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Abstract

The physical origin of the nuclear symmetry energy is studied within the relativistic mean field (RMF) theory. Based on the nuclea
energies calculated with and without mean isovector potential for several isobaric chains we confirm earlier Skyrme–Hartree–Fock res
nuclear symmetry energy strength depends on the mean level spacingε(A) and an effective mean isovector potential strengthκ(A). A detailed
analysis of the isospin dependence of these two components contributing to the nuclear symmetry energy reveals a quadratic depend
the mean-isoscalar potential,∼ εT 2, and, completely unexpectedly, the presence of a strong linear component∼ κT (T +1+ ε/κ) in the isovector
potential. The latter generates a nuclear symmetry energy in RMF theory that is proportional toEsym∼ T (T +1) at variance to the non-relativisti
calculation. The origin of the linear term in RMF theory needs to be further explored.
 2005 Elsevier B.V.
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One of the most important topics in current nuclear phy
is to search for the existence limit of atomic nuclei, i.e., to
termine the nuclear drip line. In this respect, the role of
continuum in loosely bound nuclei and, in particular, its imp
on the treatment of pairing correlations has been discuss
great extent in recent time. However, the proper understan
and correct reproduction of the nuclear symmetry energy (N
may have even greater bearing for masses of loosely boun
clei and certainly is a key issue in the study of exotic nuclei. T
very fundamental questions in this respect concern both the
derstanding of the microscopic origin of the NSE strength
well as its isospin dependence. The latter issue has attracte
cently great attention also inN ∼ Z nuclei, see Ref.[1] and
references therein.
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The NSE is conventionally parametrized as:

(1)Esym= asym(A)T (T + λ),

whereT = |Tz| = |N − Z|/2. The strength of the NSE admi
typically volume and surface componentsasym(A) = av/A −
as/A

4/3 and its physical origin is traditionally explained
terms of the kinetic energy and mean isovector potential
teraction) contributions, i.e.asym(A) = akin(A) + aint(A), re-
spectively[2]. The linear term is found to be strongly mod
dependent and there is a common belief that mean-field m
els yield essentially only a quadratic termλ ≈ 0. On the other
hand, the nuclear shell-model[3–5] or models restoring isospi
symmetry[6] suggest thatλ ≈ 1. No consensus is reached so
concerning the value ofλ although there is certain preferen
for λ ≈ 1. Indeed, experimental masses of nuclei with sm
values ofT supports the existence of the linear term[7]. Simi-
lar conclusions were reached by Jänecke et al.[8] based on the
analysis of experimental binding energies forA < 80 nuclei.
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One of the most accurate mass formula, the so-called FR
[9] employs a value ofλ ≈ 1 but inconsistently admits only
volume-like linear term. AssumingT (T +1) dependence Duflo
and Zuker have performed a global fit to nuclear masses ob
ing [10]

(2)asym(A) = 134.4

A
− 203.6

A4/3
[MeV].

A different view on the origin of the NSE was present
recently by Satuła and Wyss. In Refs.[11–13] it was demon-
strated using the Skyrme–Hartree–Fock (SHF) model tha
NSE can be directly associated with the mean level s
ing ε(A) and mean isovector potential,Esym = 1

2ε(A)T 2 +
1
2κ(A)T (T + 1) [11–13]. Surprisingly, the self-consistent ca
culations revealed that the complicated isovector mean pote
induced by the Skyrme force is similar to that obtained from
simple interaction1

2κ(A)T̂ · T̂, i.e., is very accurately chara
terized by a single strengthκ(A) [11–13]. This study revealed
also that the SHF theory yield in fact a (partial) linear te
with λ ≈ κ/(2asym) and that this term originates from neutro
proton exchange interaction.

Alongside with the SHF calculation, the relativistic me
field (RMF) theory has been used for a large variety of nuc
structure phenomena[14]. Since the RMF theory is based o
a very different concept from the SHF, it is highly interesti
to investigate the structure of the NSE in the framework of
RMF theory.

The details of RMF theory together with its applicatio
can be found in a number of review articles, see for exam
Ref. [15] and references therein, and will not be repeated h
The basic ansatz of the RMF theory is a Lagrangian den
whereby nucleons are described as Dirac particles which
teract via the exchange of various mesons [the isoscalar–s
sigma (σ ), isoscalar–vector omega (ω) and isovector–vecto
rho (ρ)] and the photon. Theσ and ω mesons provide th
attractive and repulsive part of the nucleon–nucleon force
spectively. The isospin asymmetry is provided by the isove
ρ meson. Hence, by switching on and off the coupling to thρ

meson, one can easily separate the role of isoscalar and is
tor parts of the interaction and study them independently.

In the nuclei considered here, time reversal symmetr
preserved and the spatial vector components ofω, �ρ and A
fields vanish. This leaves only the time-like componentsω0,
�ρ 0 andA0. Charge conservation guarantees that only the t
component of the isovector�ρ 0 meson is active. For reason
simplicity, axial symmetry is assumed in the present work.
Dirac spinorψi as well as the meson fields can be expan
in terms of the eigenfunctions of a deformed axially symme
oscillator potential[16] or Woods–Saxon potential[17], and the
solution of the problem is transformed into a diagonalization
a Hermitian matrix.

The RMF calculations are performed for theA = 40, 48, 56,
88, 100, 120, 140, 160, 164, and 180 isobars with the effec
Lagrangians NL3[18], TM1 [19], and PK1[20]. Our choice
of the parameterizations is somewhat arbitrary. However,
purpose of this work is not to make a detailed compariso
the data but rather to investigate specific features of the R
n-
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Fig. 1. The mean level spacingε (left) and its counterpart (right) scale
by m∗/m for A = 48 (upper), 88 (middle) and 160 (lower) isobaric cha
calculated using effective Lagrangians NL3, TM1, and PK1 as marked in
figure. The shadowed areas correspond to the empirical mean level sp
εemp= 53

A
–66

A
MeV.

approach pertaining to the isovector channel. These prope
are expected to be fairly parameterization independent, in
ticular that these parameterizations reproduce rather wel
equation of state for densitiesρ � 0.2 fm−3 [21,22].

The Dirac equations are solved by expansion in the harm
oscillator basis with 14 oscillator shells for both the ferm
fields and boson fields. The oscillator frequency of the h
monic oscillator basis is set tōhω0 = 41A−1/3 MeV and the
deformation of harmonic oscillator basisβ0 is reasonably cho
sen to obtain the lowest energy. Generally speaking, the R
calculation reproduce the experimental binding energy to an
curacy less than 1%. For the present study we are mainly i
ested in the NSE emerging in the RMF theory due to the str
(particle–hole) interaction. Hence the Coulomb potentials
the pairing correlations will be neglected in the following. T
full potential in the Dirac equation is

Vtot = V (r) + βS(r)

(3)= gωω0(r) + gρ �τ · �ρ 0(r) + βgσ σ(r).

It can easily be separated into isovector and isoscalar com
nents, i.e.,Vtot = Vis + Viv , where

Vis(r) = gωω0(r) + βgσ σ(r),

(4)Viv(r) = gρ �τ · �ρ 0(r).

The binding energy calculated with the full potentialVtot in
Eq.(3) is denoted asET . The energy obtained by switching o
the isovector potential,Viv ≡ 0, i.e. by taking in the calculatio
Vtot ≡ Vis, is denoted byẼT . In order to single out the impac
of isoscalar fields on the NSE, we useẼT to extract the mean
level spacingε(A,TZ) along an isobaric chain

(5)ẼT (A,Tz) − ẼT =0(A,Tz = 0) = 1

2
ε(A,Tz)T

2.
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The values ofε(A,Tz) calculated for theA = 48, 88, and
160 isobaric chains of nuclei fromTz = 0 to the vicinity of the
drip line are shown in the left panels ofFig. 1. The calcula-
tions have been performed for three different parameteriza
of the effective Lagrangian including NL3, TM1, and PK1, r
spectively, which all yield very similar results. For small valu
of Tz, strong variations inε(A,Tz) are seen, which are ass
ciated with shell closures. For larger values ofTz, ε(A,Tz)

become less sensitive to the shell structure and its value is s
lized,ε(A,Tz) ≈ ε(A). Note, that the calculated values ofε(A)

are much larger then the empirical estimates for the mean
spacing 53/A � εemp� 66/A MeV [11,23–25]. However, after
rescalingε∗(A) = (m∗/m)ε(A) by the corresponding effectiv
massesm∗/m = 0.595, 0.634, and 0.6055 for NL3, TM1, and
PK1 respectively, the effective mean level spacingε∗(A) neatly
falls within the empirical bounds (shaded areas), as show
the corresponding right panels. Let us also note that with
creasingA, i.e., from A = 48 to A = 160, all curves move
toward the upper limit of the empirical data, reflecting the
creasing role of surface effects with increasingA, similar to the
SHF results[11].

When comparing to the results of the SHF calculations
Ref. [11], the following two important conclusions can b
made: (i) even though the values ofε(A) from the RMF calcula-
tion are much larger than those from the SHF, after the effec
mass scaling both models generate essentially identical re
in agreement to the empirical boundaries for the mean l
spacing; (ii) the results from the RMF calculations clearly c
firm the general outcome of Ref.[11], that the isoscalar field
generates the NSE of the formεT 2 and that its strength is in
deed governed by the mean level density rather than the ki
energy, see also[13]. Let us stress that the contributionεT 2

can also be derived analytically using the simple iso-crank
model [1,11,12]. Note further, that the evidence and conc
sions gathered from the SHF and the RMF calculations
independent of the iso-cranking model.

After obtaining the average level densityε, we now proceed
to calculate the average effective strengthκ of the isovector po-
tential. The effective isovector potential strengthκ is obtained
from the binding energy difference between the RMF calc
tions with and without the isovector potential for the same
cleus. As explained later, three different types ofT -dependence
of the isovector potential are investigated:

(6)

ET − ẼT = 1

2
κT 2 and

1

2
κT (T + 1) and

1

2
κT (T + 1+ ε/κ).

The resulting effective isovector potential strengthκ for
A = 48, 88, and 160 isobaric chains in RMF theory are sho
in Fig. 2. Similar to the SHF calculation in Ref.[11], the
complicated isovector potential along an isobaric chain ca
characterized by an effective isovector potential strengthκ(A).
However, at variance with the SHF[11], the RMF dependenc
on T is best reproduced by a dependence likeET − ẼT ≈
1
2κT (T + 1 + ε/κ), rather thanT 2 or T (T + 1). Apparently,
the linear term in RMF is considerably larger than that in
SHF calculation, implying that the total NSE in RMF behav
s
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Fig. 2. The average effective strengthκ of the isovector potential forA = 48
(left), 88 (middle) and 160 (right) isobaric chains calculated using effective
grangians NL3, TM1, and PK1 as marked in the figure. Upper, middle
lower panels show the values ofκ obtained assumingET − ẼT = 1

2κT 2,
1
2κT (T + 1), and 1

2κT (T + 1 + ε/κ), respectively. See text for further de
tails.

effectively as:

Esym≈ 1

2
εT 2 + 1

2
κT (T + 1+ ε/κ)

(7)≈ 1

2
(ε + κ)T (T + 1).

The important aspect to note is that in the SHF approxi
tion the linear term originates predominantly from the Fo
exchange in the isovector channel. In the RMF, which i
Hartree approximation, one would therefore expect aκT 2 de-
pendence. In contrast, the large slope of the isovector pote
strengthκ(A,Tz), fitted using eitherκT 2 or κT (T + 1) depen-
dence reveals the presence of an effective linear term th
large enough to compensate the lack of the linear term in tε

proportional term, seeFig. 2. Similar tendencies for the mea
level spacingε and effective isovector potential strengthκ are
present in all the 10 isobaric chains we calculated, includ
A = 40, 48, 56, 88, 100, 120, 140, 160, 164, and 180.

At a first glance, the RMF theory is a Hartree approximat
(without exchange term) and one does not expect a linear
to be present. On the other hand, the RMF as well as the
are two particular realizations of the density functional (D
theory. Moreover, due to the large meson masses the relati
forces should be close to zero range forces and both appro
are expected to be rather alike since in this limit the excha
term takes the same form as the direct term and should be e
tively included within the DF. The question that arises is w
the RMF is capable to generate the linear term in contrast to
SHF approach? In this context it is interesting to observe
within the RMF approach the isovector mean-potential is g
erated by theρ-meson field. Hence, its properties are defin
essentially by a single coupling constantgρ , see Eq.(4). In this
respect the RMF seems to be more flexible than the SHF w
isoscalar and isovector parts of the Skyrme local energy de
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functional are strongly dependent upon each other through
auxiliary Skyrme force (SF) parameters which are fitted to
data. In the process of determining the SF, one should ther
balance properly and very carefully the isoscalar and iso
tor data used in the fitting procedure. Indeed, our earlier s
[11] shows that the SkO[26] parameterization of the SF, whic
has been fitted to neutron-rich nuclei, has a stronger linear
than the so-called standard parameterizations but not as s
as that in RMF theory.

We proceed further by investigating the mass dependen
the NSE. Since the total NSE in RMF theory behaves ef
tively like T (T + 1) we extract the NSE strengthasym(A) from
the difference of the binding energies:

(8)Esym= ET − ET =0 = asym(A)T (T + 1).

To avoid the influence of shell structure we chose two nu
with largeTz for each isobaric chainA and calculateasym(A)

Fig. 3. The nuclear symmetry energy coefficientasym ∗ A (filled cir-
cles) extracted fromEsym = asymT (T + 1) for the A = 40, 48, 56, 88,
100, 120, 140, 160, 164, and 180 isobaric chains calculated using e
tive Lagrangian PK1. The solid line represents fit to the calculations,
A∗asym= 133.20−220.27/A1/3 from Eq.(9). The dashed line is from Eq.(2):

A ∗ asym = 134.4 − 203.6/A1/3 [10] and the dot-dashed line is from Ref.[8].
For further details, see text.
e

re
-
y

m
ng

of
-

i

c-
,

simply as an arithmetic mean over such a pair of nuclei. In
der to compare with the empirical data of Ref.[10], we depict
in Fig. 3 the productA ∗ asym as a function ofA for all the 10
isobaric chains calculated with the effective Lagrangian P
The dot-dashed line inFig. 3 is taken from Ref.[8] revealing
the shell structure of the symmetry energy coefficient and
dashed line represents a fit to experimental data given by Eq(2)
[10]. The maxima atA = 40 andA = 56 can easily be seen
our calculation, which is in good agreement with Ref.[8]. This
behavior is easy to understand sinceT = 0 nuclei in theA = 40,
56, 100 and 164 isobaric chains are double magic nuclei
hence, more bound, resulting in an increase of the symm
energies for nuclei withT > 0. Still, the average of the calcu
lated symmetry energy is quite close to the dashed line, w
is fitted to masses in Ref.[10].

Restricting this analysis to volume and surface terms on
least-square fit to the calculated points (filled circles inFig. 3)
leads to a smooth curve:

(9)a(RMF)
sym = 133.20

A
− 220.27

A4/3
[MeV] ,

shown as solid line, which is very close to the empirical val
(dashed line).

In a similar manner, the volume and surface contribution
the mean level spacingε and the average effective strengthκ

are determined from the calculations. In the left panel ofFig. 4,
the mean level spacingε (filled circles) extracted fromẼT −
ẼT =0 = 1

2εT 2 are presented together with the smooth cu
obtained from least-square fit:

(10)ε = 130.42

A
− 127.83

A4/3
[MeV] .

In the right panel ofFig. 4, the average effective strengthκ
(filled circles) extracted fromET − ẼT = 1

2κT (T + 1 + ε/κ)

are presented together with the smooth curve obtained by l
square fit:

(11)κ = 144.77

A
− 342.08

A4/3
[MeV] .

It should be noted that we choose the same nuclei for the
ε, κ , andasym in the least-square fitting.
in
Fig. 4. Volume and surface contributions to the mean level spacingε (left) and effective strengthκ (right). The fitted line is obtained from the same points as
Fig. 3.
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It was shown before that for relatively large values ofTz

bothε(A,Tz) ≈ ε(A) andκ(A,Tz) ≈ κ(A) along each isobari
chain. Let us now fix the value ofA and investigate fine ef
fects in ε(A,Tz), κ(A,Tz), and asym(A,Tz) = 1

2(ε(A,Tz) +
κ(A,Tz)) versusTz in order to study the response of t
isovector potential to changes in shell structure which are n
rally incorporated in the mean level spacingε(A,Tz). There-
fore, we present inFig. 5 the values ofε(A,Tz), κ(A,Tz),
and asym(A,Tz) calculated usingT 2, T (T + 1 + ε/κ), and
T (T + 1) isospin dependencies respectively, for theA = 160
isobaric chain using the parametrization PK1 of the effec
Lagrangian. To avoid the direct connection betweenκ and
ε entering theT (T + 1 + ε/κ) dependence used to extra
κ(A,Tz) we also show values ofκ(A,Tz) obtained assumin
T (T + 1 + 1.25) dependence, where 1.25 represents the a
age value ofε/κ . Clearly, there are small variations inε(A,Tz)

Fig. 5. The mean level spacingε, the average effective isovector potent
strengthκ calculated assuming eitherT (T + 1 + ε/κ) or T (T + 1 + 1.25)
dependence, and the symmetry energy coefficientasym for the A = 160 iso-
baric chain in RMF theory with effective Lagrangian PK1. The value of 1.2
the average forε/κ atA = 160.
-

r-

for Tz = 12,14,16 and 22 due to the shell structure. Whilst t
same variations are also obtained forκ(A,Tz) at the same valu
of Tz, the sumasym(A,Tz) is very smooth. Apparently, chang
in ε(A,Tz) andκ(A,Tz) cancel to large extent. We also see t
the variations inκ(A,Tz) are not due to theε/κ term, since sim-
ilar variations are found for theκ(A,Tz) curve calculated usin
the T (T + 1 + 1.25) dependence, see also the curves forT 2

andT (T + 1) as shown in the right panel ofFig. 2. Apparently,
the variations ofκ(A,Tz) reflect a direct response to chang
in ε(A,Tz) showing that effectively, the isovector potential a
isoscalar potential become closely linked.

In order to understand the origin of the linear term in RM
theory, self-consistent calculations for the effective Lagrang
PK1 have been performed including theσ andω meson-fields
only. With the nucleon densities thus obtained, the influenc
theρ meson field has been extracted by switching on the iso
tor potential in a non-self-consistent way. The results for
A = 48 isobaric chains are labeled as PK1′ in Fig. 6. It is inter-
esting to note that just by switching on the isovector poten
the relationT (T + 1 + ε/κ) is followed quite well, although
it accounts for only 2/3 of the totalκ . We can therefore con
clude that the linear term(ε + κ)T exists in RMF wheneve
the isovector potential is present. The self-consistency betw
the isovector and isoscalar potentials roughly contributes to
other 1/3.

As shown inFig. 3, the nuclear symmetry energy for fini
nuclei calculated in RMF theory with PK1 is in good agre
ment with the experiment. The symmetry energy coefficien
obtained from finite nuclei can be extrapolated to infinite
clear matter by setting the surface term of Eq.(2) or Eq.(9) to
zero. The theoretical asymptotic value obtained in this man
a′

sym≡ A∗asym/4≈ 33.6 MeV is rather close to the empirical
accepted values but considerably smaller [by∼10%] than the
so-called infinite symmetric nuclear matter (NM) values wh
are equal to 37.4 MeV for NL3[18], 36.9 MeV for TM1[19],
and 37.6 MeV for PK1[20], respectively. The infinite NM val
ues are obtained using the following formula[27]:

(12)a′
sym= 1

2

(
gρ

mρ

)
ρ0 + k2

F

6
√

k2 + m∗2
,

F

K1)
Fig. 6. The comparison of the average effective strengthκ of the isovector potential for theA = 48 isobaric chain between self-consistent RMF calculation (P
and the corresponding non-self-consistent (PK1′). See the text for further explanations.
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where ρ0 is the saturation point,kF = (3π2ρ0/2)1/3 is the
Fermi momentum andm∗ is the effective mass at satur
tion point. One should note that the symmetry energy c
ficient a′

sym decreases with increasingN/Z ratio in infinite
NM. Moreover, there are effective Lagrangians having sma
values ofa′

sym in the infinite symmetric NM including GL
97 (32.5 MeV)[27], TW-99 (32.77 MeV)[28] and DD-ME1
(33.06 MeV)[29]. At present, the origin of this discrepancy
not clear to us. Certainly, it reflects the important role pla
by the nuclear surface in finite nuclei, where one can no
the large contribution to the surface energy coming from
isovector potential. Differences in the linear term affect the
of the surface energy coefficient obtained in the calculati
However, the volume term of the total symmetry energy co
ficient is not affected much even when varying the linear te
between 1 and 4.

In summary, the nuclear symmetry energy has been s
ied in RMF theory with effective Lagrangians NL3, TM1, a
PK1. The mean level spacingε, the effective isovector potentia
strengthκ , and the nuclear symmetry energy coefficientasym
are calculated for the isobaric chainsA = 40, 48, 56, 88, 100
120, 140, 160, 164, and 180 fromT = 0 to the vicinity of
the drip line. It is shown that, except some strong variati
at small values ofTz, the mean level spacingε is stabilized at
largeTz and lies in the region of the empirical value after b
ing re-scaled by the effective mass. These results confirm
general formulation of the symmetry energy obtained from
simple iso-cranking model as first proposed in Ref.[1] and are
in agreement with Skyrme–Hartree–Fock calculations[11,13].

By switching on the isovector potential due to theρ meson
field, the effective isovector potential strengthκ is extracted. It
is surprising to find that the RMF theory, which is a Hartr
approximation at first glance, generates a large linear term
responding at least toET − ẼT ≈ 1

2κ(A)T (T + 1+ ε/κ). This
is in contrast to the SHF model, where the isovector po
tial has a1

2κ(A)T (T + 1) dependence. Hence, the total nucl
symmetry energy in RMF follows theT (T + 1) relation quite
well.

The nuclear symmetry energy coefficientasym as extracted
from Esym = asymT (T + 1) is in good agreement with th
empirical data in Refs.[8,10]. The discrepancy between th
calculated asymptotic value ofasym and the infinite symmet
ric nuclear matter estimate requires further systematic stu
Our work also indicates that a general formulation of the
clear binding energy in terms of the density functional the
in fact can yield aT (T + 1) dependence of the symmetry e
ergy. The question of the physical mechanism leading to
-

r

e

e
.

-

d-

s

e

r-

-

s.
-

e

restoration of the complete linear term within RMF theory
left open.
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