 4,
the mean level spacing (filled circles) extracted fronE —
Er—o= %st are presented together with the smooth curve
obtained from least-square fit:
13042 127
' &= —32 — —A4/§3 [MeV]. (20)
0 0 4|o slo 1éo 1‘|30 200 In the right panel ofFig. 4, the average effective strength
(filled circles) extracted fronEr — Ep = %KT(T +1+¢/k)
_ - ‘ _ are presented together with the smooth curve obtained by least-
Fig. 3. The nuclear symmetry energy coefficiemdym * A (filled cir- fit:
cles) extracted fromEsym = asymT (T + 1) for the A = 40, 48, 56, 88, square T
100, 120, 140, 160, 164, and 180 isobaric chains calculated using effec- 14477 34208

A*a,,. [MeV]

tive Lagrangian PK1. The solid line represents fit to the calculations, i.e.x = A4 [MeV]. (12)
Axasym= 1332022027/ A%/3 from Eq.(9). The dashed line is from E(Q): A A
A * asym= 1344 — 2036/A1/3 [10] and the dot-dashed line is from R¢S]. It should be noted that we choose the same nuclei for the fit of
For further details, see text. &, k, andasym in the least-square fitting.
1.4
28 |- ] T T T T T
2.4 - 7 12 o ® PK1 .
° T(T+1+e/K)
— 2 -
% 1.6 % I |
= =
w12 v 081 '
0.8 . 06 L -
0.4 -
| | 1 | | 0.4 |
40 80 120 160 200 40 80 120 160 200

Fig. 4. Volume and surface contributions to the mean level spacifeft) and effective strength (right). The fitted line is obtained from the same points as in
Fig. 3
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It was shown before that for relatively large valuesTf  for 7, = 12, 14, 16 and 22 due to the shell structure. Whilst the
bothe(A, T;) ~ ¢(A) andk (A, T;) ~ «(A) along each isobaric same variations are also obtained#d#, T,) at the same value
chain. Let us now fix the value o4 and investigate fine ef- of T, the sunmusym(A, T;) is very smooth. Apparently, changes
fects ine(A, Ty), k(A, T;), andasym(A, T;) = %(e(A, T,) + ine(A, T;) andk (A, T;) cancel to large extent. We also see that
k(A,T;)) versusT, in order to study the response of the the variationsin (A, T,) are not due to the/« term, since sim-
isovector potential to changes in shell structure which are natular variations are found for the(A, 7;) curve calculated using
rally incorporated in the mean level spaciagi, 7,). There-  the T(T + 1 + 1.25) dependence, see also the curvesndr
fore, we present irFig. 5 the values ofe(A, T;), «(A, T), andT (T + 1) as shown in the right panel &ig. 2 Apparently,
and asym(A, T;) calculated usingl'2, T(T + 1+ ¢/«), and  the variations of (A, T;) reflect a direct response to changes
T(T + 1) isospin dependencies respectively, for the= 160  in (A, T;) showing that effectively, the isovector potential and
isobaric chain using the parametrization PK1 of the effectivdsoscalar potential become closely linked.

Lagrangian. To avoid the direct connection betwaerand In order to understand the origin of the linear term in RMF

¢ entering theT (T 4+ 1 4 ¢/«x) dependence used to extract theory, self-consistent calculations for the effective Lagrangian

k (A, T,) we also show values aof(A, T;) obtained assuming PK1 have been performed including theandw meson-fields

T(T + 1+ 1.25) dependence, where 1.25 represents the avewnly. With the nucleon densities thus obtained, the influence of

age value ot /k. Clearly, there are small variations4nA, T) the p meson field has been extracted by switching on the isovec-
tor potential in a non-self-consistent way. The results for the
A = 48 isobaric chains are labeled as PKilFig. 6. It is inter-

3 . I . I . . . . esting to note that just by switching on the isovector potential,
N e o T | the relationT (T + 1+ ¢/«) is followed quite well, although
A=160 B W« ~T(T+1+e/5) it accounts for only 23 of the totalk. We can therefore con-
2.4 K ~T(T+1+1.25) . clude that the linear terne + «)T exists in RMF whenever
| & @2, -T(T+D) | the isovector potential is present. The self-consistency between
the isovector and isoscalar potentials roughly contributes to an-
1.8 - . other /3.

As shown inFig. 3, the nuclear symmetry energy for finite
nuclei calculated in RMF theory with PK1 is in good agree-
. ment with the experiment. The symmetry energy coefficient, as
obtained from finite nuclei can be extrapolated to infinite nu-
clear matter by setting the surface term of &).or Eq.(9) to
06 - 1 . zero. The theoretical asymptotic value obtained in this manner

i A L Ty T . ..

N .\f = o i a;ym = Axasym/4~ 33.6 MeV is rather close to the empirically
| 1 | 1
8 16

[MeV]

accepted values but considerably smaller {b$0%] than the
o4 32 20 so-called infinite symmetric nuclear matter (NM) values which

T=(N-Z)/2 are equal to 37.4 MeV for NLB18], 36.9 MeV for TM1[19],

and 37.6 MeV for PK120], respectively. The infinite NM val-

Fig. 5. The mean level spacing the average effective isovector potential ues are obtained using the following form{x]:
strengthk calculated assuming eith@t(T + 1 + ¢/k) or T(T + 1+ 1.25)

dependence, and the symmetry energy coefficigp, for the A = 160 iso- 1 2 k%
2( )

baric chain in RMF theory with effective Lagrangian PK1. The value of 1.25 is aéym = =
the average for/k at A = 160.

(12)

1.5 T T T T T T T 1.5
i A=48
12 - 12 -
; 09 - ; 09 =
D 3
2 [ 1=
¥ 06 4 % o6l -
r h S—EIPKU T
G—OPKI T(T+1)
0.3 - T(T+1+€/K) PK1 B 03 - (O—OPKL’ T(T+1+¢/x) ]
L PKT' ] (@ —@PK1 T(T+1+e/x)
0 L I 1 1 1 1 1 0 I L | 1 1 1 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
T = (N-Z)/2 T = (N-Z)12

Fig. 6. The comparison of the average effective strergtii the isovector potential for tha = 48 isobaric chain between self-consistent RMF calculation (PK1)
and the corresponding non-self-consistent (PK3ee the text for further explanations.
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where pg is the saturation pointkr = (372pp/2)1/2 is the  restoration of the complete linear term within RMF theory is
Fermi momentum andn* is the effective mass at satura- left open.
tion point. One should note that the symmetry energy coef-
ficient agy,, decreases with increasingy/Z ratio in infinite  Acknowledgements
NM. Moreover, there are effective Lagrangians having smaller
values ofagy, in the infinite symmetric NM including GL- This work is supported by the Swedish Institute (SI), the Ma-
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(33.06 MeV)[29]. At present, the origin of this discrepancy is Number G2000077407, the National Natural Science Founda-
not clear to us. Certainly, it reflects the important role playedion of China under Grant Nos. 10435010, and 10221003, the
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of the surface energy coefficient obtained in the calculationsedges support from STINT and S. Ban would like to thank
However, the volume term of the total symmetry energy coefS.Q. Zhang for illuminating discussions.
ficient is not affected much even when varying the linear term
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