
Theoretical Computer Science 411 (2010) 3209–3223

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Growth rates of complexity of power-free languages

Arseny M. Shur ∗

Ural State University, 620083 Ekaterinburg, Russia

a r t i c l e i n f o

Article history:
Received 14 October 2008
Accepted 19 May 2010
Communicated by D. Perrin

Keywords:
Growth rate
Regular language
Power-free language
Finite antidictionary

a b s t r a c t

We present a new fast algorithm for calculating the growth rate of complexity for
regular languages. Using this algorithm we develop a space and time efficient method
to approximate growth rates of complexity of arbitrary power-free languages over finite
alphabets. Through extensive computer-assisted studieswe sufficiently improve all known
upper bounds for growth rates of such languages, obtain a lot of new bounds and discover
some general regularities.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The study of words and languages avoiding repetitions has been one of the central topics in combinatorics of words since
the pioneeringwork of Thue [24]. For a survey, see [1] and the references therein. A repetition is called avoidable in the given
alphabet, if there exist infinitely many words over this alphabet having no repetition of this type. Thue proved that squares
are avoidable in the ternary alphabet, while cubes and overlaps are avoidable already over two letters. Integral powers,
which are certainly the simplest repetitions, can be generalized in several ways. Among such generalizations we mention
patterns, abelian powers, relational powers, and, of course, fractional powers, or exponents, which are studied in this paper.
An exponent of a word is the ratio among its length and its minimal period. If β > 1 is a rational number, then a word is
called β-free (β+-free) if all its factors have exponents less than β (respectively, at most β).
When a repetition is known to be avoidable it is natural to calculate some quantitative measure of its avoidability. If ρ

denotes an avoidable repetition (or, more generally, an avoidable property of words) over the alphabet 6, then the ‘‘size’’
of the language L(ρ) ⊆ 6∗ of all words avoiding ρ is an appropriate measure of avoidability of ρ. Such a size is given by
the function CL(ρ)(n) = |L(ρ) ∩ 6n|, which is called combinatorial complexity of L(ρ). Brandenburg [2] showed that the
combinatorial complexities of the language of all binary cube-free words and the language of all ternary square-free words
both have exponential growth. Restivo and Salemi [17] proved that the combinatorial complexity of the language of all
binary overlap-free words grows as a polynomial. Since then, many papers have appeared in this area, see, e.g., [7,11,13,
14,16,18], where some bounds of the order of growth for particular power-free languages were obtained. But up to now
there has been no universal method for obtaining such bounds. Furthermore, the existing algorithms for computer-assisted
studies are highly inefficient and hardly work on alphabets with more than 3 symbols.
In this paperwe suggest a new universal approach for estimating the order of growth of an arbitrary power-free language

L. More precisely, we estimate the growth rate of Lwhich is defined by α(L) = lim supn→∞(CL(n))1/n.

∗ Tel.: +7 9222072837.
E-mail addresses: aimsure@mail.ru, Arseny.Shur@usu.ru.

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.05.017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82584306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:aimsure@mail.ru
mailto:Arseny.Shur@usu.ru
http://dx.doi.org/10.1016/j.tcs.2010.05.017

3210 A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223

We begin with the study of regular languages (Section 3). If a regular language L is given by a deterministic automaton
A satisfying some natural reachability conditions, then the growth rate of L is known to be equal to the spectral radius
(or the Frobenius root) of the adjacency matrix ofA (see, e.g., [12]). However, finding the Frobenius root straightforwardly,
starting from an automaton through explicit computation with its adjacency matrix can be tedious. We show how to avoid
these tedious computations using all the matrices involved implicitly. The resulting algorithm (Algorithm 1) calculates the
growth rate of a regular language from its recognizing automaton and uses only quasilinear time and space in the size of
this automaton. High efficiency of Algorithm 1 allows us to cope with very big automata that are well beyond capabilities
of other methods.
This method cannot be directly used in the case of power-free languages, as infinite power-free languages are not

regular. Instead, we approximate the growth rate of any such language L from above, using a decreasing sequence of regular
languages called k-approximations of L. Such approximations have been used before, e.g. in [2,12,16]. The intersection of
all k-approximations equals L, so k indicates the ‘‘quality’’ of approximation. Unfortunately, the automata recognizing k-
approximations are quite big: their size can be roughly described as an exponential function of kmultiplied by the factorial
of the size of the alphabet. In Section 4 we make a crucial improvement to this approach: from a k-approximation we
build a relatively small automaton with the same spectral radius as the recognizing automaton for the k-approximation
(Algorithms 3 and 4). The size of this ‘‘smaller’’ automaton, as well as the time needed for its construction, still depends
exponentially on k, but only linearly on the size of the alphabet. Processing these ‘‘smaller’’ automata by Algorithm 1 allows
one to operate with bigger alphabets and to obtain very tight upper bounds.
Using implementations of Algorithms 1, 3 and 4, we conducted an extensive study of the growth rates of power-free

languages for alphabets of 2 to 10 letters. Selected results of those studies are presented in Section 5.

2. Preliminaries

We recall necessary notation and definitions. For more background, see [5,9,15].

2.1. Words, languages, and automata

An alphabet 6 is a nonempty finite set, the elements of which are called letters.Words are finite sequences of letters. As
usual, wewrite6n for the set of all n-letter words and6∗ for the set of all words over6, including the empty word λ. A word
u is a factor (respectively prefix, suffix) of the wordw ifw can be represented as v̄uv̂ (respectively uv̂, v̄u) for some (possibly
empty) words v̄ and v̂. A factor (respectively prefix, suffix) of w is called proper, if it does not coincide with w. The words u
andw are conjugates, if there are words v̄ and v̂ such that u = v̄v̂,w = v̂v̄. The subsets of6∗ are called languages (over6).
A language is factorial if it is closed under taking factors of its words.
A word w is forbidden for a language L if it is a factor of no word from L. The set of all minimal (with respect to the

factorization order) forbidden words for a language is called the antidictionary of this language. If a factorial language L over
the alphabet6 has the antidictionaryM , then the following equalities holds:

L = 6∗ − 6∗M6∗, M = 6L ∩ L6 ∩ (6∗ − L).

We see that any antidictionary determines a unique factorial language, which is regular if the antidictionary is also regular
(in particular, finite).
A word w ∈ 6∗ can be viewed as a function {1, . . . , n} → 6. Then a period of w is any period of this function. The

exponent ofw is the ratio among its length and its minimal period; if this ratio is greater, than 1, thenw is a fractional power.
The prefix of w whose length is the minimal period of w, is called the root of w. If β > 1 is a rational number, then w is
called β-free (β+-free) if all its factors have exponents less than β (respectively, at most β). By β-free (β+-free) languages
we mean the languages of all β-free (respectively β+-free) words over a given alphabet. These languages are obviously
factorial and are also called power-free languages. Following [2], we use only the term β-free, assuming that β belongs to
the set of ‘‘extended rationals’’. This set consists of all rational numbers and all such numbers with a plus; the number x+
covers x in the usual≤ order. For the arithmetic operations it will be enough to view x+ as the number (x+ 1

n), where n is
extremely big. For example, the condition r ≤ k/2+ means just that r < k/2.
We consider deterministic finite automata (dfa’s) with partial transition function. The language recognized by a dfa A is

denoted by L(A). We view a dfa as a digraph, sometimes even omitting the labels of edges. Thus, we write a transition as
a triple (u, a, v) or as a pair (u, v) depending on whether the letter a is essential or not. A trie is a dfa which is a tree such
that the initial vertex is its root and the set of terminal vertices is the set of all its leaves. Only directedwalks in digraphs are
considered. For a dfa, the number of words of length n in the language it recognizes obviously equals the number of accepting
walks of length n in the automaton. So, to calculate combinatorial complexity we count walks rather than words. For a fixed
automaton, we denote the number of (u, v)-walks of length n by Puv(n) and the number of walks of length n ending at the
vertex v by P∗v(n). A dfa is consistent if each of its vertices is contained in some accepting walk.

A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223 3211

2.2. Growth rates

For an arbitrary language L, we are interested in the asymptotic behaviour of its combinatorial complexity CL(n), more
precisely, in the growth rate α(L) = lim supn→∞(CL(n))1/n. For factorial languages, in particular for power-free ones, the
following theorem holds.

Theorem 2.1 ([12]). For an arbitrary factorial language L one has α(L) = limn→∞(CL(n))1/n = inf{(CL(n))1/n}. Moreover,
α(L) = 0 if and only if L is finite, α(L) > 1 if and only if L is infinite and has the exponential complexity, and α(L) = 1 otherwise.

In the study of the growth rates of power-free languages the main focus is on the minimal such languages (for different
alphabets). These minimal languages are the binary 2+-free (overlap-free), ternary (7/4)+-free, quaternary (7/5)+-free
languages, and, according to famous Dejean’s conjecture [6], the (m/m − 1)+-free languages over m-letter alphabets with
m ≥ 5. This conjecture has been recently proved in all cases, see, e.g. [3,25,26].

2.3. Digraphs and linear algebra

A strongly connected component (scc) of a digraph G is a maximal with respect to inclusion subgraph G′ such that there
exists a walk from any vertex of G′ to any other vertex of G′. A digraph is strongly connected, if it consists of a unique scc. The
imprimitivity number of an scc (or of a strongly connected digraph) is the greatest common divisor of lengths of all cycles in
it. If this number equals 1, then the scc or the digraph is called primitive.
The index of a digraph is the maximum absolute value of the eigenvalues of its adjacency matrix. According to the

classical Perron–Frobenius theorem, the index is itself an eigenvalue of this matrix (the Frobenius root). The Frobenius root
admits a nonnegative real eigenvector. For the case of a strongly connected digraph, the Frobenius root is an eigenvalue of
multiplicity 1.
Growth rates of regular languages and indices of digraphs are closely connected. Namely, ifA is a consistent dfa, L = L(A),

then α(L) equals the index ofA. A short proof of this fact can be found in [21]. In what follows, we denote the index ofA by
α(A).
The jth component of a vector x is denoted by [x]j.

3. An algorithm for growth rates of regular languages

3.1. Algorithm

As was mentioned in the preliminaries, the growth rate of a regular language is an eigenvalue of the adjacency matrix
of an automaton representing the language. Hence, to obtain the exact growth rate one should find an exact solution to a
polynomial equation, which is not possible in the general case. On the other hand, a real root of a polynomial equation can be
approximated with any precision with rather simple methods. So it is natural to say that an algorithm calculates the growth
rate of a language if this algorithm returns an approximation to this growth rate within any prescribed range of the absolute
error.

Theorem 3.1. There is an algorithm which, given a consistent dfa A with N vertices and a number δ, 0 < δ < 1, calculates
the growth rate of the language L(A) ⊆ 6∗ with the absolute error at most δ in time 2(− log δ·|6|·N) using 2(− log δ·N)
additional space.

Below we provide the required algorithm. Its idea is based on the following lemma from [22]:

Lemma 3.2. Let G be a non-singleton strongly connected digraph, α be its index, and r be its imprimitivity number. Then for
arbitrary vertices u, v of G there exist numbers i ∈ {0, . . . , r − 1}, µ > 0, and γ , 0 < γ ≤ α, such that

Puv(n) =
{
µαn + O((α − γ)n), if n mod r = i,
0 otherwise.

So, for r = 1 the sequence {Puv(n)/Puv(n− 1)} converges to the limit α at an exponential rate. Thus, for any δ, 0 < δ < 1
all members of this sequence, starting from some n̄ = O(− log δ), belong to the δ-neighborhood of α. Obviously, the same
is true for the sequence {P∗v(n)/P∗v(n− 1)}. The latter sequence will be used in our algorithm.
There is a simple operation which transforms any strongly connected digraph to a primitive strongly connected digraph:

the addition of a single loop to each vertex. From the matrix point of view, this operation just adds the identity matrix to
the adjacency matrix of the digraph. Hence, this operation retains all eigenvectors of the original matrix and adds 1 to each
of its eigenvalues (in particular, to the Frobenius root).
Recall that the index of an arbitrary digraph equals the maximum of the indices of its scc’s. Now we introduce our

algorithm.

3212 A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223

Algorithm 1.
Input: consistent dfaA, number δ, 0 < δ < 1.
Output: number ᾱ such that |ᾱ − α(A)| < δ.

01. find all scc’s of A
02. if all scc’s are singletons or cycles
03. if there are cycles return ᾱ = 1 else return ᾱ = 0
04. else
05. for each nontrivial scc Ai
06. for each vertex u
07. define counters u.old and u.new
08. u.old← 1; u.new← 0
09. while true do
10. for each vertex u
11. for each edge (u, v)
12. v.new← v.new + u.old
13. u.new← u.new + u.old
14. minrate← min

u
(u.new/u.old)

15. maxrate← max
u
(u.new/u.old)

16. if maxrate−minrate < 2δ
17. αi ← (maxrate+minrate)/2
18. break while
19. for each vertex u
20. u.old← u.new; u.new← 0
21. return ᾱ = max

i
{αi} − 1.

Proof of Theorem 3.1. The procedure in line 1 can be performed in O(|6|·N) time and O(N) space using well-known
Tarjan’s algorithm. The assignment in line 3 is made according to Theorem 2.1. So, we turn to themain part of the algorithm.
LetA′i be the digraph obtained fromAi by adding a single loop to each vertex. In the nth iteration of the while cycle after

the execution of the cycle in lines 10–13 one has v.new = P∗v(n), v.old = P∗v(n−1) for each vertex v, where the number of
walks is calculated inA′i . This fact can be easily shown by induction using the equality P∗v(n) =

∑
P∗u(n− 1)+ P∗v(n− 1),

where the sum is taken over all u’s such that (u, v) is an edge in Ai, and the additional summand corresponds to the new
loop added to v.
As we already mentioned, each sequence {P∗v(n)/P∗v(n− 1)} converges to the limit α(A′i) = α(Ai)+ 1. Hence, to prove

the correctness of the algorithm it remains to show that minrate ≤ α(A′i) ≤ maxrate in any iteration of the while cycle.
This inequality follows from one result of matrix theory (see [9]):

– if α is the Frobenius root of an irreducible primitive matrix A, x is a vector with positive components, then

min
j

[xA]j
[x]j
≤ α ≤ max

j

[xA]j
[x]j

.

With respect to the adjacency matrices, ‘‘irreducible’’ just means that the digraph is strongly connected. So, if Old is the
vector whose components are the values of all counters .old taken in some order, New is the vector whose components are
the values of counters .new taken in the same order, and A′i is the adjacency matrix ofA

′

i , then New = Old·A′i . The required
inequality now follows from the rules of computation ofminrate andmaxrate (lines 14–15 of Algorithm 1).
Thus, Algorithm 1 works correctly and it remains to check the time and space complexity. Each iteration of the while

cycle requires2(|6|·N) operations. The total number of iterations is O(− log δ), because after this number of iterations the
ratio u.new/u.old for any vertex u falls into the δ-neighborhood of the number α(A′i) (see the comment after Lemma 3.2).
The space complexity is dominated by the amount needed to allocate the counters u.old and u.new. The total number of
counters is 2N and the length of each counter linearly depends on the number of iterations, which is O(− log δ). Thus, the
required conditions are met and the theorem is proved. �

Remark 3.3. When building the vector New from the vector Old on each iteration of the while cycle we actually perform
a well-known iterative algorithm, which calculates the Frobenius root of an irreducible primitive matrix by means of its
eigenvector [8]. For a matrix A, this algorithm takes an arbitrary initial vector x and apply A to it iteratively to obtain the
approximation of the mentioned eigenvector. Let a matrix A have a Jordan basis e1, . . . , er (where e1 corresponds to the
Frobenius root α and is real-valued, while other vectors can be complex-valued). This algorithm works correctly for any
initial vector x = x1e1 + · · · + xrer such that x1 6= 0. Indeed, the multiplication by A increases the first term of this sum
exactly α times, while the length of the remaining linear combination can be increased at the rate at most γ , where γ < α

A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223 3213

is the second biggest absolute value of the eigenvalues of A. Therefore, the vector xAn deviates from the eigenvector of α by
a relatively small additive noise.
It is known that this algorithm is robust to rounding and scaling errors; such a good property allows us to pay little

attention to the problems of storing big numbers and dividing them. Also note that our initial vector (1, . . . , 1) is good for
the matrix A′i in view of Lemma 3.2.

3.2. Two straightforward generalizations

The proof of Theorem 3.1 remains valid for any directed multigraph, since we did not use any specifics of automata.
Hence, we may reformulate this theorem in purely graph terms.

Theorem 3.4. There is an algorithm which, given a directed multigraph G with n vertices and m different edges and a number δ,
0 < δ < 1, calculates the index of G with the absolute error at most δ in time2(− log δ·m) using2(− log δ·n) additional space.

In general, Algorithm1 can not calculate the growth rate of a language given by a nondeterministic finite automaton (nfa).
Indeed, counting walks and counting words are not the same thing for the case of nfa, and the growth rate of a language can
differ from the index of recognizing nfa. But there exists an important class of nfa’s for which Algorithm 1 works perfectly
in view of the following lemma. Recall that a nfa is called unambiguous, if for any given word w and vertices u and v there
exists at most one (u, v)-walk with the labelw. The definition of a consistent nfa is the same as for dfa’s.

Lemma 3.5. LetA be an unambiguous consistent nfa, L = L(A). Then α(L) = α(A).

Proof. By the definition of an unambiguous nfa, each function Puv(n) returns exactly the number of words of length nwhich
can be read from u to v. Suppose that I and T are the sets of initial and terminal vertices ofA respectively, A is the adjacency
matrix ofA. Then for any n

max
I×T
Puv(n) ≤ CL(n) ≤

∑
I×T

Puv(n) ≤ |An|,

where |An| is the sum of all elements of An. Furthermore, it is easy to see that

max
I×T
lim sup
n→∞

(Puv(n))1/n ≤ lim sup
n→∞

(CL(n))1/n ≤ lim
n→∞
|An|1/n.

It is well-known in matrix theory that the limit in the right-hand side is equal to α(A) [9]. Since the middle expression of
the last inequality equals α(L) by definition, it remains to show that the left-hand side also equals α(A). For the uniformity,
we denote α(Puv) = lim supn→∞(Puv(n))1/n.
If (v′, v) is an edge in A, then Puv(n + 1) ≥ Puv′(n), implying α(Puv) ≥ α(Puv′). Similarly, if (u, u′) is an edge, then

α(Puv) ≥ α(Pu′v). Since any vertex belongs to a path from some initial vertex to some terminal vertex, the overall maximum
of the numbers α(Puv) is achieved for some u ∈ I , v ∈ T . Since the function |An| is a finite sum of functions Puv(n), we have
maxI×T α(Puv) = α(A), as required. �

Algorithm 1 calculates the index of the processed automaton, so we have

Theorem 3.6. There is an algorithm which, given an unambiguous consistent nfaAwith N vertices and a number δ, 0 < δ < 1,
calculates the growth rate of the language L(A) ⊆ 6∗ with the absolute error at most δ in time 2(− log δ·|6|·N) using
2(− log δ·N) additional space.

3.3. A faster ‘‘quasialgorithm’’

Algorithm 1 has proved to be efficient enough, it allows one to process the automata with millions of vertices, and works
with any consistent dfa. Nevertheless, for extensive computer-assisted studies itwould be convenient to have amodification
that works faster in a ‘‘typical’’ case and can detect an occurrence of a ‘‘special’’ case.
In our studies of power-free languages we made use of a ‘‘quasialgorithm’’ which is below referred to as Algorithm 1Q.

It processes a dfa similarly to Algorithm 1 but calculates some other sequence of numbers. This sequence converges to
the index of the processed automaton exponentially fast in the typical case, and can be calculated somewhat faster, than
the sequences of minrate’s and maxrate’s in Algorithm 1. The two advantages of Algorithm 1Q over Algorithm 1 are the
elimination of the preliminary step (no splitting into scc’s) and the avoidance of divisions (one division per iteration instead
of2(N) in Algorithm 1). The lack of Algorithm 1Q is the absence of a procedure which can assure that the current value falls
into the δ-neighborhood of the index of the automaton. Instead, we use empirical rules which appeared to work perfectly
for the automata arising from the studies of power-free languages. Namely, no divergence was found between the results

3214 A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223

obtained by applying Algorithm 1Q and Algorithm 1 to the same automata. So, wemade a lot of auxiliary computations with
Algorithm 1Q. Its description is given below.
The starting point for Algorithm 1Q is the following theorem, which comprises some results of [22,23].

Theorem 3.7 ([22,23]). LetA be a consistent dfa, r be the least common multiple of the imprimitivity numbers of all scc’s ofA,
L = L(A). Then each of the sequences

{
CL(nr+i+1)
CL(nr+i)

}∞
1
, where i = 0, . . . , r−1, converges to a nonnegative (possibly infinite) limit

βi. In the case of factorial language L all βi’s are finite and

(1) α(L) = (β0 · · · · · βr−1)1/r ; in particular, r = 1 implies
CL(n+1)
CL(n)

−→ α(L);

(2) ifA does not contain two scc’s of index α(L) such that one of them is reachable from the other, then
∣∣∣ CL(nr+i+1)CL(nr+i)

− βi

∣∣∣ = O(γ n)
for any i = 0, . . . , r − 1 and some γ < 1.

Recall that power-free languages are factorial, while the procedure of adding loops to all vertices of the dfaA guarantees
that r = 1 for the resulting dfaA′ (to obtain a dfa, we can assume that all loops are labeled by a new letter). Let L′ = L(A′).
Then the sequence

{
CL′ (n+1)
CL′ (n)

}
converges to the number α(L′) = α(L) + 1. Moreover, the convergence has an exponential

rate in the case which can be reasonably considered as typical (as we mention in Section 5 below, all obtained automata for
approximations of power-free languages fall into this case).
It is not hard to see that the counters .old and .new attached to the vertices of A can be used to calculate the values of

combinatorial complexity CL′(n). Namely, we take the initial vector Old = (1, 0, . . . , 0), where the only 1 corresponds to
the initial vertex of A, and work with the counters as in Algorithm 1. Then in nth iteration each counter u.new gets the
number of walks of length n from the initial vertex to u. Summing up the values of .new counters over the set of terminal
vertices, one obtains exactly CL′(n). Note that all vertices of a consistent dfa recognizing a factorial language are terminal.

Algorithm 1Q.
Input: consistent dfaA, number δ, 0 < δ < 1, number n̄.
Output: number ᾱ for which the procedure ORACLE suggests |ᾱ−α(A)| < δ, or the number δ̄ which estimates the approx-
imation error after n̄ iterations.
Initialization: Put s.old = 1 for the initial vertex s and set all other .old and .new counters to 0. Put comp[0] = 1.

01. for n = 1 to n̄
02. for each vertex u
03. for each edge (u, v)
04. v.new← v.new+ u.old
05. u.new← u.new+ u.old
06. for each vertex u
07. comp[n] ← comp[n] + u.new
08. u.old← u.new; u.new← 0
09. rate[n] ← comp[n]/comp[n− 1]
10. if ORACLE(rate, δ) = ᾱ
11. return ᾱ; break for
12. return δ̄ = |rate[n̄] − rate[n̄− 1]|.

How does the empirical procedure ORACLE work? First, it checks whether |rate[n] − rate[n − 1]| < δ, because this
difference tends to 0 at exactly the same exponential rate as the approximation error |rate[n]−α(L′)|. If this inequality fails,
ORACLE returns false, otherwise ORACLE studies whether the sequence rate is oscillating or monotonous. For the oscillating
sequence, the calculation of rate is continued up to the moment when the difference between the last local maximum
and local minimum drops below δ; ORACLE returns rate[n] − 1 during the corresponding iteration. If the sequence rate
is monotonous, it is extrapolated as a geometric series to get the limit α; here, ORACLE immediately returns the number
α − 1.
Those empirical rules result from the study of the connections between the behaviour of the combinatorial complexity of

a regular language and the second biggest in the absolute value eigenvalues of the adjacency matrix of the recognizing dfa.
These connections are as follows (for the sake of brevity, we omit the details). Let γ be the second biggest the absolute value
of the eigenvalues of the adjacency matrix A. If A has only positive real eigenvalue of absolute value γ , then the sequence
rate is monotonous. If A has no positive real eigenvalue of absolute value γ , then rate is oscillating. Finally, if the positive real
eigenvalue is accompanied with some different eigenvalues of absolute value γ , then the sequence rate can be oscillating,
monotonous, or have a more complicated behaviour. Up to now, we have no examples of such ‘‘complicated’’ behaviour of
the sequence rate.
If Algorithm 1Q outputs δ̄ (for n̄ big enough), a slow convergence is suspected. Restarting the algorithm with different

values of n̄, we can check that the rate of the convergence is less than exponential and detect the special case which is
described in Theorem 3.7(2).

A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223 3215

4. Approximation of power-free languages

4.1. Simple method

The idea to use languages with finite antidictionaries for finding upper bounds to the growth rates of factorial languages
goes back to Brandenburg [2] and has been used by many others. In this subsection we describe a simple method, which
enables one to get such upper bounds using this idea, a textbook pattern matching algorithm, and Algorithm 1 (or 1Q).
Recall how to use the languages with finite antidictionaries to estimate the complexity of a given factorial language

L ⊆ 6∗. LetM be the antidictionary of L. Consider a family {Mk} of finite subsets ofM such that
M1 ⊆ M2 ⊆ · · · ⊆ Mk ⊆ · · · ⊆ M, M1 ∪M2 ∪ · · · ∪Mk ∪ · · · = M.

For the rest of the paper, we put Mk = M ∩ (61 ∪ · · · ∪ 6k). Denote by Lk the factorial language over 6 having the
antidictionaryMk. One has

L ⊆ · · · ⊆ Lk ⊆ · · · ⊆ L1, L1 ∩ L2 ∩ · · · ∩ Lk ∩ · · · = L,
and for any n, there is k such that L ∩ 6n = Lk ∩ 6n. Then

CL(n) = · · · = CLk(n) ≤ · · · ≤ CL1(n).

Hence the sequence {CLk(n)} converges to CL(n) from above, implying that {(CLk(n))
1/n
} converges to (CL(n))1/n from above.

By Theorem 2.1, α(L) = limn→∞(CL(n))1/n and α(Lk) ≤ (CLk(n))
1/n. Thus, {α(Lk)} converges to α(L). Since Lk is regular, we

can build a recognizing consistent dfa for it and apply Algorithm 1 to find {α(Lk)} with any precision. In what follows, we
refer toMk as to k-antidictionary of L and to Lk as to k-approximation of L.
Luckily enough, there is a fast algorithm (Algorithm 2) building a consistent dfa for the language given by a finite

antidictionary. This algorithm, based on the Aho–Corasick algorithm for pattern matching, is described in [4]. It works
in linear time in the total size of the antidictionary. Thus, if one can construct the k-antidictionaries efficiently, then the
growth rate of L can be approximated from above with really good precision. Here Algorithm 2 is presented in the most
understandable form. The necessary details of realization are discussed below.
Algorithm 2.
Input: finite antidictionaryM .
Output: dfaA recognizing the factorial language Lwith the antidictionaryM .
Step 1. Construct a trie T , recognizingM . (T is actually the graph of the prefix order on the set of all prefixes ofM .)
Step 2. Associate each vertex in T with the word labeling the accepting walk ending at this vertex. (Now the set of vertices
is the set of all prefixes of words fromM .)
Step 3. Add all possible edges to T , following the rule:
the edge (u, c, v) should be added if
u is not terminal, and
u has no outgoing edge labeled by c , and
v is the longest suffix of uc which is a vertex of T .
(These edges are called backwardwhile the edges of the trie are called forward.)
Step 4. Remove all terminal vertices and mark all remaining vertices as terminal to getA.

In what follows, we refer to the automaton obtained by Algorithm 2 as to FAD-automaton (from Finite AntiDictionary).
Remark 4.1. (1) The set of vertices ofA coincides with the set of all proper prefixes of the words fromM .
(2) The triple (u, c, v) is a transition inA if and only if v is the longest suffix of the word uc which is a vertex ofA.
Wemust say a fewwords about the linear-time implementation of this algorithm (see the proofs in [4]), because it is not

obvious. Actually, no explicit assignment of words to the vertices (step 2) is made. Instead, the failure function f is used to
calculate the backward edges. This function is defined by f (λ) = λ, and for any other vertex u ofAwe find its longest proper
suffix v which is also a vertex, and set f (u) = v. The calculation of f and of backward edges can be done in parallel. Namely,
all vertices are processed in width-first order starting from the root of the trie. In this way, at the moment when we reach
the vertex u the value f (u) is already known and any vertex v with |v| < |u| has a complete set of outgoing edges. For any
letter c , we find the vertexw reached from f (u) by the edge labeled by c. If u has an outgoing edge labeled by c , then we set
f (uc) = w; if u has no such edge, then we add the edge (u, c, w) to the automaton.
Now describe a rather straightforward procedure calculating the k-antidictionary for a β-free language L ∈ 6∗. Put

r = bk/βc. Then r is the maximal length of the root of a word fromMk. To obtainMk, we examine all β-free words of length
≤ r in the width-first order. For every such word u we build the shortest word v = uβ̄ with β̄ ≥ β and check whether v
contains a proper forbidden factor. If v has no such factors, then it belongs toMk. The words ofMk are stored in a trie. Thus,
examining the word u, we use the current trie to check the factors of v and to check which words of the form uc , where
c ∈ 6, are β-free.
Thus, we obtain a simple way to get an upper bound of the growth rate of a power-free language: choose the number k,

calculate the k-antidictionary of the target language, build a FAD-automaton by Algorithm 2, and apply Algorithm 1 (or 1Q)
to this automaton.

3216 A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223

4.2. Using symmetry: equitable partitions and factorgraphs

Auseful property of all power-free languages is the permutation stability, or symmetry: if awordw belongs to a power-free
language L ⊆ 6∗ andσ is an arbitrary permutation of6, thenσ(w) also belongs to L. It is easy to see that the antidictionaryM
of L has the same property, as well as all its k-antidictionaries and k-approximations. The symmetry ofMk implies symmetry
in the corresponding FAD-automaton. The symmetric structure of the automaton allows us to reduce its size almost |6|!
times retaining the combinatorial complexity of the recognized language. Such a reduction sufficiently improves both the
time and space complexity of themethod described in the previous subsection, and allows us to study languages over bigger
alphabets.
The reduction is based on the notion of equitable partition of a graph. Let G = (V , E) be a graph. The partition π = {Ci}ri=1

of V is said to be equitable if for any i, j all vertices of Ci have the same number of adjacent vertices in Cj (for a digraph, one
should count either ‘‘forward adjacent’’ or ‘‘backward adjacent’’ vertices). An equitable partition defines a nonnegative r× r
matrix, the entries of which are those ‘‘adjacency numbers’’. This matrix can be viewed as an adjacency matrix of a directed
multigraph which is denoted by G/π and called the factorgraph of G by the partition π . The vertices of G/π are the classes
of π . For undirected graphs, the properties of equitable partitions are studied in detail in [10]. The most important for us
property compares the number of walks in G and G/π . This property holds for digraphs as well:

Lemma 4.2. Let π be an equitable partition of a digraph G. Then the number of length n walks in G starting at a fixed vertex u
equals the number of length n walks in G/π starting at the corresponding vertex Cu. In particular, α(G) = α(G/π).

We omit the proof of Lemma 4.2 here, because the argument almost literally repeats the proof of [10] for undirected
graphs. Now we describe an equitable partition of a symmetric FAD-automaton.

Proposition 4.3. LetA be the FAD-automaton for a symmetric finite antidictionaryM ⊆ 6∗, and letπ = {Ci}ri=1 be the partition
such that the class Cu of the word u consists of all words which are images of u under the permutations of6. Then π is equitable.

Proof. If u is a vertex ofA, then u is a proper prefix of somewordw ∈ M by Remark 4.1. Hence, for any permutation σ of6,
one has σ(w) ∈ M by symmetry ofM , yielding that σ(u) is a vertex ofA. Thus, the partition π is defined correctly. Further,
if u has a forward outgoing edge labeled by a, then ua is a vertex, σ(ua) is also a vertex, and σ(u) has a forward outgoing
edge labeled by σ(a). Finally, consider a backward edge from u to v labeled by b. Then v is a suffix of ub and a vertex, while
all longer suffixes of ub are not vertices. Hence, σ(v) is a suffix of σ(ub) and a vertex, while all longer suffixes of σ(ub) are
not vertices. By step 3 of Algorithm 2, there is a backward edge from σ(u) to σ(v) labeled by σ(b).
We proved that there is aπ-preserving bijection between the sets of forward adjacent vertices of the vertices u and σ(u).

Therefore, the partition π is equitable by definition. �

Recall that Algorithm 1 (and 1Q, as well) works with a digraph, using no ‘‘automaton’’ structure. So, by Lemma 4.2, we
may apply any of these two algorithms toA/π in order to get the growth rate of the language recognized byA.

4.3. Enhanced method: building factorAD and factorgraph

An obvious way to improve the simple method of Section 4.1 is to apply Algorithm 1 (or 1Q) to the factorgraph A/π
instead of a symmetric FAD-automatonA. In this way we obtain a substantial gain in timewhich probably compensates the
time needed to perform the factorization ofA. On the other hand, we still need to built the automatonA and allocate it in
memory. In view of Theorem 3.1, we can expect that Algorithms 1 and 1Q can process in a reasonable amount of time any
automaton which is built and allocated. Thus, this improvement can neither extend the range of power-free languages for
which the upper bounds can be obtained, nor obtain tighter bounds for the languages that can be processed. So, the usability
of this single improvement is questionable.
Things change drastically if we can build the factorgraphA/π for the given k-approximation directly. The space needed

to built and allocate the automaton is reduced almost |6|! times and, as wewill see below, the time needed to perform these
operations shrinks by at least the same factor. Hence, a much bigger range of power-free languages can be processed, and
better bounds can be obtained. The value of such an improvement to the simple method is indicated by the following fact:
for all studied power-free languages the space, but not the time, was the critical resource for obtaining tight upper bounds.
In this section we present the direct algorithm to build the factorgraphA/π . It is based on Algorithm 2, with some other

trie built on step 1 and a more complicated rule for backward edges used on step 3.
Since the vertices of the FAD-automatonA are proper prefixes of the words from the antidictionaryM (Remark 4.1), the

vertices of A/π are classes of such prefixes. It is convenient to replace these classes with their canonical representatives.
We choose the lexicographically minimal (lexmin) word in each class to be the representative. Note that the chosen lexmin
words are exactly the proper prefixes of lexmin words from M . In what follows, we use the notation Lexmin(w) for the
lexmin word in the π-class ofw.

A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223 3217

Now examine the edges of A/π . Suppose that an edge from u to v exists. Then for every word ū with the property
Lexmin(ū) = u there exists a word v̄ such that Lexmin(v̄) = v and (ū, c, v̄) is an edge ofA for some letter c. Let the vertex u
have exactly t outgoing edges inA (with the different labels c1, . . . , ct) to the vertices of the π-class of v. Then by definition
of the equitable partition there are exactly t edges from u to v in A/π . We will add the labels c1, . . . , ct to these edges. In
this way, the factorgraphA/π can be viewed as a dfa and constructed using the ideas of Algorithm 2.
From the previous paragraph it follows that the edges of A/π can be constructed using only the edges of A starting in

lexmin words. More precisely,

(*) (u, c, Lexmin(v)) is an edge ofA/π if and only if (u, c, v) is an edge ofA.

We call the edge ofA/π forward, if it results from a forward edge ofA and backward otherwise.
Now, the main idea of constructing the automaton A/π is straightforward. First, we build the trie F T recognizing the

factorAD FM which is the set of all lexmin words from the antidictionary M . Then we state step 3 of Algorithm 2 in the
following form:

Step 3. Add all possible edges to F T , following the rule:
the edge (u, c, Lexmin(v)) should be added if
u is not terminal, and
u has no outgoing edge labeled by c , and
v is the longest suffix of uc such that Lexmin(v) is a vertex of F T ,

and apply Algorithm 2 to the trie F T .

Nevertheless, an efficient implementation of this main idea is far from trivial. Below we give such an implementation
for the particular case we are interested in: when the considered symmetric language with a finite antidictionary is a k-
approximation of some power-free language. First we present Algorithm 3 which builds the trie recognizing the factorAD
of the k-antidictionary of a given power-free language. For convenience we will identify all terminal vertices of this trie and
adjust a unique label, say, ‘0’, to the obtained vertex. Algorithm 3 uses two data structures: apart from the trie, we need an
auxiliary queue Q to store permitted lexmin words which are potential roots of the minimal forbidden words. We insert
the marker � to the queue in the points where the length of words increases. Also, it is convenient to store with each word
in the queue the number of different letters in it. We suppose that 6 = {1, . . . ,m}. The function Forbidden(w) returns 1 if
the reading of the word w by the current trie F T stops in the terminal vertex (it does not matter, whether F T reads the
whole wordw or not), and 0 otherwise. Arithmetic operations with exponents were discussed in the preliminaries.

Algorithm 3.
Input: sizem > 1 of the alphabet, exponent β > 1+, length k > 1.
Output: trie F T for the factorAD FMk, whereMk is the k-antidictionary for the β-free language over them-letter alphabet.
Initialization: trie F T consists of a single initial (and non-terminal) vertex, queueQ is empty.

01. push � to Q
02. push (′1′; 1) to Q
03. Len← 0 % current length of the root
04. pop W from Q % start of the main cycle
05. if W = � goto 16
06. % assume that W = (w; t)
07. u← wdLen·βe/|w|

08. if Forbidden(Lexmin(v)) = 0 for any suffix v of u
09. add u to F T
10. if Len < bk/βc
11. for any letter c such that c ≤ t and Forbidden(wc) = 0
12. push (wc; t) to Q
13. if t < m
14. push (w(t + 1); t + 1) to Q
15. goto 4
16. if Len < bk/βc
17. Len← Len+ 1
18. push � to Q
19. goto 4
20. return F T

Lemma 4.4. Given integers m, k > 1 and an exponent β > 1+, Algorithm 3 outputs the trie recognizing the factorAD of the
k-antidictionary for the β-free language over the m-letter alphabet.

3218 A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223

Proof. First we note that at any moment during the work of Algorithm 3 the queue consists of words of length Len and
Len+ 1 separated by a marker:

· · · · · ·

head marker tail

�

︸ ︷︷ ︸
words of length Len

︸ ︷︷ ︸
words of length Len+ 1

Now let us analyze the content of the trie and the queue at the moment when the algorithm pops the marker from Q.
We show that F T recognizes exactly the minimal forbidden lexmin words whose roots have the length less than or equal
to Len, while Q consists of all permitted lexmin words of length Len + 1. These conditions obviously hold when Len = 0
(the first iteration of the main cycle). So, we have the inductive base and turn to the inductive step. To prove it, we assume
that the algorithm processed the marker, increased Len to Len+ 1 and the queue consists of all permitted lexmin words of
length Len+ 1, followed by the marker. Suppose that now the wordw is being processed.
The word u constructed in line 7 is lexmin since w is, and is either minimal forbidden or contains a proper minimal

forbidden factor with the root of length less than Len + 1. Such a factor, if it exists, is a prefix of some suffix v of u.
Using the inductive assumption for F T , we see that F T will accept some prefix of the word Lexmin(v) giving then
Forbidden(Lexmin(v)) = 1. Hence, u is added to F T if and only if it is a minimal forbidden lexmin word with the root
w of length Len+ 1. Since all potential roots of this length are contained in the queue, we get the inductive step for the trie.
Let c be a letter. Note that the word wc is lexmin if and only if w is lexmin and either w contains c , or w consists of the

letters 0, . . . , c − 1, but not c . Now an easy check of the lines 11–14 finishes the inductive step for the queue. �

Remark 4.5. Processing a word u, Algorithm 3 performs O(|u|2) operations (this is the complexity of checking the condition
in line 8). The total number of processed words depends on k exponentially at the base approximately α1/β , where α is the
growth rate of the given k-approximation.

Finally we present Algorithm 4 which builds the automaton A/π from the trie F T . We adopt the linear-time
implementation of Algorithm 2 discussed in Section 4.1. To do this, we define the lexmin failure function on the vertices
of A/π by the rule lf (u) = Lexmin(f (u)). Further, let σu denote the partial permutation of the alphabet such that
σu(f (u)) = lf (u) and thedomain ofσu consists of the letters of f (u)only. This permutation allowsus to encode the transitions
from f (u)with the ones from lf (u). In this way, the transitions from lf (u) can be used to calculate the transitions from u. The
value σu[c] = 0 indicates that the letter c is not in the domain of σu. The array of flags Backu serves to distinguish forward
and backward edges from u (as we shall see later, our algorithm adds edges of both types toF T). For a vertex u, the function
Last(u) returns the maximal letter occurring in u. Since u is a lexmin word, Last(u) equals the number of different letters
in u.

Algorithm 4.
Input: trie F T recognizing the factorAD FMk.
Output: the factor-automatonA/π of the FAD-automatonA.
Initialization: A/π is initialized by F T ; for any nonterminal vertex u of A/π , lf (u) is undefined, Backu = (0, . . . , 0),
σu = (0, . . . , 0).

01. add the edges (λ, 2, ′1′), . . . , (λ,m, ′1′)
02. for each nonempty nonterminal vertex u of A/π

in width-first order starting with u = ′1′
03. for t = 1, . . . ,Min{m, Last(u)+ 1}
04. if no edge of the form (u, t, v) exists
05. d← σu[t]
06. if d = 0
07. d← Last(lf (u))+ 1
08. add the edge (u, t, w) such that (lf (u), d, w) is an edge
09. Backu[t] ← 1
10. else % (u, t, v) is a forward edge
11. if v is nonterminal
12. σut ← σu
13. d← σu[t]
14. if d = 0
15. d← Last(lf (u))+ 1
16. σut [t] ← d
17. lf (ut)← w for w such that (lf (u), d, w) is an edge

A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223 3219

18. û← f (u)
19. while Backû[σut [t]] = 1
20. σ̂ ← σû
21. if σ̂ [σut [t]] = 0
22. σ̂ [σut [t]] ← Last(lf (û))+ 1
23. σut ← σut ◦ σ̂
24. û← lf (û)
25. for t = Last(u)+ 2, . . . ,m
26. add the edge (u, t, w) such that (u, Last(u)+ 1, w) is an edge
27. Backu[t] ← Backu[Last(u)+ 1]
28. delete the terminal vertex
29. return A/π

Lemma 4.6. Given the trie F T recognizing the factorAD to a k-approximation for a power-free language, Algorithm 4 outputs
the factor-automatonA/π of the FAD-automatonA recognizing the given k-approximation.

Proof. It is easy to see that at the moment when we start the iteration of the outer cycle for the vertex u, we already know
lf (u) and σu, as well as Backv and all transitions from v for any vertex v with |v| < |u|. So, let us consider this particular
iteration and prove that all transitions from u are calculated correctly.
First consider the ‘‘additional’’ cycle in lines 25–27. For any value of t in the given range the word ut is not lexmin and is

π-equivalent to the lexmin word uc , where c = Last(u)+ 1. Hence, any suffix of ut is π-equivalent to the suffix of uc of the
same length. Note that the words uc and ut are not forbidden. Indeed, u is not forbidden, and the letter c (respectively, t)
occurs in uc (respectively, ut) only once and then it cannot be the last letter of a fractional power. Hence, there are transitions
(u, c, v1) and (u, t, v2) inA. By Remark 4.1 and thedefinition ofπ , thewords v1 and v2 areπ-equivalent. By (*),A/π contains
the transitions (u, c, w) and (u, t, w), where w = Lexmin(v1) = Lexmin(v2). So, the edge in line 26 is added correctly. It
remains to note that the edges (u, c, w) and (u, t, w) are either both forward, or both backward, depending on the length
ofw.
The above argument also shows the correctness of line 1. Here all added edges are obviously forward, sowe do not change

the array Backλ.
The main cycle for u (lines 3–24) contains two nontrivial parts: the calculation of backward edges from u (lines 5–9) and

the calculation of auxiliary functions for the descendants of u in the trie (lines 12–24). Consider the calculation of edges. If
no edge from uwith the label t is in the trie, then the automatonA contains a backward edge (u, t, v1) such that (f (u), t, v1)
is an edge also. Since the words f (u) and lf (u) are π-equivalent, there exist a letter d and a word v2 in the π-class of v1 such
that (lf (u), d, v2) is an edge inA. Letw = Lexmin(v1) = Lexmin(v2). By (*), (u, t, w) and (lf (u), d, w) are the edges inA/π .
How to determine the letter d? The words f (u)t and lf (u)d are π-equivalent. Since σu(f (u)) = lf (u), either we have

d = σu[t], or t does not occur in f (u), implying that d does not occur in lf (u). In the latter case, d > Last(lf (u)), because
lf (u) is a lexmin word. But all edges from lf (u)with the labels Last(lf (u))+ 1, . . . ,m have the same destination (the cycle
in lines 25–27 was discussed above). So, if t does not occur in f (u), we can choose d = Last(lf (u))+ 1. Hence, the backward
edges are added correctly.
Now let (u, t, ut) be an edge of the trie F T . We should calculate the vertex lf (ut) and the permutation σut . Recall that

f (ut) = v, where (f (u), t, v) is an edge inA. As in the argument above, we choose the letter d such that (lf (u), d, w) is an
edge inA/π , wherew = Lexmin(v). Then, lf (ut) = w by definition. So, the calculation of lf (ut)works correctly.
The calculation of σut is more tricky. No problem arises if the edge (lf (u), d, w) ofA/π is forward. Since the word lf (u)

is lexmin, the word lf (ut) = w = lf (u)d is lexmin also (the letter d was chosen such that d ≤ Last(lf (u)) + 1). Then
(lf (u), d, w) is a forward edge inA. Hence, the edge (f (u), t, v) inA is forward as well, that is, f (ut) = v = f (u)t . We know
thatσu(f (u)) = lf (u) and thewords f (ut) and lf (ut) areπ-equivalent. So, to obtain the required equalityσut(f (ut)) = lf (ut)
it suffices to let σut = σu and additionally set σut [t] = Last(lf (u)+ 1) if σu[t] is undefined. This is exactly what we get if the
while cycle in lines 19–24 is skipped.
Now let the edge (lf (u), d, w) of A/π be backward. It is not easy to reconstruct such a situation; for instance, in

the ternary (7/4)+-free language those backward edges first appear in the factor-automaton for the 41-approximation
(see Example 4.9 below). If (lf (u), d, w) is backward, then A contains the backward edges (lf (u), d, w1) and (f (u), t, v1)
for some π-equivalent words w1 and v1. Choose a positive integer i such that A contains the backward edges
(f (u), t, v1), . . . , (f i(u), t, vi) and the forward edge (f i+1(u), t, vi+1). Thenwe obtain f (ut) = vi+1 = f i+1(u)t . By induction,
we immediately get lf j(u) = Lexmin(f j(u)) for any j = 1, . . . , i + 1. Hence, the automaton A/π contains the backward
edges (lf (u), d1 = d, w1), . . . , (lf i(u), di, wi) and the forward edge (lf i+1(u), di+1, wi+1) such thatwj = Lexmin(vj) for any
j = 1, . . . , i+ 1. So we have lf (ut) = wi+1 = lf i+1(u)di+1 by definition.
We are ready to calculate the permutation σut . It will be equal to the superposition of the ‘‘extended’’ versions of the

permutations σu, σlf (u), . . . , σlf i(u). Since the function f preserves π-equivalence, the equality σu(f (u)) = lf (u) implies
σu(f 2(u)) = f (lf (u)), . . . , σu(f i+1(u)) = f i(lf (u)). So if we extend σu to the new permutation σu,t by setting σu,t [t] =
Last(lf (u) + 1) if σu[t] is undefined, we get σu,t(f i+1(u)t) = f i(lf (u)d1). Then we continue to extend other permutations

3220 A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223

from the list above and apply them consecutively to turn f ’s to lf ’s:

σlf (u),d1(σu,t(f
i+1(u)t)) = σlf (u),d1(f

i(lf (u)d1)) = f i−1(lf 2(u)d2),
· · ·

σlf i(u),di(· · · (σlf (u),d1(σu,t(f
i+1(u)t)))) = lf i+1(u)di+1.

Therefore, the permutation (σu,t ◦ σlf (u),d1 ◦ · · · ◦ σlf i(u),di) transforms f (ut) to lf (ut), whence it is equal to σut . It remains to
note that exactly this permutation is calculated in the while cycle of the algorithm. �

Remark 4.7. Processing a vertex, Algorithm4performsO(1) operations except for the casewhen thewhile cycle is entered.
In this special case the number of operations is bounded by the depth of the trie F T which is logarithmic to the size of the
factor-automatonA/π .
Summarizing the results of this section, we can formulate the enhanced method to get an upper bound of the growth

rate of a power-free language: choose the number k, calculate the trie recognizing the factorAD of the k-antidictionary of the
target language (Algorithm 3), build the factor-automatonA/π from this trie (Algorithm 4), and apply Algorithm 1 (or 1Q)
to this factor-automaton. The time and space spent on each step of the enhanced method (building the trie, building the
automaton, calculating the growth rate) are reduced by the factor of approximately |6|!with respect to the corresponding
steps of the simple method.

4.4. Two examples and a property of conjugates

Here we provide an example of the work of Algorithms 3 and 4, an example for the special case of Algorithm 4, and a
statement concerning this special case.
Example 4.8. We illustrate the work of Algorithms 3 and 4 with a simple example. Let us take the 4-approximation of the
ternary square-free language. The Algorithm 3 works as follows:

Queue Operations

�; (′1′, 1) Len← 1
(′1′, 1);� u = ′11′ is added to F T ; the condition Len < bk/βc = 2 passed

(′11′, 1) is not added toQ since Forbidden(′11′) = 1
(′12′, 2) is added toQ

�; (′12′, 2) Len← 2
(′12′, 2);� u = ′1212′ is added to F T ; the condition Len < bk/βc failed
� Finished

As a result, we get the trie shown in Fig. 1(left). Now consider the work of Algorithm 4 (the resulting automaton is given in
Fig. 1, right):

Vertex u t Operations

λ (line 1) The edges (λ, 2, ′1′) and (λ, 3, ′1′) are added
′1′ 1 No (an existing edge to the terminal vertex)

2 σ12 ← (0, 0, 0), d← Last(λ)+ 1 = 1, then σ12 ← (0, 1, 0)
lf (12)← ′1′ from the edge (λ = lf (1), 1, ′1′)
while cycle is skipped

3 The edge (′1′, 3, ′12′) is added (line 26)
′12′ 1 σ121 ← (0, 1, 0), d← Last(′1′)+ 1 = 2, then σ121 ← (2, 1, 0)

lf (121)← ′12′ from the edge (′1′ = lf (2), 2, ′12′)
while cycle is skipped

2 d← 1
the edge (′12′, 2, ′0′) is added from (′1′ = lf (2), 1, ′0′)
Back12[2] ← 1

3 d← 2
the edge (′12′, 3, ′12′) is added from (′1′ = lf (2), 2, ′12′)
Back12[3] ← 1

′121′ The edges (′121′, 1, ′0′) and (′121′, 3, ′12′) are added
by the same rules as above

A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223 3221

Fig. 1. The trie F T (left) and the automatonA/π (right) for the 4-approximation of the ternary 2-free language.

Example 4.9. Here is the situation in which the while cycle of Algorithm 4 is used. The 41-antidictionary of the ternary
(7/4)+-free language contains the word

u = xyx = 121321232131213212 31323 121321232131213212.

Consider the root xy of u. An interesting detail can be observed: the right cyclic shift of xy (that is, the word obtained from
xy by moving its first letter to the end) is not a root of a minimal forbidden word. Indeed, the word

v = 213212321312132123 13231 213212321312132123
has a forbidden suffix of length 20 with the period 11, written in boldface. Note that the longest proper prefix of v is the
longest proper suffix of u, that is, the first candidate for f (u). But in fact, the longest prefix of v, which is a prefix of a word
from the 41-antidictionary considered, is of length 18. If we take the 19-letter prefix of u as u′ and the 18-letter prefix of v
as v′, we obtain f (u′) = v′. At the same time, the edge from u′ with the label 1 is forward, while the edge from v′ with the
same label is backward. So, the edge from lf (u′) = Lexmin(v′)with the label 2 = σu′ [1] is also backward, and the condition
of the while cycle for u′ is satisfied.

The effect considered in Example 4.9 can take place only if β < 2. To show this, we prove the following property of
conjugate words.

Proposition 4.10. Suppose that β ≥ 2, L is the β-free language over the alphabet 6, and w is the root of a minimal forbidden
word for L. Then any conjugate ofw is also the root of a minimal forbidden word for L.

Proof. Let w = x1 and v = 1x. It is enough to prove that v is the root of a minimal forbidden word u = vvv′. (Recall
that u has the period |v| and the exponent greater than or equal to 2. It does not matter if the word v′ is longer or shorter
than v, or even empty.) The longest proper suffix of u is a permitted word, because it is a longest proper prefix of the
minimal forbidden word www′. So, all forbidden factors of u are prefixes of u. Then u is either a minimal forbidden word,
or contains some proper prefix xxx′, which is a minimal forbidden word. Below we assume that u has such prefix xxx′ and
obtain contradictions in all possible cases.
Let β = 2+ ε, ε ≥ 0. If |xxx′| ≤ (1+ ε)|w|, then the suffix vv′ of u contains a forbidden factor xxx′, a contradiction. So,

|xxx′| > (1 + ε)|w|. On the other hand, |x′| < |w′|, because all proper suffixes of xxx′ are permitted words and |x| < |w|.
Thus, |xx| > |w|, and the mutual location of the parts of u can be represented as follows (it does not matter whether x′ and
w′ intersect or not):

w w w′

x x x′

z2 z3 z1 z2

Let w = xz1 and x = z1z2. Since w begins with z2 and |x| > |z2|, we can write x = z2z3. By a well-known property of
words (see [15, Proposition 1.3.4]), the equalities x = z1z2 and x = z2z3 imply z1 = pq, z2 = (pq)np, z3 = qp for some words
p 6= λ and q, and some n ≥ 0. Hence, x = (pq)n+1p, w = (pq)n+1ppq. The second w begins with z2x′ = (pq)npx′, yielding
that one of the words qp, x′ is a prefix of the other one. On the other hand, x′ is a prefix of x, and then one of the words pq, x′
is a prefix of the other one.
If |pq| ≤ |x′| then the words pq and qp are both prefixes of x′. Hence, pq = qp, yielding that p and q are powers of some

word r . Then w is also a power of r , and u has the exponent much bigger, than β , a contradiction. Now let |x′| < |pq|. Then
|x′| < |x| and ε < 1. Note thatww contains the factor ppqp. Since x′ is a prefix of qp, this factor begins with ppx′. But x′ is also
a prefix of pq. If p is a prefix of x′, then u contains p3, which is impossible since ε < 1. Otherwise, x′ is a prefix of p, and ppx′
is a fractional power, the exponent of which is greater than the exponent of xxx′. This contradiction finishes the proof. �

Corollary 4.11. Suppose that β ≥ 2 and A is the FAD-automaton for the k-approximation of the β-free language over some
alphabet. Then for any nonempty vertex u ofA the failure function f returns the longest proper suffix of u. In particular, if u has
a forward outgoing edge, labeled by c, then f (u) also has a forward outgoing edge with this label. Hence, the while cycle of
Algorithm 4 is never entered.

Proof. Let c be the first letter of u. Since u is a vertex, it is a prefix of some minimal forbidden word with the root cw. Then
by Proposition 4.10 the k-antidictionary contains a minimal forbidden word with the root wc . The longest proper suffix of
u is a prefix of this forbidden word, and hence, a vertex ofA. So, this suffix equals f (u) by definition. �

Hence, for exponents β ≥ 2 one can simplify Algorithm 4, discarding the while cycle, which is never used.

3222 A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223

5. Computer-assisted results

In this section we present the results of extensive computer assisted studies of growth rates of power-free languages
over alphabets having from 2 to 10 letters. These studies allowed us to significantly improve all previously known upper
bounds of growth rates, obtain a number of new bounds and discover some interesting facts and patterns.
During the studies, more than a thousand factor-automata were constructed for different values of m, β , and k, so that

the structural properties of these automata should be quite common among all automata of this type. We start with two
such properties.

Fact 5.1. All automata we have obtained contain only one non-singleton scc.

Thus, the condition of Theorem 3.7(2) is always satisfied, yielding fast convergence for Algorithm 1Q. The next property
shows that the procedure of adding loops can be skipped for both Algorithms 1 and 1Q in order to increase the rate of
convergence (this rate depends on the ratio α/γ for the adjacency matrix, see Remark 3.3).

Fact 5.2. In almost all cases the non-singleton scc of recognizing automata has the imprimitivity number 1. The binary β-free
languages with 2+ ≤ β ≤ 7/3 provide the only exceptions.

Those ‘‘exceptional’’ languages are quite specific. The study of them by Algorithms 1 and 1Q is interesting only as a test
for these algorithms, because the growth rates of all exceptional languages are equal to 1 (moreover, they have polynomial
complexity, see [11]). We also point out that probably no other power-free languages of any subexponential complexity
exist.
We note that the discovered exceptions were predictable. In [20], the author gave a description of all k-approximations

of the famous Thue–Morse language, which forms a proper subset of the 2+-free binary language. A precise form of the
non-singleton scc in the automaton for any such k-approximation was found. This scc has the imprimitivity number of the
order2(k). On the other hand, if a (7/3)-free binary wordw can be extended to both sides to an arbitrarily long (7/3)-free
binary word, then w must belong to the Thue–Morse language [19]. Hence, the k-approximations of the binary languages
from2+-free to (7/3)-free are expected to behave in a similarway as the k-approximations of the Thue–Morse language.We
checked the first few approximations to discover that the non-singleton scc’s are the same for the Thue–Morse, 2+-free, and
(7/3)-free languages. By a careful analysis, this result probably can be extended to all k-approximations of those languages.
Finally we present Table 1 with a representative selection of our numerical results on upper bounds for growth rates of

power-free languages. Up to now, only some partial cases were intensively studied. Thus, the bound 1.4576 for the binary
3-free language was obtained by Edlin [7], and the bound 1.3017886 for the ternary 2-free language belongs to Ochem and
Reix [16]. In [11] the bound 1.2299 is given for the binary (7/3)+-language. Most of our bounds are quite close to the growth
rates of target languages. This conclusion is justified by the fast convergence of growth rates of approximating languages
(the measure of convergence rate is described below) and is confirmed by some independent studies. For example, Richard
and Grimm [18] used the method of differential approximants to suggest 1.301762 as the growth rate for ternary 2-free
language with the admissible error± 2 · 10−6, and our last approximation is 1.30176188.
To estimate the rate of convergence we compare the growth rates obtained for different k-approximations of the same

power-free language. We assume that the approximation error |α(Lk) − α(L)| is multiplicatively dependent on the size of
the factor-automaton Ak, that is, when this size increases by some factor, this error decreases by some (other) factor. This
assumption agrees with the obtained experimental results. For each k-approximation of a given language we calculate the
value ∆(k) = α(Lk′) − α(Lk), where the factor-automaton Ak′ is approximately half as large as Ak. The absolute values
and the behaviour of the function ∆(k) give a good idea about the tightness of the obtained upper bounds. Those absolute
values for the best obtained approximation are given in the penultimate column of Table 1. The slowest convergence was
observed for the (7/5)+-free language over the 4-letter alphabet and the (5/4)+-free language over the 5-letter alphabet.
Extrapolating the behaviour of ∆(k) we conjecture the growth rate of the target power-free languages. These estimated
growth rates are given in the last column of Table 1 (the digits given in parenthesis are not certain).
All computationsweremade using a PCwith a 3,0 GHz CPU and 2 Gb ofmemory. For all studied power-free languages the

timewas not a critical resource: the only language the bound forwhich needed a fewhours of calculation,was the quaternary
(7/5)+-free language. The space complexity in most cases was dominated by the allocation of the factor-automaton A/π
with counters. Only for theminimal power-free languages over 8 ormore letters the allocation of the queueQ in Algorithm3
was space-critical.
From Table 1, it is easy to see that the growth rate of power-free languages, considered as a function of β over a fixed

alphabet, has big jumps when β changes from r/s to (r/s)+ for small s. These jumps are due to the ‘‘allowance’’ of short
factors with the exponent r/s (like the factor a3 when we move from 3-free to 3+-free binary language). The obtained
results allow us to formulate the following nice conjecture:

Conjecture 5.3. The growth rate of power-free languages over a t-letter alphabet, t ≥ 3, jumps by more than a unit at the points
(t − 1)/(t − 2), . . . , 3/2, 2.

This conjecture is justified by our results for t = 3, . . . , 10 (due to space constraints, only the results for 3, 4, and 5 letters
are presented in Table 1).

A.M. Shur / Theoretical Computer Science 411 (2010) 3209–3223 3223

Table 1
Upper bounds for the growth rates of power-free languages. The number n̄ of iterations is counted for δ = 10−10 .

|6| Exp k |FMk| |Ak/π | n̄ α(Lk) ∆(k) α(L) estim.

2 (7/3)+ 152 1185427 98132776 387 1.2206448166 2·10−9 1.220644814
2 5/2 155 977954 85891045 339 1.2295017090 7·10−10 1.229501708
2 (5/2)+ 111 1718620 107645199 232 1.3663011099 2·10−10 1.366301109(7)
2 8/3 112 1223996 80356405 238 1.3762703910 1·10−10 1.376270391
2 (8/3)+ 99 1538273 89115544 189 1.4508611195 3·10−11 1.4508611195
2 3 108 1241239 83006914 190 1.457577286924 1·10−12 1.457577286923
2 3+ 73 1414760 64323422 133 1.795126408668 2·10−13 1.795126408668
3 (7/4)+ 116 1646916 85722260 310 1.24560931 8·10−7 1.245608
3 2 110 1463287 80248827 252 1.301761876 4·10−8 1.30176183
3 2+ 35 3189542 54730037 81 2.605879081 3·10−8 2.60587906
4 (7/5)+ 288 639774 71754449 3106 1.0695085 1·10−5 1.0694
4 (3/2) 231 767047 73577456 1132 1.0968025 4·10−6 1.06979
4 (3/2)+ 32 2685393 30253554 86 2.280572 3·10−5 2.28052
4 2 36 2306512 40581402 70 2.62150802 2·10−8 2.6215080
4 2+ 27 1532902 20583499 56 3.72849442 1·10−8 3.72849442
5 (5/4)+ 141 1200217 58923876 440 1.158004 5·10−5 1.1577
5 (4/3) 146 1056309 58902152 423 1.164605 1·10−5 1.1645(6)
5 (4/3)+ 33 5550581 54951854 90 2.248963 8·10−5 2.2485
5 (3/2) 33 3588828 42681448 79 2.402445 1·10−5 2.40242
5 (3/2)+ 25 5903234 52408053 59 3.492828 8·10−6 3.49280
5 2 28 1160529 15889694 52 3.73253857 1·10−8 3.73253857
5 2+ 25 1549785 19465201 49 4.789850738 2·10−9 4.789850738
6 (6/5)+ 112 1343898 53566562 353 1.224727 2·10−5 1.2246
7 (7/6)+ 114 1008479 44765842 292 1.236909 7·10−6 1.2368(7)
8 (8/7)+ 119 537208 27405270 275 1.234845 2·10−6 1.23483
9 (9/8)+ 116 163583 8880112 347 1.246678 5·10−7 1.24666
10 (10/9)+ 116 22835 1385715 344 1.2393076 2·10−7 1.239307

Acknowledgements

The author is grateful to A. Bulatov for a number of useful remarks. Our special thanks to I. Gorbunova and A. Samsonov
for the assistance in computational studies.

References

[1] J. Berstel, J. Karhumäki, Combinatorics on words: a tutorial, Bull. Eur. Assoc. Theoret. Comput. Sci. 79 (2003) 178–228.
[2] F.-J. Brandenburg, Uniformly growing k-th power free homomorphisms, Theoret. Comput. Sci. 23 (1983) 69–82.
[3] A. Carpi, On Dejean’s conjecture over large alphabets, Theoret. Comput. Sci. 385 (2007) 137–151.
[4] M. Crochemore, F. Mignosi, A. Restivo, Automata and forbidden words, Inform. Process. Lett. 67 (3) (1998) 111–117.
[5] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs. Theory and Applications, 3rd ed., Johann Ambrosius Barth, Heidelberg, 1995.
[6] F. Dejean, Sur un Theoreme de Thue, J. Combin. Theory Ser. A 13 (1) (1972) 90–99.
[7] A. Edlin, The number of binary cube-free words of length up to 47 and their numerical analysis, J. Difference Equ. Appl. 5 (1999) 153–154.
[8] J.N. Franklin, Matrix Theory, Prentice-Hall Inc., Englewood Cliffs, NJ, 1968.
[9] F.R. Gantmacher, Application of the Theory of Matrices, Interscience, New York, 1959.
[10] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
[11] J. Karhumäki, J. Shallit, Polynomial versus exponential growth in repetition-free binary words, J. Combin. Theory. Ser. A 105 (2004) 335–347.
[12] Y. Kobayashi, Repetition-free words, Theoret. Comput. Sci. 44 (1986) 175–197.
[13] Y. Kobayashi, Enumeration of irreducible binary words, Discrete. Appl. Math. 20 (1988) 221–232.
[14] R. Kolpakov, On the number of repetition-free words, in: Electronic Proceedings of Workshop on Words and Automata, WOWA’06, S.-Petersburg,

2006, #6.
[15] M. Lothaire, Combinatorics on Words, Addison-Wesley, 1983.
[16] P. Ochem, T. Reix, Upper bound on the number of ternary square-free words, in: Electronic Proceedings of Workshop on Words and Automata,

WOWA’06, S.-Petersburg, 2006, #8.
[17] A. Restivo, S. Salemi, Overlap-free Words on Two Symbols, in: Lect. Notes Comp. Sci., vol. 192, 1984, pp. 196–206.
[18] C. Richard, U. Grimm, On the entropy and letter frequencies of ternary square-free words, Electron. J. Combin. 11 (1) (2004) # R14.
[19] A.M. Shur, The structure of the set of cube-free Z-words in a two-letter alphabet, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000) 201–224 (Russian); English

translation in Izv. Math. 64 (2000), 847–871.
[20] A.M. Shur, Combinatorial complexity of rational languages, Discr. Anal. Oper. Research, Ser. 1 12 (2) (2005) 78–99 (Russian).
[21] A.M. Shur, Comparing complexity functions of a language and its extendable part, RAIRO Theor. Inf. Appl. 42 (2008) 647–655.
[22] A.M. Shur, Calculating parameters and behavior types of combinatorial complexity for regular languages, Proc. Inst. Math. Mech. UB RAS 16 (2) (2010)

270–287.
[23] A.M. Shur, Combinatorial Complexity of Regular Languages, in: Lect. Notes Comp. Sci., vol. 5010, 2008, pp. 289–301.
[24] A. Thue, Über unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 7 (1906) 1–22.
[25] J.D. Currie, N. Rampersad, A proof of Dejean’s conjecture, http://arxiv.org/PScache/arxiv/pdf/0905/0905.1129v3.pdf.
[26] M. Rao, Last Cases of Dejean’s conjecture, in: Proceedings of the 7th International Conference on Words, Salerno, Italy, –2009. #115.

http://arxiv.org/pdf/0901.3188

	Growth rates of complexity of power-free languages
	Introduction
	Preliminaries
	Words, languages, and automata
	Growth rates
	Digraphs and linear algebra

	An algorithm for growth rates of regular languages
	Algorithm
	Two straightforward generalizations
	A faster ``quasialgorithm''

	Approximation of power-free languages
	Simple method
	Using symmetry: equitable partitions and factorgraphs
	Enhanced method: building factorAD and factorgraph
	Two examples and a property of conjugates

	Computer-assisted results
	Acknowledgements
	References

