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B Thé indoctive ﬁeﬁzﬁﬁmof (i) the class of ali trianguiations (of the sphere) without vertices of

~ degree 3; and (ii) the class of all triangulations with a\! vertices of even degree arc given. The

dual rules give us (i) the class of ali 3-connected planar cubic graphs without triangles; and (i)

the class of nll 3-connected bnparme planar cubic graphs (reiated to Barnetie’s hamilionicity
conjectme) ,

‘Steinitz and Rademacher [7 p. 243, exercisc 1] and Bowen and Fisk [7]
presented an inductive definition of the class of all tnangu!aﬂons {of the sphere).
They essentially showed:

Theorzm 1. The inductive class with the base graph B and the generating rule P
(see Fig. 1) is equal to the class T of all triangulations (of the sphere).

Fig. L -
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114 V. Batagelj

The small triangles attached to the vertices in the description of the rule d:note
any number (zero or more) of edges; the condition. =2 means that on thri side
thm can be no morc than 2 edges The rule s;huulé be uncletstood we grased led

. | ; -edges. to dcare that

The dual mductwe deﬁmmon corresponds to the class of all B-mnnected planer
cubic graphs [S, n

In this paper we. shall give the inductive definition of two testncted classes of
tnangulatmns
- the class of al! triangulations (of the spherc) without vertices of degree 3,
- the class of all triangulations with all vertices of even degree.

In the paper we shall denote by Cn(®; ) the inductive class defined with basic
graphs 2 ={B} and generating rvles P ={P} (see also [1, 4)).

Theorem 2. The inductive class Cn(O; R, 8) (see Fig. 2) is equol to the class
T(:>3) of all triangulations (of the sphere) without vertices of degree 3.

Fig. 2.
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Preof. Because the base graph O e T(>3) and the rule R or S produces from a
graph belonging to T(>3) a new graph also belonging to T(>3), by inductive
generalization, the inductive class Cn(O; R, S)< T(>3).

‘T'o prove that also T(>3)< Tn(O; R, S), we must show that every triangulation
G without vertices of degree 3, differsnt from O, can be reduced by inverse rules
R~ and S to the triangulation of the same type.

Usually we rely the inductive proofs of facts about the planar graphs on the
property that in the planar graph there always exists a vertex of degree less than
6. In this proof we shall use an opposite approach. Let x € V((7) be a vertex of
maximal degree, i.c., deg(x) = A(G).

In the case deg(x) =4 we have [8, p. 52] G = O. O is the unique trianguladon
with all vertices of degree 4. Otherwise deg(x):=5.

Let us say that in two triangles with a common edge the pair of vertices, which
do not belong to this edge, are opposite.

In the case dcg(x)=5 we have to consider the following possibilities:

Case A. There exists a vertex y opposite to x with deg(y)=S5. This can happen
in two ways:

Case A1l. The vertex x is not adjacen* to vertex v (sez Fig. 3(a): the circle
around x represents the link of x). In this case we can apply the rule R™.

Case A2. The vertex x is adjacent to vertex y (see Fig. 3(b)). In this case there
must be at least one vertex (different from z and y) on ihe patk a; otherwise a =b
(there are no parallel edges) and therefore deg(z)=3, which contradicts the
assumption G € T(>3). We can apply the rule R™.

Case B. All vertices opposite to x are of degree 4. Again we have to consider
several possibilities: ,

Case B1. All vertices on the link are of degree at least S—~we shall say that
there is a crown around x. Let us show that in this case ihere always exists on the
link a vertex z which is not adjacent with more ihan 2 vertices on the link. If
there exist chords, i.e., edges not lying on the link which connect two vertices
lying on the link (see Fig. 4), we take one among the shortest (length=# of
internal vertices in the shortest part of the link connecting these two vertices).

¥

(a)
Fig. 3.
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Fig.d. -

Because there ar: no parallel edges in G, the length of any chord is at least 1.
Any internal vertex of thz part of the link corresponding to the shortest chord can
be taken as a vertex z, bmause of the mm:makty of the chord and the planarity of
thegtathltcannot ln,e,onany chord. .

That means that in th< case. of a crown around X we can always apply the rule
R~ (see Flg, N ,

Case B2. Ther@ exists on the lmk a vertex of degree 4 thh both neighbours
ion the link) of degree at least 5 (see Fig 6) Agam, we can apply the rule R™.

Case B3. There exists on the link a pair of adjacent vertices u and v of degre:
4. Let the vortex y be the opposite vertex to x with respect to the edge uv and let
p and q b= the nelghbou;s n the hnk of vertices u and v Because deg(y)=4 the
vertices p and q. have to ent (see Fig. 7(a)) Therefore they are of degree
at least 5. This is the iast case. 10 beconsxdered because on the link there can not

Fig. 5.
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Fig. 7.
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be wore &han two wnsecnuve vemces of degre'e 4. Two subcases arise in the

v = the vertex: zf,(‘.ee Fxg 7)) is not an extreme
vertex of a chord can io ule R™.

Case B3.2. deg(x)aﬁ i d q are both at least 6, we can
apply the rule S~ (see F’g 7 ex, let us say, p deg(p)=5. In
this case we have a eonﬁgmratlon  Fig. 7(d); we can apply the rule
R~

This ccmpletes the proof of Theorem:2. [

Theorera 3. The inductive class Cn(O. W, S) (see Figs. 2 and 8) is equal to the
class T, of all triangulations (of the sphere) with all vertices of even degree.

Proof. The proof is snmlar to the proof of Theorem 2. Fox this reason we only
give the sketch of the scwond part of the proof.

From Euler’ s formula i it follows thatin each Ge T, there emst at least 6 vertices
of degree 4. g

We can easily venty that either we can apply the rule Q™ mthout the danger of
producing a pair of paralle! edges; or we have in graph G a eonﬁguratmn
rq’reaenwd in Fig. 9%a).

The qwsstlon arks in Fxg. 9(a) mean that in those regicas there can be vertices
of graph G. Now we can- agply the rule §~ or we cut out one of the non-empty
regions together wnth its boundary obtaining a new triangulation H# O (see Fig.
9(bj).

The internal vertices of H are all of even degree. But, for vertices u, y and w
there are still two possibilities:

(a) all three vertices u, y and w are of even degree;

(b) two among the vertices %, y and w are of odd degree.

Fig. 8.
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?

Fig. 9.

To avoid a direct proof of the fact that case (b) is impossible we refer to ihe
result of Fisk [6, p. 31:] which says: in the triangulation with exactly two odd
vertices these two vertic:s can not be adjacent.

Therefore the triangulition H e T, and we can repeat the described reduction
procedure on it. [

In the dual form we can express Theorems 2 and 3 as follows (see Fig. 10):

Theorem 2. The inductive class Cn(c;r, s) is equal to the class CP3(>3) of all
3-connected planar cubic graphs without triangles.

Theorem 3. The inductive class Cn(c; q, s) is equal to the class CBP3 of all
3-connected planar cubic bipartite graphs.

The rules r and q in Theorems 2’ and 3’ can be equivalently replaced by ihe
‘local’ rules represented in Fig. 11.

The rules r1 and q1 are the ‘expanding’ rules; while the rules r2 and q2 play
the role of ‘moving’ (around the face boundary) rules.

Therefore we have:

Theorem 2'. Cn(c;rl, r2, s)=CP3(>3).

Theorem 3. Cnlc; q1, g2, s) = CPB3.
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e A

Fig. 11.
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