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SUMMARY

Male sex determination is mediated sequentially by
sex-determining region Y (SRY) and related SRY-
box 9 (SOX9) transcription factors. To understand
the gene regulatory hierarchy for SRY and SOX9, a
series of chromatin immunoprecipitation and whole-
genome promoter tiling microarray (ChIP-Chip) ex-
periments were conducted with mouse gonadal cells
at the time of sex determination. SRY and SOX9 bind
to the promoters of many common targets involved
in testis differentiation and regulate their expression
in Sertoli cells. SRY binds to various ovarian differen-
tiation genes and represses their activation through
WNT/b-catenin signaling. Sertoli cell-Sertoli cell
junction signaling, important for testis cord forma-
tion, is the top canonical pathway among the SRY
and SOX9 targets. Hence, SRY determines Sertoli
cell fate by repressing ovarian and activating testic-
ular differentiation genes, promotes early Sertoli
cells to form testis cord, and then passes on its func-
tions to SOX9, which regulates common targets and
activates its own gene regulatory program, beyond
SRY actions, in sex determination.

INTRODUCTION

The Y chromosome plays a pivotal role in mammalian sex deter-

mination. The discovery of the sex-determining region Y (Sry)

gene as the sex-determining gene on this chromosome marks

the most significant development in the field (Gubbay et al.,

1990; Sinclair et al., 1990). SRY is postulated to determine

the fate of the supporting cells into the Sertoli cell lineage, the

foremost event of the developmental cascade (McLaren,

1991). The Sertoli cells, in turn, bring about a variety of cellular

and developmental events, including pre-Sertoli cell prolifera-

tion, recruitment of additional supporting cells into Sertoli cells,

blockage of meiosis in germ cells, and the formation of testis

cords, the first visible structure of the embryonic testis. Recent
studies suggest that SRY synergizes with steroidogenic factor

1 (SF1, also known as nuclear receptor subfamily 5, group A,

member 1 [NR5A1]) and binds to a 1.4 kb core domain of the

testis enhancer of Sox9 (TESCO), between �13 and �10 kb

upstream of the transcription start site of the related SRY-box

9 (Sox9) gene (Sekido and Lovell-Badge, 2008), and greatly

upregulates Sox9 expression. SOX9, in turn, interacts with SF1

and binds to the same or similar binding sites within TESCO,

propagates its own expression in a positive feedback loop,

and propels testis differentiation beyond SRY actions. Because

ectopic expression of Sox9, by either transgenic means or acti-

vating mutations (Bishop et al., 2000; Qin et al., 2004; Vidal et al.,

2001), results in male (M) sex differentiation without a functional

Sry, it has been argued that the primary role of Sry is to activate

Sox9 in this Y chromosome-initiated developmental process

(Sekido and Lovell-Badge, 2009).

Various studies, however, suggest that SRY might serve

diverse functions in not only activating Sox9 but also regulating

other important sex-determining genes, reprogramming the

chromatin landscape, and epigenetically establishing the sup-

porting cells to a Sertoli cell lineage (Oh and Lau, 2006). SRY

lacks a transcriptional domain present in most SOX proteins

and needs to recruit corepressors and coactivators to accom-

plish its transcriptional and/or epigenetic functions. Indeed,

numerous SRY interactive proteins with a variety of transcrip-

tional or chromatin modulating properties have been identified

with several molecular approaches (Lau and Li, 2009; Li

et al., 2006; Oh et al., 2005; Peng et al., 2009; Sekido and

Lovell-Badge, 2008; Wu et al., 2009). SRY forms transcription

complexes with either SF1 or SP1 and transactivates the

respective target genes (Sekido and Lovell-Badge, 2008; Wu

et al., 2009). SRY could interact with nuclear b-catenin and

repress WNT signaling-dependent gene expression (Lau and

Li, 2009). SRY also interacts with numerous transcription

factors (Wissmüller et al., 2006) and modulates the respective

transcriptional activities. SRY binds the Krüppel-associated

box-only (KRAB-O) protein and recruits a gene-silencing com-

plex, consisting of the KAP1-HP1 (KRAB-associated protein 1-

heterochromatin protein 1), to the promoters and represses the

target genes (Oh et al., 2005; Peng et al., 2009). SRY also inter-

acts with poly(ADP-ribose) polymerase 1 (PARP1), which could
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poly(ADP-ribosyl)ate nuclear proteins and modulate their affinity

to their respective target sequences (Li et al., 2006). Hence, SRY

could reprogram epigenetically the chromatin landscape of its

targets and permanently establish the Sertoli cell lineage in the

supporting cells of the developing testis. At present, the full

spectrum of SRY-containing transcription and chromatin remod-

eling complexes in the Sertoli precursors is still unknown. These

observations, however, raise some important questions. Is Sox9

the only target gene for SRY? If not, what are the other target

genes for the SRY-containing transcription complexes? Are

any of its targets involved in the cascade of cellular events in

testis differentiation? Furthermore, because SOX9 is responsible

for propagating testis differentiation beyond SRY actions and

their DNA binding high-mobility group boxes are functionally

interchangeable (Bergstrom et al., 2000), do SRY and SOX9

bind and regulate similar target genes in the samedevelopmental

pathway?

To address the above questions, we had conducted a series

of experiments using the chromatin immunoprecipitation (ChIP)

and whole-genome promoter tiling microarray (ChIP-Chip) strat-

egy on fetal gonads frommouse embryos at embryonic day 11.5

(E11.5) and E12.5 developmental stages to identify the target

genes for SRY and SOX9, respectively. Our results provided

some answers to these questions, suggesting that SRY-contain-

ing transcription complexes bind to the promoters of a large

number of target genes, including numerous known testis

and ovarian-differentiating genes. SRY and SOX9 share and

regulate a significant number of common targets, which serve

important functions in early events in testis differentiation,

including Sertoli cell fate determination, M germ cell definition,

and testis cord formation and differentiation.

RESULTS

SRY and SOX9 Recognize a Large Number of Common
Target Genes during Sex Determination
Using two specific antibodies against themouse SRY and SOX9,

respectively (Figure S1), gonadal cells from E11.5 embryos were

processed for SRY ChIP, at which time SRY expression was at

its peak, whereas M gonadal cells from E12.5 embryos were

used for SOX9 ChIP, at which time SRY expression was at its

minimum or had disappeared (Taketo et al., 2005). We surmise

that using highly specific antibodies and gonadal cells at distinct

embryonic stages had greatly enhanced the specificity of the

respective SRY or SOX9 bound chromatin in our ChIP-Chip

studies. The crude ChIP data were further analyzed with the

Mpeak program (Zheng et al., 2013), which identified statistically

significant binding peaks by scanning the hybridization signals

along parallel promoter tiling regions between two biological
Figure 1. SRY and SOX9 ChIP-Chip Signals and Gene Differential Ex

Genome Browser

(A) Distributions of SRY (green) and SOX9 (blue) binding signals on mouse chromo

expressed genes between M and F supporting cells at E11.5, E12.5, and E13.5 g

and E13.5 versus E11.5 stages (pink). Examples of significant andminimal SRY an

in dark red and dark blue, respectively.

(B) Enlargement at chromosome band 2qA3, showing SRY and SOX9 signals am

(C) Signals at individual gene level, showing almost identical patterns for SRY an
replicates. Using an optimal threshold value of 1 for prefiltering

and p value <0.01, we had identified a total of 3,083 target genes

for SRY in E11.5 gonads and 1,903 target genes for SOX9 in

E12.5 M gonads, respectively (Tables S1 and S2). These two

transcriptional factors regulate a substantially large number

(907) of common genes, about one-third and half of the SRY

and SOX9 targets, respectively. These observations are signifi-

cant because the respective targets were identified with inde-

pendent and biologically replicated experiments with gonadal

cells at two distinct developmental stages, i.e., E11.5 for SRY

and E12.5 for SOX9, suggesting that SOX9 must have assumed

a sizable portion of the SRY regulatory program in the process.

A total of 126 and 84 target genes respectively for SRY

and SOX9 previously demonstrated to be associated with sex

determination, to possess high Mpeak (binding) scores, and/or

to be highly differentially expressed between M and female

(F) supporting cells, were selected for confirmation analysis

with gene-specific primer pairs (Table S3) and quantitative

PCR with corresponding immunoprecipitated chromatin DNAs.

Primers from the SRY and SOX9 binding sites at TESCO (Sekido

and Lovell-Badge, 2008) and the mouse cerebellum 4 precursor

(Cbln4) (Bradford et al., 2009) were used as positive controls.

This initial analysis showed 89.7% and 88.1% confirmation

for SRY and SOX9 binding to the respective target genes

(Figure S2).

SRY and SOX9 Bind Preferentially to the Same Regions
at the Promoters of Their Common Targets
To determine the overall distributions of SRY and SOX9 binding

signals in the entire mouse genome and to compare them to

those of differentially expressed genes, the expression levels

between M and F supporting cells at E11.5, E12.5, and E13.5

stages and between E12.5/E13.5 and E11.5 were calculated

from microarray expression data (Jameson et al., 2012) and

tabulated as log2 ratios at the transcription start site of each an-

notated gene and analyzed with the Genome Browser (Karolchik

et al., 2011). At the chromosome level, SRY andSOX9ChIP-Chip

signals were preferentially localized at chromosomal regions

containing differentially expressed genes (Figure 1A). At the

chromosomal subband level, SRY and SOX9 bindings could

be identified as differentially regulated genes in M supporting

cells or among the three developmental stages (Figure 1B). At

the specific gene level, the binding patterns of SRY and SOX9

were almost identical at the promoters of their common target

genes, e.g., prostaglandin D2 synthase (Ptgds) (Figure 1C).

These patterns of the SRY and SOX9 bindings were most prev-

alent among their common targets (Figure S3), suggesting that

they could bind to the same, if not identical, regions and regulate

their common target genes in similar manners.
pression Patterns on Mouse Chromosome 2, as Visualized by the

some 2 as visualized with the Genome Browser, and compared to differentially

onads (jade), and between supporting cells of M gonads at E12.5 versus E11.5

d SOX9 bindings and differential gene expression in supporting cells are boxed

ong common targets.

d SOX9 signals on the Ptgds promoter.
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SRY and SOX9 Bind and Regulate the Promoter
Activities of Common and Unique Target Genes
in a Mouse Sertoli Cell Line
Among the SRY and SOX9 targets, there are numerous notable

ones, such as Ptgds (Wilhelm et al., 2007), desert hedgehog

(Dhh) (Clark et al., 2000; Yao et al., 2002), cytochrome P450,

family 26, subfamily B, polypeptide 1 (Cyp26b1) (Bowles et al.,

2006), fibroblast growth factor 9 (Fgf9) (Colvin et al., 2001), glial

cell line-derived neurotrophic factor (Gdnf) (Oatley and Brinster,

2008), and others previously demonstrated to serve vital func-

tions in sex determination and differentiation (Table S4). To eval-

uate the functional effects of SRY and SOX9 on the target genes,

promoters containing the specific SRY/SOX9 binding peaks

and transcription start sites were inserted immediately upstream

of a promoter-less luciferase reporter and analyzed with trans-

fection assays in a mouse Sertoli cell line, MSC1 (McGuinness

et al., 1994), with and without a mouse Sry or Sox9 transgene.

A luciferase reporter directed by the TESCO enhancer and a

minimal promoter (Sekido and Lovell-Badge, 2008) was used

as a positive control. Transfection ofMSC1 cells with this TESCO

reporter with either Sry or Sox9 resulted in moderate increases

in reporter activities, as compared to those with TESCO reporter

alone (Figure 2B). Significantly, inclusion of Sf1 (Nr5a1) expres-

sion vector in the transfections greatly stimulated the reporter

activities, which were further amplified with either Sry or Sox9

coexpression. These results corroborated with those from the

initial study on TESCO (Sekido and Lovell-Badge, 2008), thereby

supporting the validity of our promoter assay system.

Initially, 23 putative target genes (8 common, 10 SRY-unique,

and 5 SOX9-unique targets) were selected for detailed promoter

characterization in MSC1 cells (Tables S1 and S2 for remainders

of SRY and SOX9 targets). Most promoters of the selected target

genes were capable of responding to the transactivation effects

of a cotransfected Sry or Sox9 gene (Figure 2A). Interestingly,

several specific targets for SRY (e.g., Mmd2, Scube2, Fgf9,

and Gdnf) were capable of responding to SOX9 stimulation

and vice versa (e.g., Erbb3 and Ctgf) in this promoter assay sys-

tem. We surmise that the respective transcription factors, i.e.,

SRY or SOX9, were expressed at high levels in the transiently

transfected MSC1 cells, and their DNA binding domains are

functionally interchangeable (Bergstrom et al., 2000); they could

bind to the cis elements of each other’s target promoters,

thereby stimulating the luciferase reporter activities.

We further noted that the promoter from Adamts16 lacked

any response to a cotransfected Sox9 gene, and those from

Ube1y1 and Wnt5a showed minimal stimulation by either the

Sry or Sox9 expression. The Ptgds promoter-directed reporter
Figure 2. Promoter Assays on Selected Target Genes of SRY and SOX

(A) Individual promoter assays on SRY and SOX9 targets in the Sertoli cell line, M

(B) SRY and SOX9 exacerbation of SF1 stimulation of a TESCO-directed lucifera

(C and D) Promoter assays showing SRY and SOX9 exacerbation of SF1 (C) and

(E) SRY ovarian target promoter-directed reporter assay in KK1 granulosa cell lin

SRY coexpression.

(F) Similar transfection assays, showing SOX9 repression of WNT/b-catenin acti

(G) Similar promoter-directed reporter assays, as in (A), among target genes in t

(H) Sf1 could exacerbate the transactivation of reporters directed by the promot

See Tables S1 and S2 for all SRY and SOX9 targets at E11.5 and E12.5 gon

experiments.
showed only moderate stimulation by Sox9, but not Sry, as re-

ported by Wilhelm et al. (2007). Currently, the molecular mecha-

nism(s) for such unresponsiveness of the respective promoters

in this assay system is unknown. Conceivably, yet-to-be defined

critical cofactors for SRY or SOX9 for their regulatory activities

on the respective promoters were absent or insufficient in the

MSC1 cells. Because SF1 has been demonstrated to work

collaboratively with SRY in transcriptional regulation of their

responsive genes, i.e., Sox9 (Sekido and Lovell-Badge, 2008),

we had selected a few target promoter-luciferase constructs

for further analysis. Inclusion of Sf1 in the Sry transfection greatly

exacerbated the activities of the reporter in the promoter assays

(Figure 2C). Because SOX9 could also interact with SF1 and

regulate its own gene transcription in a positive feedback loop,

we had performed parallel Sox9 transfection assays similarly

as those for Sry and Sf1. Our results demonstrated that indeed

SOX9 could synergistically interact with SF1 and transactivate

the same reporters directed by the respective SRY or common

target promoters, similar to SRY (Figure 2C).

Interestingly, as a SRY interactive protein, cotransfection of

PARP1 with Sry could stimulate the Ptgds promoter-directed

luciferase activities to about 3-fold in MSC1 cells, as compared

to control, and those with Sry or PARP1 alone (Figure 2D). Such

SRY-PARP1 stimulation of Ptgds promoter was at a similar level

as that by SOX9 (Figure 2A). These results support our postula-

tion of a likely requirement(s) of cofactors for SRY and/or SOX9

transactivation of their respective target genes.

SRY Represses Ovarian-Determining Genes
by Interfering with Their Activation
by WNT/b-catenin Signaling
As the M sex determinant, SRY not only activates the testicular

differentiation but also likely represses the ovarian-determining

program(s). Several key ovarian-differentiating genes, i.e., folli-

statin (Fst), Iroquois-related homeobox 3 (Irx3), bone morphoge-

netic protein 2 (Bmp2), and guanine nucleotide binding protein

(G protein), gamma 13 (Gng13), were SRY targets, but not

SOX9. Because b-catenin is the major mediator of the RSPO1-

WNT4 signaling responsible for activating the early events

of ovarian determination and differentiation (Maatouk et al.,

2008), we had evaluated the effects of SRY in b-catenin transac-

tivation of reporter genes directed by the respective promoters

of these ovarian-determining genes in a granulosa cell line,

KK1. Our results showed that b-catenin could indeed stimulate

the activities of three of four (i.e., Fst, Irx3, and Gng13) target

gene promoter-directed reporters. Expression of Sry in trans-

fected cells reduced such reporter activities to the same levels
9

SC1.

se in MSC1 cells.

SRY and PARP1 exacerbation (D) on respective targets.

e, showing their upregulation by WNT/b-catenin signaling and suppression by

vation of SRY ovarian targets.

he Sertoli cell-Sertoli junction signaling.

er of Pvrl2, but only slightly by that of Cldn12 and none at all by that of Pvrl1.

ads, respectively. Error bars represent SDs derived from three independent
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as those without b-catenin transactivation (Figure 2E). Our ex-

periments showed that SRY could antagonize the WNT/b-cate-

nin transcriptional activities of ovarian-differentiating genes in a

granulosa cell line.

Various studies indicated that ectopic expression of Sox9, in

the absence of Sry, could induce M sex differentiation (Bishop

et al., 2000; Qin et al., 2004; Vidal et al., 2001), suggesting

that SOX9 could assume SRY functions, including repressing

of WNT/b-catenin activation of ovarian-differentiating genes. To

evaluate such a possibility, similar transfection assays were con-

ducted with a mouse Sox9 construct. Our results showed that

indeed SOX9 suppressed the b-catenin-mediated transactiva-

tion of the same reporters, except that from Bmp2 gene (Fig-

ure 2F), suggesting that SOX9 is capable of interfering the WNT/

b-catenin signaling and repressing the ovarian-differentiating

genes, when it is ectopically expressed during sex determination.

SRY and SOX9 Upregulate the Expression
of Endogenous Testis-Differentiating Genes
in Mouse Sertoli Cells
The effects of ectopically expressed SRY or SOX9 in the Sertoli

cells were examined using a transient transfection strategy.

A Sry or Sox9 transgene was coexpressed with the GFP in

MSC1 cells. Positive cells were purified by preparative flow

cytometry using GFP as a biomarker and analyzed by quantita-

tive RT-PCR (qRT-PCR). The results showed that the Sry and

Sox9 transgenes were expressed at high levels in the corre-

sponding transfected MSC1 cells (Figure 3A). As a target gene

for SRY, the endogenous Sox9 gene was upregulated in Sertoli

cells transiently expressing SRY (Figure 3B). Similarly, expres-

sion levels of known SOX9 targets, Amh and Vanin1, in SOX9-

expressing MSC1 cells increased significantly over the vector-

transfected control (Figure 3C). This initial analysis suggested

that expression of SRY and SOX9 could have significant effects

on the respective endogenous target genes. Using various gene-

specific primers (Table S3), we had examined the expression

of 30 target genes for SRY and SOX9 in the transient transfected

Sertoli cells. Our results showed that approximately two-thirds

of endogenous target genes were stimulated to various levels

in Sry- or Sox9-transfected cells (Figure 3D).

SRY and SOX9 Targets Serve Important Roles in Testis
Cord Formation
To decipher the probable functions and pathways regulated by

SRY and SOX9 during testis development, we had analyzed
Figure 3. Effects of Sry and Sox9 Transgene on Gene Expression of Se

(A) Detection of high-level expression of the transfected Sry and Sox9 genes in M

(B) Upregulation of endogenous Sox9 gene in MSC1 cells by a Sry transgene.

(C) Upregulation of two known SOX9 targets, i.e., Amh and Vanin1, in SOX9-exr

(D) Differential upregulation of selected endogenous SRY and SOX9 targets in re

(E) Upregulation of endogenous genes belonging to the Sertoli cell-Sertoli cell junc

to Hprt control.

(F and G) Expression levels (heatmap) of (F) SRY targets and (G) SOX9 targets in th

gonads at E11.5, E12.5, and E13.5 stages. A subset of genes was preferentially

at the E11.5–E13.5 stages (left columns). Both M and F supporting cells at the

supporting cells showed minimal changes toward the E12.5 and E13.5 stages (r

See Table S4 for phenotypes associated with dysfunctions in sex determination

independent experiments.
the respective targets with a knowledge base Gene Ontology

analysis system (Ingenuity Pathway Analysis [IPA]). We surmise

that upregulated genes inM supporting cells could serve positive

functions in testicular differentiation; hence, we had also

analyzed SRY and SOX9 targets upregulated in M as compared

to F supporting cells (i.e., M versus F at E11.5, E12.5, and E13.5

stages) and among theM supporting cells at three early stages of

gonadal differentiation (Jameson et al., 2012).

Using the entire target sets for SRY and SOX9, IPA showed

that they were significantly enriched in similar biological pro-

cesses pertaining to cellular growth and proliferation and organ

and embryo development. Notably, the Sertoli cell-Sertoli cell

junction signaling ranked second among the 587 canonical

pathways in the IPA database for the SRY target genes and,

to a lesser extent, those of SOX9 (Table 1). Significantly, this

signaling pathway was the top canonical pathway among the

SRY targets upregulated in M supporting cells at all three

gonadal developmental stages, and between M supporting cells

of E12.5/E13.5 versus E11.5 stage, and again ranked similarly

prominent among the upregulated SOX9 targets. Importantly,

other epithelial adherens, tight junction, and actin cytoskeleton

signalings were also among the top canonical pathways with

the SRY and SOX9 targets (Table 1).

The Sertoli cell-Sertoli cell junction signaling pathway was

initially established for Sertoli cell-Sertoli cell junction formation

in the postnatal and adult testis and is important for the develop-

ment of the blood-testis barrier (BTB) of the seminiferous

tubules. The BTB consists of tight junctions and adherens junc-

tions between Sertoli cells, which are dynamically remodeled

allowing the spermatogenic cells to migrate across the base of

the seminiferous epithelium to the lumen during their maturation

(Cheng andMruk, 2012). The identifications of Sertoli cell-Sertoli

cell junction signaling, actin cytoskeleton signaling, and tight

junction signaling as top canonical pathways among the SRY

and SOX9 targets, especially those upregulated in early Sertoli

cells, suggest that they are important in regulating cell adhesion,

tight junction dynamics, and actin cytoskeletal anchoring in

early testis cord formation and tubulogenesis in the M gonad

(Cool et al., 2012).

Quantitative PCR analysis confirmed the SRY and SOX9

binding to �90% of targets involved in the Sertoli cell-Sertoli

cell junction signaling, similar to those previously studied (Fig-

ures S2D and S2G). Furthermore, promoters of selected target

genes were capable of being activated by a cotransfected

Sry or Sox9 transgene in a reporter assay system (Figure 2G).
lected Endogenous Targets in MSC1 Cells

SC1 cells by qRT-PCR.

essing MSC1 cells.

spectively transfected MSC1 cells.

tion signaling pathway in MSC1 cells by Sry and Sox9 transgene, as compared

e Sertoli cell-Sertoli cell junction signaling in M and F supporting cells of mouse

upregulated among the SRY and SOX9 targets (boxed) in M supporting cells

E11.5 stage showed similar, but distinct, expression patterns (middle). The F

ight). E11.5M1 represents E11.5 stage male supporting cells sample 1.

of selected SRY/SOX9 targets. Error bars represent SDs derived from three
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Table 1. Sertoli Cell-Sertoli Cell Junction Signaling and Other

Epithelial Adherens, Tight Junction, and Actin Cytoskeleton

Signaling Pathways among the SRY and SOX9 Targets

Rank Ingenuity Canonical Pathwaysa p Value Ratio

SRY Targets (total targets in E11.5 supporting cells)

2 Sertoli cell-Sertoli

cell junction signaling

2.04 3 10�6 2.63 3 10�1

6 Actin cytoskeleton

signaling

1.32 3 10�5 2.32 3 10�1

11 Tight junction signaling 8.13 3 10�5 2.53 3 10�1

SRY Targets Upregulated in M at E11.5

1 Sertoli cell-Sertoli cell

junction signaling

3.02 3 10�5 3.76 3 10�2

2 Remodeling of epithelial

adherens junctions

3.63 3 10�4 5.97 3 10�2

5 Actin cytoskeleton

signaling

7.41 3 10�4 2.58 3 10�2

6 Epithelial adherens

junction signaling

8.51 3 10�4 3.45 3 10�2

8 Germ cell-Sertoli cell

junction signaling

1.12 3 10�3 3.16 3 10�2

SRY Targets Upregulated in M at E12.5

1 Sertoli cell-Sertoli

cell junction signaling

2.19 3 10�3 4.3 3 10�2

3 Actin cytoskeleton

signaling

6.92 3 10�3 3.43 3 10�2

6 Epithelial adherens

junction signaling

1.17 3 10�2 4.14 3 10�2

SRY Targets Upregulated in M at E13.5

1 Sertoli cell-Sertoli

cell junction signaling

6.31 3 10�4 4.30 3 10�2

3 Epithelial adherens

junction signaling

4.79 3 10�3 4.14 3 10�2

4 Remodeling of epithelial

adherens junctions

5.75 3 10�3 5.97 3 10�2

5 Germ cell-Sertoli cell

junction signaling

6.61 3 10�3 3.80 3 10�2

7 Actin cytoskeleton

signaling

8.12 3 10�3 3.00 3 10�2

SRY Targets Upregulated in E12.5 versus E11.5 M

1 Sertoli cell-Sertoli

cell junction signaling

3.89 3 10�5 4.84 3 10�2

3 Germ cell-Sertoli cell

junction signaling

6.17 3 10�4 4.43 3 10�2

SRY Targets Upregulated in E13.5 versus E11.5 M

1 Sertoli cell-Sertoli cell

junction signaling

4.37 3 10�5 4.84 3 10�2

3 Germ cell-Sertoli cell

junction signaling

6.61 3 10�4 4.43 3 10�2

SOX9 Targets (total targets in E12.5 supporting cells)

18 Tight junction signaling 3.02 3 10�3 1.58 3 10�1

26 Sertoli cell-Sertoli cell

junction signaling

5.13 3 10�3 1.453 10�1

Table 1. Continued

Rank Ingenuity Canonical Pathwaysa p Value Ratio

SOX9 Targets Upregulated in M at E11.5

3 Integrin signaling 3.02 3 10�3 3.37 3 10�2

13 Paxillin signaling 1.66 3 10�2 3.57 3 10�2

14 Germ cell-Sertoli cell

junction signaling

1.74 3 10�2 3.14 3 10�2

SOX9 Targets Upregulated in M at E12.5

3 Tight junction signaling 1.70 3 10�3 4.43 3 10�2

4 Integrin signaling 1.74 3 10�3 3.85 3 10�2

9 Sertoli cell-Sertoli

cell junction signaling

3.80 3 10�3 3.74 3 10�2

SOX9 Targets Upregulated in M E13.5

2 Integrin signaling 1.32 3 10�3 3.85 3 10�2

3 Tight junction signaling 1.32 3 10�3 4.43 3 10�2

7 Sertoli cell-Sertoli

cell junction signaling

3.02 3 10�3 3.74 3 10�2

SOX9 Targets Upregulated in E12.5 versus E11.5 M

2 Sertoli cell-Sertoli

cell junction signaling

5.37 3 10�3 2.69 3 10�2

6 Tight junction signaling 1.66 3 10�2 2.53 3 10�2

10 Integrin signaling 3.71 3 10�2 1.93 3 10�2

13 Actin cytoskeleton

signaling

4.79 3 10�2 1.72 3 10�2

SOX9 Targets Upregulated in E13.5 versus E11.5 M

1 Sertoli cell-Sertoli

cell junction signaling

6.03 3 10�3 2.69 3 10�2

4 Tight junction signaling 1.82 3 10�2 2.53 3 10�2

aIPA was performed from April 27 to April 30, 2013.
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For those that showed minimal induction by a Sry transgene, in-

clusion of a cotransfected Sf1 transgene could greatly stimulate

the expression of some reporters directed by the respective

target gene promoters (Figure 2H). Selected endogenous SRY

and/or SOX9 targets were stimulated in MSC1 cells transiently

transfected with either a Sry or a Sox9 transgene (Figure 3E).

Collectively, these studies confirmed the bindings and regula-

tion/coregulation of the target genes of this canonical pathway

by SRY and/or SOX9, similar to those previously observed (Fig-

ures 2 and 3).

Because the Sertoli cell-Sertoli cell junction signaling was

initially established in adult testis pertaining to the establishment

and physiology of the BTB, we postulated that perhaps only a

subset of genes involved in this canonical pathway could be

important for testis cord formation in the embryonic testis, in

which spermatogenesis was absent. To explore this possibility,

we had used the hierarchical clustering analysis on the SRY

and SOX9 targets within this signaling pathway with respect to

the expression patterns in the supporting cells at various stages

of sex differentiation in the embryonic gonads. Our results

showed that subsets of the respective targets were preferentially

upregulated in the early M supporting cells, particularly those at

E12.5 and E13.5 testes (Figures 3F and 3G; gene lists in Table

S5). Significantly, based on the expression patterns of the



respective targets, the M and F supporting cells at E12.5 and

E13.5 stages were clustered at opposite sides, whereas those

for E11.5 stage were positioned in themiddle of the dendrogram.

These findings suggest that the expression patterns of both M

and F supporting cells at the early stage, i.e., E11.5, were similar,

but distinguishable. The M supporting cells took on a specific

expression pattern toward later stages, i.e., E12.5 and E13.5,

with the formation of testis cord, a process in which certain

SRY and SOX9 targets were highly expressed and presumably

exerted a positive function(s) (Figures 3F and 3G, boxed),

whereas the F supporting cells showed less dramatic changes

in their expression patterns from E11.5 to E13.5 stages. These

expression patterns seem to parallel the morphological differen-

tiation between M and F gonads at the respective stages, in

which the M gonad shows profound changes with the testis

cord formation, whereas the F gonad shows only slight pheno-

typic changes in its vasculature (Cool et al., 2012).

Because the SRY targets were identified at the E11.5 stage,

whereas their differential expressions were noticeable at this

stage but only became prevalent at the E12.5 and later stages,

SRY must exert its regulatory functions at the E11.5 stage

when its expression was at the peak. Currently, the exact regu-

latory mechanisms for such SRY actions are uncertain. SRY

could play an initial and crucial role(s) in activating or repressing

the respective target genes, whose regulations are then taken

over by collaborating transcription activators or repressors at

the later stages. One prime example of such a gene regulatory

mechanism is the Sox9 gene, which is initially activated collabo-

ratively by SRY and SF1 and subsequently by SF1 and its own

product beyond the active period of SRY. Alternatively, SRY

could recruit chromatin regulators, such as the KAP1-HP1

gene-silencing complex and the chromatin modulator PARP1,

and remodel the chromatin landscapes and accessibility to sub-

sequent transcriptional regulators on its target genes beyond its

own expression in the supporting cells. Nevertheless, our data

support the notion that SRY plays a pivotal role in the initiation

of the vasculature development of embryonic testis, and SOX9

assumes such functions at later stages of the differentiation.

DISCUSSION

SRY Plays Key Roles in Early Events in M Sex
Determination
The Y-located Sry gene serves the indispensable function in M

sex determination, initiated by its activation in supporting cells

of E10.5 gonad and followed by cascades of molecular and

cellular events in early stages (Svingen and Koopman, 2013).

At present, the exact mechanisms by which Sry, Sox9, and other

sex-determining genes mediate the early cellular events are un-

certain. A current hypothesis suggests that SRY primarily

switches on Sox9, the presumedmaster facilitator in testis differ-

entiation (Sekido and Lovell-Badge, 2009). The present study

challenges this paradigm and has provided evidence supporting

the notion that SRY regulates a wide spectrum of targets,

involved in early events in testis differentiation, some of which

could precede the normal Sox9 activation. These early cellular

events include Sertoli cell fate determination, inhibition of ovarian

development, Sertoli cell proliferation and recruitment, arrest of
meiosis in germ cells and definition of their M lineage, and even-

tual formation of the testis cord, encapsulating the germ cells

(Cool et al., 2012; Svingen and Koopman, 2013). At present,

the exact order of their occurrence is uncertain; SRY could exert

its regulatory actions in simultaneous and/or overlapping man-

ners. We surmise that the initial Sry activation and its subsequent

actions in the supporting cells determine the fate of these cells

to Sertoli cell lineage. SRY binds and regulates Ptgds, whose

product catalyzes the conversion of prostaglandin H2 to prosta-

glandin D2, critical for recruitment of supporting cells into Sertoli

cells (Wilhelm et al., 2005). Fgf9 and Gdnf are involved in Sertoli

cell proliferation (Colvin et al., 2001) and M germ stem cell niche

development (Oatley and Brinster, 2008), respectively. SRY, but

not SOX9, binds in vivo to the promoters of various ovarian-

differentiating genes and suppresses their activation by WNT/

b-catenin signaling. SRY activates Cyp26b1, which encodes

an enzyme degrading retinoid acid (RA), thereby arresting the

RA-induced meiosis and maintaining the germ cells in the M

lineage (Bowles et al., 2006). Other notable SRY targets, such

as Wnt5a and Dhh, are respectively involved in primordial germ

cell migration and testis differentiation (Chawengsaksophak

et al., 2012), and peritubular cell development, seminiferous

tubule formation, and Leydig cell differentiation (Clark et al.,

2000; Yao et al., 2002). Gene inactivation or mutations of other

SRY targets result in abnormalities in sex determination and

differentiation (Table S4). Significantly, Gene Ontology analysis

identified many of the SRY targets, encoding (1) various cell

adhesion molecules, such as cadherins, claudins, and integrins,

and (2) cytoskeletal proteins, such as actins, and (3) signaling

molecules, such as platelet-derived growth factor b (Pdgfb)

and its receptor (Pdgfrb), and (4) MAP kinases, which are impor-

tant in the Sertoli cell-Sertoli cell junction signaling, and cell-cell

adherens and tight junction, and actin cytoskeletal signaling

pathways. Because Sertoli cell-Sertoli cell junction signaling

and adhesion are critical in testis cord formation (Cool et al.,

2012), these SRY targets must serve important functions in the

process(es).

SRY and SOX9 Targets Share Significant Functional
Roles in Testis Differentiation
SRY and SOX9 bind to the same promoter regions of a large

number of common targets in the supporting cells of M gonads.

Among the notable ones, Ptgds, Dhh, Cyp26b1, Pdgfb, Pdgfrb,

and others play key roles in early developmental and cellular

events in testis differentiation, as discussed above. Because

the targets were identified with independent biological replicates

at E11.5 for SRY and E12.5 for SOX9, respectively, such similar-

ities in binding patterns suggest that SOX9 could bind to the

same cis elements and assume the gene regulatory functions

of SRY on their common targets. This postulation is supported

by our data showing that SRY and SOX9 were capable of (1)

regulating each other’s target genes; (2) interacting with the

same coactivators, e.g., SF1, in transactivating respective target

genes; and (3) interfering with theWNT/b-catenin transactivation

of ovarian-differentiating genes in an in vitro and transient

transfection reporter system. We reasoned that the respective

transcription factors were expressed at high levels in such

in vitro assays, thereby increasing their ability in binding to likely
Cell Reports 8, 723–733, August 7, 2014 ª2014 The Authors 731



conserved cis elements and/or coregulators and regulate the

expression of the respective promoter-directed reporter or

endogenous target genes in Sertoli cells. Indeed, under diseased

or transgenic conditions, a constitutively active Sox9 could

perform certain functions of SRY in testis differentiation without

a functional Sry gene in the developing gonads (Bishop et al.,

2000; Qin et al., 2004; Vidal et al., 2001). Importantly, SOX9

also regulates a distinct set of unique target genes and exerts

its own gene regulatory program in testis differentiation. Muta-

tion and gene inactivation of the SOX9/Sox9 gene result in XY

partial or complete sex reversal in both patients and transgenic

mice (Chaboissier et al., 2004; Foster, 1996), confirming SOX9

being critical for the continuation of testis differentiation, past

SRY actions. Hence, our study shows that under normal condi-

tions, SRY regulates a variety of genes, which determine the

fate of the Sertoli cells, define the germ cells in the M lineage,

promote Sertoli cell proliferation and recruitment, and induce

the newly differentiated Sertoli cells to form tight and adherens

junctions, important for testis cord formation. Once accom-

plished, it passes on these functions to Sox9, which also acti-

vates its own gene regulatory program and continues the testis

differentiation.

AlthoughSry plays a cardinal role in activating theM sex deter-

mination and early events in testis differentiation, the develop-

mental pathway is complex and likely involved the actions of

Sox9 and other sex-determining genes essential in differentia-

tion of a functional testis (Svingen and Koopman, 2013). As

discussed, SRY likely requires interaction(s) with cofactors,

such as SF1 and SP1, for its gene regulatory functions (Sekido

and Lovell-Badge, 2008; Wu et al., 2009). Significantly, it also in-

teracts with various chromatin modulators, such as PARP1 and

KRAB-O-KAP1-HP1 gene-silencing complex (Li et al., 2006; Oh

et al., 2005), capable of epigenetically remodeling chromatin

landscape of its target genes into ‘‘open’’ or ‘‘close’’ domains

(Oh and Lau, 2006), critical for the accessibility of transcription

factors controlling their expression beyond SRY actions. At pre-

sent, the exact mechanisms responsible for SRY and SOX9

regulation or chromatinmodification of their common and unique

targets are uncertain because the full spectrum of their inter-

active partners is still incomplete. The availability of the present

data sets on SRY and SOX9 targets in the mouse embryonic

gonads at the time of sex determination has provided significant

opportunities for detailed investigations on the specific con-

tributions of these transcription factors and their targets in

mammalian sex determination and differentiation.
EXPERIMENTAL PROCEDURES

Single cells were isolated from E11.5 and E12.5 M gonads (Li et al., 2012;

Taketo et al., 2005) and processed for ChIP (Cai et al., 2006). Microarray

hybridization was performed by the Custom Array Service at NimbleGen

Systems, using the 385K RefSeq Promoter Array of the mouse MM8 genome.

All ChIP-Chip experiments were performed in biological replicates. Significant

binding peaks were identified by theMpeak program, version 2.0 (Zheng et al.,

2013). The ChIP-Chip signals and differential gene expression patterns (at

log2 scale) betweenM versus F and changes in expression levels in supporting

cells at different stages of mouse gonadal development (Jameson et al., 2012)

were visualized with the Genome Browser (Karolchik et al., 2011). The

WIG files containing these results are provided in Folder S1. They can
732 Cell Reports 8, 723–733, August 7, 2014 ª2014 The Authors
also be downloaded directly from http://labs.medicine.ucsf.edu/chrislau/

DataSoftware.html. Gene Ontology analyses were performed with the knowl-

edge base IPA (http://www.ingenuity.com) using the Core Analysis module

and the human, rat, and mouse reference set with 587 canonical pathways.

Quantitative PCR was used to confirm SRY or SOX9 bindings on selected

targets (Table S3). Promoters of selected SRY or SOX9 targets were inserted

in front of a luciferase reporter and analyzed in the Sertoli cell line, MSC1, or the

granulosa cell line, KK1 (Li et al., 2006; Oh et al., 2005). To determine the

effects of SRY or SOX9 on endogenous target genes in Sertoli cells, mouse

Sry or Sox9 was transiently transfected in MSC1 cells and analyzed with

qRT-PCR (Table S3).

See Supplemental Experimental Procedures for more details and references

in Supplemental Information.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
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