ON THE EMBEDDING OF A VECTOR LATTICE IN
A VECTOR LATTICE WITH WEAK UNIT 1)

BY

BARRON BRAINERD

(Communicated by Prof. H. Freudenthal at the meeting of October 31, 1959)

1. Introduction

A classical problem in the theory of rings is to embed a ring R in a ring \bar{R} with identity so that R has certain properties relative to \bar{R}, for example so that R is an ideal of \bar{R}. An analogous problem exists in the theory of vector lattices, that is: Can a vector lattice be embedded in a vector lattice with weak unit? The terms vector lattice and weak unit are defined for example in [2]. Just as in the case of rings this problem may be solved by "adjoining" a (weak) unit 2): If V is a vector lattice and R is the vector lattice of real numbers, then let $L = V \oplus R$, the vector space direct sum of V and R, where $(v, r) < (v^1, r^1)$ if either $v < v^1$ or $v = v^1$ and $r < r^1$. With respect to this order L is a vector lattice and $i(v) = (v, 0)$ is an injection of V into L which preserves the vector lattice structure of V. The reader can verify that $(0, 1)$ is a weak unit for L. This embedding is crude in the sense that certain interesting properties which V might have need not be shared by L. For example, L is not archimedean and hence not conditionally σ-complete although V may be. In addition iV is not order-dense in L. A vector sublattice S of a vector lattice Q is order-dense in Q if for every non-zero $f \in Q$ there is a non-zero $s \in S$ such that $|s| < |f|$. The purpose of this note is to show that every vector lattice V can be embedded in a vector lattice L with weak unit such that V is order-dense in L. The proof of this result depends on a certain extension theorem of AMEMIYA [1] as well as an inverse limit construction. For definitions pertaining to the concept of inverse limit see [4]. As a corollary it is shown that every archimedean vector lattice can be embedded in an order-dense fashion in a conditionally complete F-ring.

2. Projectable vector lattices

Let V be a vector lattice. If for a given x in V the supremum $\bigvee_{n=1}^{\infty} n|x|^\wedge y$ exists for every $y \geq 0$ in V, then the operator $[x]$ where $[x]y = \bigvee_{n=1}^{\infty} n|x|^\wedge y$ is called the projector of x. For arbitrary $y \in V$ the operator $[x]$ is defined as follows: $[x]y = [x]y^+ - [x]y^-$. Projectors on σ-complete vector lattices

1) This paper was prepared while the author was a Fellow of the Summer Research Institute of the Canadian Mathematical Congress, 1959.

2) This construction is due to I. AMEMIYA.
(continuous semi-ordered linear spaces) are discussed extensively by Nakano [5]. With Amemiya [1] we say a vector lattice \(V \) is \textit{projectable} if every \(x \in V \) possesses a projector. It can be shown that Nakano's Theorems 7.1 through 7.6 in [5] are valid for projectors in a projectable vector lattice. The main result of this section is that every projectable vector lattice can be embedded (as an order-dense vector sublattice) in a projectable vector lattice with weak unit.

Let \(\mathcal{M} = \{ x_\alpha \in V | \alpha \in \mathfrak{A} \} \) be a set of positive elements of \(V \) with the following properties:

(i) \(x_\alpha \neq x_\beta \Rightarrow x_\alpha \wedge x_\beta = 0 \).

(ii) \(x \in V \) and \(x \neq 0 \Rightarrow |x| \wedge x_\alpha \neq 0 \) for some \(\alpha \in \mathfrak{A} \).

Such a set \(\mathcal{M} \) can always be extracted from \(V \) by Zorn's Lemma. Let \(D = D(\mathcal{M}) \) stand for the set \(\{ z \in V | z \text{ is the supremum (sum) of a finite set of elements of } \mathcal{M} \} \). The set \(D \) is directed by the order relation of \(V \). For each \(z \in D \) let \(P_z \) be the set of all \(x \in V \) such that \(|x| \wedge y = 0 \) if \(z \wedge y = 0 \).

Lemma 2.1. The set \(P_z \) is an \(l \)-ideal of \(V \) and the element \(z \) is a weak unit of \(P_z \).

Proof. If \(x, y \in P_z \), then \(|x| \wedge w = 0 \) and \(|y| \wedge w = 0 \) for every \(w \in V \) with the property \(z \wedge w = 0 \). Therefore \((|x| + |y|) \wedge w = 0 \) whenever \(z \wedge w = 0 \) and since \(|x - y| \leq |x| + |y| \), it follows that \(|x - y| \wedge w = 0 \) whenever \(z \wedge w = 0 \). Thus \(P_z \) is a subgroup of \(V \). In addition \(P_z \) is a linear manifold of \(V \) because \(|x| \wedge w = 0 \) if and only if \(|x| \wedge w = 0 \). It is now easy to show \(P_z \) is an \(l \)-ideal. If \(x \in P_z \) and \(x \wedge z = 0 \), then \(x = x \wedge x = 0 \) and hence \(z \) is a weak unit of \(P_z \).

An \(l \)-ideal \(I \) of a vector lattice \(V \) is said to be closed if from

\[\{ x_\beta \in V | x_\beta > 0, \beta \in \mathfrak{B} \} \subseteq I \text{ and } x = \vee_{\beta \in \mathfrak{B}} x_\beta \]

belongs to \(V \) it follows that \(x \in I \).

Corollary 2.1. For each \(z \in D \), \(P_z \) is closed.

Proof. Suppose \(\{ x_\beta \in V | x_\beta > 0, \beta \in \mathfrak{B} \} \subseteq P_z \) and \(x = \vee_{\beta \in \mathfrak{B}} x_\beta \) belongs to \(V \). Then for each \(\beta \in \mathfrak{B} \), \(x_\beta \wedge w = 0 \) whenever \(z \wedge w = 0 \). However,

\[(\vee_{\beta \in \mathfrak{B}} x_\beta) \wedge w = \vee_{\beta \in \mathfrak{B}} (x_\beta \wedge w) = 0, \]

and therefore \(x \wedge w = 0 \) whenever \(z \wedge w = 0 \).

If \(u < v \) for \(u, v \in D \), then define the mapping \(\Pi_{uv}x = [u]x \) for \(x \in P_u \).

Lemma 2.2. The mapping \(\Pi_{uv} \) is a homomorphism of the vector lattice \(P_u \) onto \(P_u \).

Proof. From [5, Theorem 3.2] it follows that \([u]x \in P_u \) for each \(x \in V \) and \(u \in D \). Since Nakano's proof [5, Theorem 7.1] of the linearity of \([u]\) does not depend on \(\sigma \)-completeness, \([u]\) is linear, and since \(u \geq 0 \), \([u]\) is order preserving. From [5, Theorem 7.6] it follows that \(\Pi_{uv} = [u] \) is a lattice homomorphism.
Lemma 2.3. If $w<u<v$, then $\Pi_{uw}\Pi_{vq}=\Pi_{wq}$ for $w, v, q \in D$.

Proof. This lemma is valid if it can be shown that $[w][v]x=[w]x$ for each $x>0$ in P_q. By [5, Theorem 7.2] $[w][v]=|[w]|$; hence $[w][v]<[w]x$. Therefore the lemma is valid.

Corollary 2.2. For $v \in D$, $\Pi_{vu}x=x$.

From the preceding lemmas and corollaries it follows that $\mathcal{B} = \{(P_z, \Pi_{zw}) | z, w \in D\}$ is an inverse system. Let $L=L(\mathcal{R})$ stand for the inverse limit of \mathcal{B}. L is a partially ordered vector space with respect to the relation: $f<g$ if and only if $f(u)<g(u)$ for all $u \in D$. Here $f(u)$ and $g(u)$ stand respectively for the components of f and g corresponding to $u \in D$.

Proposition 2.1. The partially ordered vector space L is a vector lattice which possesses a weak unit.

Proof. Let f^+ be the function on D to V for which $f^+(u) = (f(u))^+$. From [5, Theorem 7.6] it follows that for $u < v$,

$$\Pi_{uv}f^+(v) = [u](f(v) \lor 0) = f(u) \lor 0 = f^+(u).$$

Therefore $f^+ \in L$. To show f^+ is indeed the supremum of f and 0 in L, suppose there is $h \in L$ such that $h > 0$ and $h > f$. Then $h(u) > f(u)$ and $h(u) > 0$ for each $u \in D$. Hence $h(u) > f^+(u)$ for each $u \in D$ and $h \geq f^+$. Therefore $f^+ = \sup \{f, 0\}$ in L and L is a vector lattice.

Consider the function q defined as follows: $q(u) = u$ for each $u \in D$. If $u < v$, then $\Pi_{uv}q(u) = [u]v$, but $v = u + w$ where $w \in D$ and $u \land w = 0$. Therefore $[u]v = [u]u + [u]w = u$. Thus $\Pi_{uv}q(v) = q(u)$ and $q \in L$. The element q is a weak unit of L. In fact if $q \land f = 0$, then $u \land f(u) = 0$ for all $u \in D$, and by Lemma 2.1, $f(u) = 0$ for all $u \in D$.

Proposition 2.2. The mapping $x \rightarrow f_x$ where $f_x(u) = [u]x$ for each $u \in D$ is an injection of V into L.

Proof. The reader can verify that f_x belongs to L and $x \rightarrow f_x$ is linear and preserves lattice operations.

To show $x \rightarrow f_x$ is biunique, suppose $f_x = 0$. Then $[u]x^+ = [u]x^- = 0$ for all $u \in D$. Hence $[x_a]x^+ = [x_a]x^- = 0$ for all $x_a \in \mathcal{R}$. Therefore $x_a \land |x| = 0$ for all $x_a \in \mathcal{R}$ and $|x| = x = 0$ by the definition of \mathcal{R}.

Proposition 2.3. The vector lattice L is projectable.

Proof. For $f, g \in L$ and $g \geq 0$ consider the function $h(u) = [f(u)]g(u)$. To show $h \in L$ suppose $u < v$. Then

$$\Pi_{uv}h(v) = [u][f(v)]g(v)$$

$$= \land_{n}[u]\land \{\land_{m}f(v) \land g(v)\}$$

$$= \land_{n}\land_{m}[u]f(v) \land g(v).$$
However, $\bigvee_m mf(u) \wedge g(u)$ exists in V; hence by [5, Theorem 2.5]

$$II_{uv}h(v) = \bigvee_m [u](mf(v) \wedge g(v))$$

$$= \bigvee_m mf(u) \wedge g(u)$$

$$= [f(u)]g(u)$$

$$= h(u).$$

Therefore $h \in L$.

To show that $h = \bigvee_m \nu f \wedge g$, that is to show $([\nu]g)(u) = [f(u)]g(u)$, suppose $k > m \nu f \wedge g$ for $m > 1$. Then $k(u) > [f(u)]g(u)$ for each $u \in D$ and hence $k > h$. Therefore since $h > m \nu f \wedge g$ for each m, $h = [f]g$. Thus every element of L possesses a projector and L is projectable.

Let i designate the mapping $x \to f_x$ described in Proposition 2.2. Then iV stands for the image of V in L under i.

Proposition 2.4. The vector lattice iV is order-dense in L.

Proof. If $0 < f \in L$, then $[\bar{w}]f \in L$ for $\bar{w} \in iD$ and $([\bar{w}]f)(u) = [\bar{w}(u)]f(u)$ by Proposition 2.3. Since $\bar{w}(u) = [u]w$ where $\bar{w} = i(w)$, we have

$$([\bar{w}]f)(u) = \bigvee_n n([u]w) \wedge f(u)$$

$$= \bigvee_n n(\bigvee_m nmu \wedge w) \wedge f(u)$$

$$= \bigvee_n \bigvee_m nmu \wedge nw \wedge f(u).$$

If $u \triangleright w$, then

$$([\bar{w}]f)(u) = \bigvee_n n w \wedge f(u)$$

$$= \bigvee_n f(u) = [w][u]f(u) = [u]f(w).$$

Otherwise $w \lor u \triangleright w$ and

$$([\bar{w}]f)(w \lor u) = [w \lor u]f(w);$$

hence

$$([\bar{w}]f)(u) = [u][w \lor u]f(w)$$

$$= [u]f(w).$$

Therefore $[\bar{w}]f \in iV$ and since $[\bar{w}]f \triangleleft f$, it follows that iV is order-dense in L.

Proposition 2.5. For every $f \triangleright 0$ in L,

$$f = \bigvee_{u \in ID}[\bar{u}]f,$$

that is, every $f \triangleright 0$ in L is the supremum of elements of iV.

Proof. From the proof of Proposition 2.4 we deduce that $[\bar{u}]f \triangleleft f$ for every $\bar{u} \in iD$. Suppose $h \in L$ and $[\bar{u}]f \triangleleft h$ for each $\bar{u} \in iD$. Then since $([\nu]g)(u) = [f(u)]g(u)$, it follows that

$$([\bar{u}]f)(v) = f(u) \triangleleft h(v)$$

for $u \lhd v$ in D where $\bar{u} = i(u)$. Hence $f \succeq h$ and equation (*) is valid.
Corollary 2.3. The weak unit \(q \in L \) where \(q(u) = u \) for all \(u \in D \) is the supremum of the elements of \(iD \).

The preceding results may be collected in the following theorem.

Theorem 2.1. Every projectable vector lattice \(V \) can be embedded as an order-dense vector sublattice of a projectable vector lattice \(L \) which possesses a weak unit. In addition every non-negative element of \(L \) is a supremum of elements of \(V \).

Proposition 2.6. If \(V \) is archimedean or \(\sigma \)-complete, then \(L \) is as well.

Proof. If \(0 < f \in L \), then \(0 < \frac{1}{n}f(u) \) for each \(n > 1 \) and each \(u \in D \). Suppose \(h \in L \) and

\[
0 < h(u) < \frac{1}{n}f(u)
\]

for each \(u \in D \) and each \(n > 1 \). Then \(h(u) = 0 \) for each \(u \in D \) because \(V \) is archimedean. Therefore \(h = 0 \) and \(L \) is archimedean.

A similar argument using [5, Theorem 7.6] proves that \(L \) is \(\sigma \)-complete if \(V \) is.

The following example shows that for a given projectable vector lattice \(V \) the extension \(L(\mathbb{R}) \) is dependent on the \(\mathbb{R} \) used in its construction:

Let \(V \) stand for the vector lattice of lebesgue measurable real functions on the line with compact support. Let \(\mathbb{R}_1 \) be the set of characteristic functions of points and \(\mathbb{R}_2 \) the set of characteristic functions of intervals \(\{ x \mid N < x < N + 1 \} \) where \(N \) is an integer. \(L(\mathbb{R}_1) \) is the vector lattice of all real functions on the line while \(L(\mathbb{R}_2) \) is the vector lattice of all real lebesgue measurable functions on the line.

3. Main result

With AMEMIYA [1] we call an extension \(\tilde{R} \) of a vector lattice \(R \) a \(p \)-extension if

1) \(\tilde{R} \) is projectable,
2) \(R \) is order-dense in \(\tilde{R} \),
3) the totality of projectors in \(\tilde{R} \) coincides with the least (Boolean) ring containing all projectors of elements of \(R \),
4) for every \(\tilde{a} \in \tilde{R} \), there exists \(a_1, ..., a_k \in R \) and \(\bar{a}_1, ..., \bar{a}_k \in \tilde{R} \) such that \(\tilde{a} = \sum_{n=1}^{k-1}[\bar{a}_n]a_n \).

Theorem 3.1. (Amemiya). Every vector lattice \(R \) has a \(p \)-extension \(\tilde{R} \) which is unique up to isomorphism.

AMEMIYA's method of proof [1] is first to define a spectral function \(\varphi \) of \(R \) as a lattice homomorphism of \(R \) into the three-point-lattice \(\{ -\infty, 0, +\infty \} \) such that \(\varphi(a) \neq 0 \) for some \(a \in R \) and \(\varphi(\alpha a) = \alpha \varphi(a) \) for all real \(\alpha \neq 0 \). These spectral functions are partially ordered by the relation: \(\psi < \varphi \) if \(|\psi(a)| < |\varphi(a)| \) for all \(a \in R \). The proper space \(\mathfrak{P} \) of \(R \) is defined to be the set of all maximal spectral functions and is given the topology
generated by the sets \(U_a = \{ \varphi \in \mathcal{R} | \varphi(a) \neq 0 \} \). The least algebra of subsets of \(\mathcal{R} \) containing the \(U_a \)'s is designated by \(\mathfrak{A} \), and \(\mathfrak{M} \) stands for the vector lattice of all functions from \(\mathcal{R} \) to \(R \) such that \(f(\mathcal{R}) \) is a finite subset of \(R \) and \(f^{-1}(a) \in \mathfrak{A} \) for \(a \in R \). If \(\mathfrak{R} = \{ f \in \mathfrak{M} | C_f = 0 \} \) where \(C_f = \{ \varphi | \varphi \in U_f, \mathfrak{A} \} \), then \(\mathfrak{M}/\mathfrak{R} \) is the unique \(p \)-extension of \(R \).

The main result of this note then follows from Amemiya’s theorem.

Theorem 3.2. Every vector lattice \(R \) can be embedded in a projectable vector lattice \(L \) with weak unit such that \(R \) is order-dense in \(L \).

Proof. From Theorem 3.1, it follows that \(R \) can be embedded in its \(p \)-extension \(\tilde{R} \) and by Theorem 2.1, \(\tilde{R} \) can be embedded in \(L \), a projectable vector lattice with weak unit. Therefore \(R \) can be embedded in \(L \). Since both the embedding of \(R \) in \(\tilde{R} \) and the embedding of \(\tilde{R} \) in \(L \) are order-dense, so is the composition of the two and the theorem follows.

Corollary 3.1. If \(R \) is archimedean, then so is \(L \).

Proof. This follows from a remark of Amemiya [1, p. 135].

If \(A \) is archimedean, then \(A \) has a cut extension \(\tilde{A} \) [5, Chapter V] which by definition is a complete vector lattice and hence is projectable. Theorem 2.1 can be applied to \(\tilde{A} \) to prove the following theorem.

Theorem 3.3. For each archimedean vector lattice \(R \) there exists a projectable vector lattice \(L \) with a weak unit which is complete and an injection \(i \) of \(R \) into \(L \) such that every element \(f > 0 \) of \(L \) is a supremum of elements of \(iR \).

Proof. Let \(\tilde{R} \) be the cut extension of \(R \) and let \(L \) be the extension of \(\tilde{R} \) with respect to some maximal orthogonal set \(\mathfrak{R} \) in \(\tilde{R} \) as described in Section 2. Let \(i \) be the composition of the injection \(i_1 \) of \(R \) in \(\tilde{R} \) and the injection \(i_2 \) of \(\tilde{R} \) in \(L \).

\(L \) is projectable and contains a weak unit by the results of Section 2. From Proposition 2.5 every element \(f > 0 \) in \(L \) is a supremum of elements in \(i_2 \tilde{R} \), and by [5, Chapter V] every \(f > 0 \) in \(\tilde{R} \) is the supremum of elements in \(i_1 \tilde{R} \). Thus if \(f \in L \),

\[
f= \bigvee_{u \in D} i_2(f(u)) = \bigvee_{u \in D} [\tilde{u}]
\]

where \(D = D(\mathfrak{R}) \) and

\[
f(u) = \bigvee_{\beta} i_1(f_\beta)
\]

where \(\beta \) ranges over a set \(\mathcal{B} \) and \(f_\beta \in R \). From [5, Theorem 7.6] one can prove

\[
i_2(\bigvee_{\beta} i_1(f_\beta)) = \bigvee_{\beta} i_2 i_1(f_\beta).
\]

Therefore,

\[
f= \bigvee_{u \in D} i_2(f(u)) = \bigvee_{u \in D} \bigvee_{\beta} i_2 i_1(f_\beta) = \bigvee_{u \in D, \beta \in \mathcal{B}} i_2 i_1(f_\beta),
\]

and hence every element of \(L \) is a supremum of elements of \(iR \).
Theorem 7.6 of [5] can be employed again to show that L is a complete vector lattice.

The vector lattice L of Theorem 3.3 is a complete F-space and hence by [3, Corollary 3.7] can be embedded as an order-convex \(^3\) subspace of a complete regular F-ring. Therefore we have

Corollary 3.2. Every archimedean vector lattice R can be embedded in a complete regular F-ring K so that every element $f \geq 0$ of K is a supremum of elements of R.

\(^3\) A subset A of a vector lattice V is order-convex if $g, h \in A$ and $g \leq k \leq h$ imply that $k \in A$.

REFERENCES